Citation: Javad Safaei-Ghomi, Hossein Shahbazi-Alavi, Abolfazl Ziarati, Raheleh Teymuri, Mohammad Reza Saberi. A highly flexible green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives with CuI nanoparticles as catalyst under solvent-free conditions[J]. Chinese Chemical Letters, ;2014, 25(3): 401-405. doi: 10.1016/j.cclet.2013.11.046 shu

A highly flexible green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives with CuI nanoparticles as catalyst under solvent-free conditions

  • Corresponding author: Javad Safaei-Ghomi, 
  • Received Date: 13 August 2013
    Available Online: 13 November 2013

    Fund Project: The authors are grateful to University of Kashan for supporting this work (No. 159196/XⅡV). (No. 159196/XⅡV)

  • CuI nanoparticles as an efficient catalyst have been used for the preparation of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones by the four-component condensation reaction of phthalic anhydride, hydrazine monohydrate, aromatic aldehydes and malononitrile or ethyl cyanoacetate under solventfree conditions in good to excellent yields, short reaction times and environmentally benign, milder reaction conditions.
  • 加载中
    1. [1]

      [1] W.R. Vaughan, The chemistry of the phthalazines, Chem. Rev. 43 (1948) 447-508.

    2. [2]

      [2] H.W. Heine, R. Henrie, L. Heitz, S.R. Kovvali, Diaziridines Ⅲ. Reactions of some 1-alkyl-and 1,1-dialkyl-1H-diazirino[1,2-b]phthalazine-3,8-diones, J. Org. Chem. 39 (1974) 3187-3191.

    3. [3]

      [3] S. Rostamizadeh, M. Nojavan, R. Aryan, H. Sadeghian, M. Davoodnejad, A novel and efficient synthesis of pyrazolo[3,4-d]pyrimidine derivatives and the study of their anti-bacterial activity, Chin. Chem. Lett. 24 (2013) 629-632.

    4. [4]

      [4] N.K. Terrett, A.S. Bell, D. Brown, P. Ellis, Sildenafil (VIAGRATM), a potent and selective inhibitor of type 5cGMP, phosphodiesterase with utility for the treatment of maleerectile dysfunction, Bioorg. Med. Chem. Lett. 6 (1996) 1819-1824.

    5. [5]

      [5] S.K. Singh, P.G. Reddy, K.S. Rao, et al., Polar substitutions in the benzenesulfonamide ring of celecoxib afford a potent 1,5-diarylpyrazole class of COX-2 inhibitors, Bioorg. Med. Chem. Lett. 14 (2004) 499-504.

    6. [6]

      [6] T. Nakamura, M. Sato, H. Kakinuma, et al., Pyrazole and isoxazole derivatives as new, potent, and selective 20-hydroxy-5,8,11,14-eicosatetraenoic acid synthase inhibitors, J. Med. Chem. 46 (2003) 5416-5427.

    7. [7]

      [7] O. Prakash, R. Kumar, V. Parkash, Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl)chromones, Eur. J. Med. Chem. 43 (2008) 435-440.

    8. [8]

      [8] M.A.F. Vera-DiVaio, A.C.C. Freitas, H.C.A. Castro, et al., Synthesis, antichagasic in vitor evaluation, cytotoxicity assays, molecular modeling and SAR/QSAR studies of a 2-phenyl-3-(1-phenyl-1H-pyrazol-4-yl) acrylic acid benzylidene-carbohydrazide series, Bioorg. Med. Chem. 17 (2009) 295-302.

    9. [9]

      [9] M.J. Genin, C. Biles, B.J. Keiser, et al., Novel 1,5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3-and 4-substituted derivatives, J. Med. Chem. 43 (2000) 1034-1040.

    10. [10]

      [10] F. Wei, B.X. Zhao, B. Huang, et al., Design, synthesis, and preliminary biological evaluation of novel ethyl 1-(2'-hydroxy-3'-aroxypropyl)-3-aryl-1H-pyrazole-5-carboxylate, Bioorg, Med. Chem. Lett. 16 (2006) 6342-6347.

    11. [11]

      [11] Y. Xia, Z.W. Dong, B.X. Zhao, et al., Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide derivatives as potential agents against A549 lung cancer cells, Bioorg. Med. Chem. 15 (2007) 6893-6899.

    12. [12]

      [12] P.C. Lü, J. Sun, Y. Luo, Y. Yang, H.L. Zhu, Design, synthesis, and structure activity relationships of pyrazole derivatives as potential FabH inhibitors, Bioorg. Med. Chem. Lett. 20 (2010) 4657-4660.

    13. [13]

      [13] N. Cho, M. Kamaura, T. Yogo, H. Imoto, Preparation of pyrazole derivatives as improvement of insulin resistance, WO 2009139340.

    14. [14]

      [14] K. Dugi, M. Mark, F. Himmelsbach, Pharmaceutical composition comprising a pyrazole-O-glucoside derivative, WO 2009022009 A 1.

    15. [15]

      [15] S.S. El-Saka, A.H. Soliman, A.M. Imam, Synthesis, antimicrobial activity and electron impact of mass spectra of phthalazine-1,4-dione derivatives, Afinidad 66 (2009) 167-172.

    16. [16]

      [16] L. Zhang, L.P. Guan, X.Y. Sun, et al., Synthesis and anticonvulsant activity of 6-alkoxy-[1,2,4]triazolo[3,4-a]phthalazines, Chem. Biol. Drug Des. 73 (2009) 313-319.

    17. [17]

      [17] C.K. Ryu, R.E. Park, M.Y. Ma, J.H. Nho, Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones, Bioorg. Med. Chem. Lett. 17 (2007) 2577-2580.

    18. [18]

      [18] J. Li, Y.F. Zhao, X.Y. Yuan, J.X. Xu, P. Gong, Synthesis and anticancer activities of novel 1,4-disubstituted phthalazines, Molecules 11 (2006) 574-582.

    19. [19]

      [19] Y. Nomoto, H. Obase, H. Takai, et al., Studies on cardiotonic agents. Ⅱ. Synthesis of novel phthalazine and 1,2,3-benzotriazine derivatives, Chem. Pharm. Bull. (Tokyo) 38 (1990) 2179-2183.

    20. [20]

      [20] N. Watanabe, Y. Kabasawa, Y. Takase, et al., 4-Benzylamino-1-chloro-6-substituted phthalazines: synthesis and inhibitory activity toward phosphodiesterase 5, J. Med. Chem. 41 (1998) 3367-3372.

    21. [21]

      [21] F. Al'-Assar, K.N. Zelenin, E.E. Lesiovskaya, I.P. Bezhan, B.A. Chakchir, Synthesis and pharmacological activity of 1-hydroxy, 1-amino-, and 1-hydrazino-substituted 2,3-dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8-diones and 2,3-dihydro-1H-pyrazolo[1,2-b]phthalazine-5,10-diones, J. Pharm. Chem. 36 (2002) 598-603.

    22. [22]

      [22] J. Sinkkonen, V. Ovcharenko, K.N. Zelenin, et al., 1H and 13C NMR study of 1-hydrazino-2,3-dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8-diones and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones and their ring-chain tautomerism, Eur. J. Org. Chem. 13 (2002) 2046-2053.

    23. [23]

      [23] R.P. Jain, J.C. Vederas, Structural variations in keto-glutamines for improved inhibition against hepatitis A virus 3C proteinase, Bioorg. Med. Chem. Lett. 14 (2004) 3655-3658.

    24. [24]

      [24] A. Kumar, M.K. Gupta, M. Kumar, L-Proline catalysed multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction under solvent-free conditions, Green Chem. 14 (2012) 290-295.

    25. [25]

      [25] I. Ugi, A. Dömling, W. Hörl, Multicomponent reactions in organic chemistry, Endeavour 18 (1994) 115-122.

    26. [26]

      [26] M.M. Heravi, B. Baghernejad, H.A. Oskooie, A novel three-component reaction for the synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amines, Tetrahedron Lett. 50 (2009) 767-769.

    27. [27]

      [27] J. Gerencser, G. Dormon, F. Darvas, Meldrum's acid in multicomponent reaction: applications to combinatorial and diversity-oriented synthesis, QSAR Comb. Sci. 25 (2006) 439-448.

    28. [28]

      [28] D.J. Ramon, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.

    29. [29]

      [29] L. Lu, M.L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Science 287 (2000) 1463-1466.

    30. [30]

      [30] Y.J. Song, C. Yoo, J.T. Hong, et al., Nanocrystalline copper oxide(Ⅱ)-catalyzed alkyne-azide cycloadditions, Bull. Korean Chem. Soc. 29 (2008) 1561-1564.

    31. [31]

      [31] M. Kidwai, N.K. Mishra, V. Bansal, A. Kuma, S. Mozumdar, Novel one-pot Cunanoparticles-catalyzed Mannich reaction, Tetrahedron Lett. 50 (2009) 1355-1358.

    32. [32]

      [32] A.K. Verma, R. Kumar, P. Chaudhary, et al., Cu-nanoparticles: a chemoselective catalyst for the aza-Michael reactions of N-alkyl and N-arylpiperazines with acrylonitrile, Tetrahedron Lett. 46 (2005) 5229-5232.

    33. [33]

      [33] A.K. Edward, L.M. Anton, S.K. Yulia, et al., Copper nanoparticles as active catalysts in hydroxylation of phenol by hydrogen peroxide, Appl. Catal. A: Gen. 385 (2010) 62-72.

    34. [34]

      [34] J. Safaei-Ghomi, A. Ziarati, R. Teymuri, CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines, Bull. Korean Chem. Soc. 33 (2012) 2679-2682.

    35. [35]

      [35] J. Safaei-Ghomi, M.A. Ghasemzadeh, CuI nanoparticles: a highly active and easily recyclable catalyst for the synthesis of 2-amino-3,5-dicyano-6-sulfanyl pyridines, J. Sulfur Chem. 34 (2013) 233-241.

    36. [36]

      [36] A. Ziarati, J. Safaei-Ghomi, S. Rohani, Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst, Chin. Chem. Lett. 24 (2013) 195-198.

    37. [37]

      [37] R. Ghahremanzadeh, G. Imani Shakibaei, A. Bazgir, An efficient one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dionederivatives,Synlett8 (2008)1129-1132.

    38. [38]

      [38] M.R. Nabid, S.J. Tabatabaei Rezaei, R. Ghahremanzadeh, A. Bazgir, Ultrasoundassisted one-pot, three-component synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones, Ultrason. Sonochem. 17 (2010) 159-161.

    39. [39]

      [39] D.S. Raghuvanshi, K.N. Singh, A highly efficient green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives and their photophysical studies, Tetrahedron Lett. 52 (2011) 5702-5705.

    40. [40]

      [40] H.R. Shaterian, M. Mohammadnia, Mild basic ionic liquids catalyzed new fourcomponent synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones, J. Mol. Liq. 173 (2012) 55-61.

    41. [41]

      [41] G. Karthikeyan, A. Pandurangan, Post synthesis alumination of KIT-6 materials with la3d symmetry and their catalytic efficiency towards multicomponent synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione carbonitriles and carboxylates, J. Mol. Catal. A: Chem. 361-362 (2012) 58-67.

    42. [42]

      [42] S.H. Song, J. Zhong, Y.H. He, Z. Guan, One-pot four-component synthesis of 1Hpyrazolo[1,2-b]phthalazine-5,10-dione derivatives, Tetrahedron Lett. 53 (2012) 7075-7077.

    43. [43]

      [43] M. Veeranarayana Reddy, Y. Tae Jeeong, InCl3-catalyzed green synthesis of 1Hpyrazolo[1,2-b]phthalazine-5,10-diones under solvent-free conditions, Tetrahedron Lett. 54 (2013) 3546-3549.

    44. [44]

      [44] Y. Jiang, S.Y. Gao, Z.D. Li, X.X. Jia, Y.L. Chen, Cauliflower-like CuI nanostructures: green synthesis and applications as catalyst and adsorbent, Mater. Sci. Eng. B 176 (2011) 1021-1027.

    45. [45]

      [45] A. Azarifar, R. Nejat-Yami, D. Azarifar, Nano-ZnO: an efficient and reusable catalyst for one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones and pyrazolo[1,2-a][1,2,4]triazole-1,3-diones, J. Iran. Chem. Soc. 10 (2013) 297-306.

  • 加载中
    1. [1]

      Lian JinJuan ZhangLibo NieYan DengGhulam Jilany KhanaNongyue He . Chitosan nanoparticles act as promising carriers of microRNAs to brain cells in neurodegenerative diseases. Chinese Chemical Letters, 2025, 36(10): 110774-. doi: 10.1016/j.cclet.2024.110774

    2. [2]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    3. [3]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    4. [4]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    5. [5]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    6. [6]

      Tianxia ChenYunhui ChenWeiwei LiPeipei CenYan GuoJin ZhangCunding KongXiangyu Liu . Fabricating AuAg-nanoparticles/ZIF-8 composites for selective detection and efficient extraction of dinitroaniline pesticides. Chinese Chemical Letters, 2025, 36(8): 110214-. doi: 10.1016/j.cclet.2024.110214

    7. [7]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    8. [8]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    9. [9]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    10. [10]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    11. [11]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    12. [12]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    13. [13]

      Liangyu ZhangLei LeiZhuangzhuang ZhaoGuizhi YangKaitao WangLiying WangNingxin ZhangYanjia AiXinqing MaGuannan LiuMeng ZhaoJun WuDongjun LinChun Chen . Enhanced venetoclax delivery using l-phenylalanine nanocarriers in acute myeloid leukemia treatment. Chinese Chemical Letters, 2025, 36(6): 110316-. doi: 10.1016/j.cclet.2024.110316

    14. [14]

      Hui ZhangZijian ZhaoYajing WangKai NiYanfei WangLiang ZhuJianyun LiuXiaoyu Zhao . Structurally engineered solvent-free LiFePO4 electrodes via hot-pressing with efficient ion transport pathways for lithium extraction from brine. Acta Physico-Chimica Sinica, 2026, 42(2): 100130-0. doi: 10.1016/j.actphy.2025.100130

    15. [15]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    16. [16]

      Xinyuan LiZhuozhu LiWenzhong HuangJiantao LiWei ZhangShihao FengHao FanZhuo ChenSungsik LeeCongcong CaiLiang Zhou . Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction. Chinese Chemical Letters, 2025, 36(9): 110716-. doi: 10.1016/j.cclet.2024.110716

    17. [17]

      Shifang SongChenyu WuLi ZhangDezhi YangYang LuZhengzheng Zhou . Unpacking phase transitions in multi-component drug systems: A case study. Chinese Chemical Letters, 2025, 36(7): 110911-. doi: 10.1016/j.cclet.2025.110911

    18. [18]

      Yao ZouDifei GongHaiguang YangHongmei YuGuorong HeNingbo GongLianhua FangGuanhua DuYang Lu . Prediction, screening, characterization, antioxidant and antihypoxic effects of multi-component zwitterionic cocrystals of dietary flavonoids with picolinic acid. Chinese Chemical Letters, 2025, 36(9): 110768-. doi: 10.1016/j.cclet.2024.110768

    19. [19]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    20. [20]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

Metrics
  • PDF Downloads(0)
  • Abstract views(1129)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return