Citation: Peicai Li, Xubin Wang, Qinghua Zhang, Bowen Wang, Xiaohui Rong, Yong-Sheng Hu, Zhongtao Li. High-rate and long-cycling P2-type cathode material for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, ;2026, 42(5): 100214. doi: 10.1016/j.actphy.2025.100214 shu

High-rate and long-cycling P2-type cathode material for sodium-ion batteries

  • Cathode materials play a critical role in determining the energy density, cycle life, and cost-effectiveness of sodium-ion batteries (SIBs). Among various candidates, P2-type layered oxide cathodes exhibit superior high-rate charge/discharge performance due to their open Na+ diffusion channels, making them particularly suitable for applications requiring rapid power delivery, such as starter batteries and grid frequency regulation. However, while the conventional P2-type Na0.67Ni0.33Mn0.67O2 (P2-NNMO) cathode demonstrates high energy density, the strong O2−–O2− electrostatic repulsion within the transition metal layer during high-voltage charging induces an irreversible P2 → O2 phase transition accompanied by approximately 20% volume strain. This results in severe lattice distortion and structural collapse. Additionally, oxygen oxidation at high voltages contributes to charge compensation, reducing electrochemical reaction reversibility and accelerating structural degradation. Consequently, the P2-NNMO cathode suffers from rapid capacity decay and poor cycling stability, hindering its practical application. To overcome these challenges, we developed a multi-element doping strategy to design a P2-Na0.67Zn0.05Ni0.23Fe0.1Mn0.57Ti0.05O2 (P2-NZNFMTO) layered oxide cathode. The synergistic doping of Zn2+, Ti4+, and Fe3+ enables concurrent optimization of structural and electrochemical properties. Specifically, Zn2+ doping enhances the O2−–Na+–O2− electrostatic interaction, promoting the formation of local "Na+ pillars" within the Na layer to mitigate volume variation and phase transitions during cycling. Ti4+ doping disrupts Na+/vacancy ordering, significantly improving Na+ diffusion kinetics. The incorporation of Zn2+, Ti4+, and Fe3+ also alleviates the Jahn-Teller distortion associated with Ni2+/Ni3+, enhancing cycling performance while reducing material costs. The P2-NZNFMTO cathode exhibits exceptional electrochemical performance, demonstrating 96.7% capacity retention after 100 cycles at 1C rate with a high cut-off voltage of 4.3 V. Even at a high rate of 3C, it maintains over 85% capacity retention after 300 cycles. In-situ X-ray diffraction (XRD) and galvanostatic intermittent titration technique (GITT) analyses confirm its excellent structural stability and rapid Na+ transport capability at high voltages. This multi-element synergistic doping strategy establishes a novel design principle and theoretical foundation for developing high-voltage, long-cycle-life, and high-power SIB cathodes.
  • 加载中
    1. [1]

      D. Miranda, R. Goncalves, S. Wuttke, C.M. Costa, S. Lanceros-Méndez, Adv. Energy Mater. 13 (2023) 2203874, https://doi.org/10.1002/aenm.202203874.  doi: 10.1002/aenm.202203874

    2. [2]

      C. Sui, Z.Y. Jiang, G. Higueros, D. Carlson, P. Hsu, Nano Res. Energy 3 (2024) e9120102, https://doi.org/10.26599/NRE.2023.9120102.  doi: 10.26599/NRE.2023.9120102

    3. [3]

      Y.Y. Wang, X.Q. Zhang, M.Y. Zhou, J.Q. Huang, Nano Res. Energy 2 (2023) e9120046, https://doi.org/10.26599/NRE.2023.9120046.  doi: 10.26599/NRE.2023.9120046

    4. [4]

      C. Su, X. Gao, K.J. Liu, Y.H. Dai, H.B. Dong, Y.Y. Liu, J.Y. Zhu, Q.X. Zhang, H.Z. He, G.J. He, Nano Res. Energy. 3 (2024) e9120094, https://doi.org/10.26599/NRE.2023.9120094.  doi: 10.26599/NRE.2023.9120094

    5. [5]

      H. Chen, D.Y. Yang, G. Huang, X. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2305059. https://doi.org/10.3866/PKU.WHXB202305059.  doi: 10.3866/PKU.WHXB202305059

    6. [6]

      X.C. Hu, Q.Y. Xia, F. Yue, X.Y. He, Z.H. Mei, J.S. Wang, H. Xia, X.D. Huang, Acta Phys. -Chim. Sin. 40 (2024) 2309046. https://doi.org/10.3866/PKU.WHXB202309046.  doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Z.Y. Qu, X.Y. Zhang, R. Xiao, Z.H. Sun, F. Li, Acta Phys. -Chim. Sin. 39 (2023) 2301019, https://doi.org/10.3866/PKU.WHXB202301019.  doi: 10.3866/PKU.WHXB202301019

    8. [8]

      S. Chavan, B. Venkateswarlu, R. Prabakaran, M. Salman, S.W. Joo, G.S. Choi, S.C. Kim, Energy Storage 72 (2023) 108569, https://doi.org/10.1016/j.est.2023.108569.  doi: 10.1016/j.est.2023.108569

    9. [9]

      L.S.D. Vasconcelos, R. Xu, Z. Xu, J. Zhang, N. Sharma, R.S. Shah, J.X. Han, X.M. He, X.Y. Wu, H. Sun, et al., Chem. Rev. 122 (2022) 13043, https://doi.org/10.1021/acs.chemrev.2c00002.  doi: 10.1021/acs.chemrev.2c00002

    10. [10]

      J.Y. Hwang, S.K. Myung, Y.K. Sun, Chem. Soc. Rev. 46 (2017) 3529, https://doi.org/10.1039/C6CS00776G.  doi: 10.1039/C6CS00776G

    11. [11]

      Y.H. Liu, Y.H. Zhang, J. Ma, J.W. Zhao, X. Li, G.L. Cui, Chem. Mater. 36 (2024) 54, https://doi.org/10.1021/acs.chemmater.3c02115.  doi: 10.1021/acs.chemmater.3c02115

    12. [12]

      W.H. Zuo, A. Innocenti, M. Zarrabeitia, D. Bresser, Y. Yang, S. Passerini, Acc. Chem. Res. 56 (2023) 284, https://doi.org/10.1021/acs.accounts.2c00690.  doi: 10.1021/acs.accounts.2c00690

    13. [13]

      L. Li, Y. Zheng, S.L. Zhang, J.P. Yang, Z.P. Shao, Z.P. Guo, Energy Environ. Sci. 11 (2018), 2310, https://doi.org/10.1039/c8ee01023d.  doi: 10.1039/c8ee01023d

    14. [14]

      D.H. Lee, J. Xu, Y.S. Meng, Phys. Chem. Chem. Phys. 15 (2013) 3304, https://doi.org/10.1039/c2cp44467d.  doi: 10.1039/c2cp44467d

    15. [15]

      J.L. Zhang, W.H. Wang, W. Wang, W.S. Wang, B.H. Li, ACS Appl. Mater. Interfaces 11 (2019) 22051, https://doi.org/10.1021/acsami.9b03937.  doi: 10.1021/acsami.9b03937

    16. [16]

      P.F. Wang, H.R. Yao, X.Y. Liu, Y.X. Yin, J.N. Zhang, Y.R. Wen, X.Q. Yu, L. Gu, Y.G. Guo, Sci. Adv. 4 (2018) eaar6018, https://doi.org/10.1126/sciadv.aar6018.  doi: 10.1126/sciadv.aar6018

    17. [17]

      P.F. Wang, Y. You, Y.X. Yin, Y.S. Wang, L.J. Wan, L. Gu, Y.G. Guo, Angew. Chem. Int. Ed. 55 (2016) 7445, https://doi.org/10.1002/anie.201602202.  doi: 10.1002/anie.201602202

    18. [18]

      S. B, Ma, P.C. Zou, H.L. Xin, Mater. Today Energy 38 (2023) 101446, https://doi.org/10.1016/j.mtener.2023.101446.  doi: 10.1016/j.mtener.2023.101446

    19. [19]

      W.H. Zuo, F.C. Ren, Q.H. Li, X.H. Wu, F. Fang, X.Q. Yu, H. Li, Y. Yang, Nano Energy 78 (2020) 105285, https://doi.org/10.1016/j.nanoen.2020.105285.  doi: 10.1016/j.nanoen.2020.105285

    20. [20]

      M. Ren, S. Zhao, S.N. Gao, T. Zhang, M.C. Hou, W. Zhang, K. Feng, J. Zhong, W.B. Hua, S. Indris, et al., J. Am. Chem. Soc. 145 (2022) 224, https://doi.org/10.1021/jacs.2c09725.  doi: 10.1021/jacs.2c09725

    21. [21]

      R. Zhang, C.Y. Wang, P.C. Zou, R.Q. Lin, L. Ma, L. Yin, T.Y. Li, W.Q. Xu, H. Jia, Q.Y. Li, et al., Nature 610 (2022) 67, https://doi.org/10.1038/s41586-022-05115-z.  doi: 10.1038/s41586-022-05115-z

    22. [22]

      X.B. Wang; W.F. Yang, Y. Yang, J. Zhang, H. Guo, B.W. Wang, Y.X. Lu, R. Yu, L.Q. Chen, Y.S. Hu, Adv. Mater. 37 (2025) e09032, https://doi.org/10.1002/adma.202509032.  doi: 10.1002/adma.202509032

    23. [23]

      N. Ahmad, L. Yu, M. Muzaffar, B. Peng, Z. Tao, S. Khan, A. Rahman, J.C. Liang, Z.X. Jiang, X.Y. Ma, et al., Adv. Energy Mater. 15 (2025) 2404093, https://doi.org/10.1002/aenm.202404093.  doi: 10.1002/aenm.202404093

    24. [24]

      C. Cheng, H.L. Hu, C. Yuan, X. Xia, J. Mao, K.H. Dai, L. Zhang, Energy Storage Mater. 52 (2022) 10, https://doi.org/10.1016/j.ensm.2022.07.030.  doi: 10.1016/j.ensm.2022.07.030

    25. [25]

      T. Zhang, M. Ren, Y.H. Huang, F. Li, W.B. Hua, S. Indris, F.J. Li, Angew. Chem. Int. Ed. 63 (2024) e202316949, https://doi.org/10.1002/anie.202316949.  doi: 10.1002/anie.202316949

    26. [26]

      D. Chen, H.L. Zhang, H.Y. Yang, C.Y. Yu, Y. Bai, Appl. Phys. Lett. 124 (2024) 083904, https://doi.org/10.1063/5.0188032.  doi: 10.1063/5.0188032

    27. [27]

      Y.X. Zou, X.G. Fu, Z.B. Zhao, B.Q. Chen, Z.B. Zhu, W.Y. Zuo, L. Zhang, W.X. Guo, Q.C. Xu, M.D. Ye, Nano Energy 142 (2025) 111179, https://doi.org/10.1016/j.nanoen.2025.111179.  doi: 10.1016/j.nanoen.2025.111179

    28. [28]

      B. Peng, Y.X. Chen, F. Wang, Z.H. Sun, L.P. Zhao, X.L. Zhang, W.T. Wang, G.Q. Zhang, Adv. Mater. 34 (2022) 2103210, https://doi.org/10.1002/adma.202103210.  doi: 10.1002/adma.202103210

    29. [29]

      P. Liu, T.T. Zhan, X.C. Chen, H.X. Li, Q.L. Wang, W.B. Lu, L.F. Jiao, J. Phys. Chem. C 127 (2023) 20632, https://doi.org/10.1021/acs.jpcc.3c05873.  doi: 10.1021/acs.jpcc.3c05873

    30. [30]

      G.L. Wan, Y.X. Chen, B. Peng, L. Yu, X.Y. Ma, N. Ahmad, G.Q. Zhang, Battery Energy 2 (2023) 20230022, https://doi.org/10.1002/bte2.20230022.  doi: 10.1002/bte2.20230022

    31. [31]

      S. Sun, X. Zhu, H.J. Dong, Y.H. Feng, Y.W. Tang, M.Y. Li, S.W. Xu, H.S. Xin, C.S. Ma, G.X. Wei, et al., Adv. Funct. Mater. 35 (2025) 2503900, https://doi.org/10.1002/adfm.202503900.  doi: 10.1002/adfm.202503900

    32. [32]

      S.W. Jeong, I.K. Kim, S. Eom, H. Hwang, Y.H. Jung, J.H. Kim, Energy Storage Mater. 75 (2025) 104041, https://doi.org/10.1016/j.ensm.2025.104041.  doi: 10.1016/j.ensm.2025.104041

    33. [33]

      S.Y. Chu, C.C. Zhang, H. Xu, S.H. Guo, P. Wang, H.S. Zhou, Angew. Chem. Int. Ed. 60 (2021) 13366, https://doi.org/10.1002/anie.202100917.  doi: 10.1002/anie.202100917

    34. [34]

      H.J. Kim, N. Voronina, J.H. Yu, V.A. Shevchenko, O.A. Drozhzhin, K.E. Ryou, E.Y. Jeong, A.Y. Kim, H.J. Shin, H.J. Jung, et al., Energy Storage Mater. 74 (2025) 103924, https://doi.org/10.1016/j.ensm.2024.103924.  doi: 10.1016/j.ensm.2024.103924

    35. [35]

      Z.L. Hu, Y.S. Niu, X.H. Rong, Y.S. Hu, Acta Phys. -Chim. Sin. 40 (2024), 2306005, https://doi.org/10.3866/PKU.WHXB202306005.  doi: 10.3866/PKU.WHXB202306005

    36. [36]

      Q. Pei, M.L. Lu, Z.L. Liu, D. Li, X.F. Rao, X.L. Liu, S.W. Zhong, ACS Appl. Energy Mater. 5 (2022), 1953, https://doi.org/10.1021/acsaem.1c03466.  doi: 10.1021/acsaem.1c03466

    37. [37]

      Z.Y. Li, R. Gao, L.M. Sun, Z.B. Hu, X.F. Liu, Electrochim. Acta. 223 (2017) 92, https://doi.org/10.1016/j.electacta.2016.12.019.  doi: 10.1016/j.electacta.2016.12.019

    38. [38]

      G.Y. Pang, Y. Gu, H.X. Zhuo, M. Li, K. Wang, J. Wang, D.N. Wang, J.T. Hu, B. Xiao, W. Zhuang, Adv. Funct. Mater. 35 (2025) 2505824, https://doi.org/10.1002/adfm.202505824.  doi: 10.1002/adfm.202505824

    39. [39]

      X. Wang, H.S. Li, Z.Q. Dai, J.M. Li, Y.D. Song, B.Y. Han, X.X. Wang, J.J. Chen, C.L. Dong, Z.Y. Mao, et al., Energy Storage Mater. 79 (2025) 104345, https://doi.org/10.1016/j.ensm.2025.104345.  doi: 10.1016/j.ensm.2025.104345

    40. [40]

      X.X. Yin, L.T. Yang, W.G. Zhao, Z.Y. Hu, J. Xu, Y.Y. Du, Z.Q. Liu, Y.N. Sun, Y.H. Deng, J. Wang, et al., Adv. Energy Mater. (2025) 2406184, https://doi.org/10.1002/aenm.202406184.  doi: 10.1002/aenm.202406184

    41. [41]

      H.J. Dong, H.L. Liu, Y.J. Guo, Y.H. Feng, X. Zhu, S.W. Xu, F.X. Sui, L.Z. Yu, M.T. Liu, J.Z. Guo, et al., J. Am. Chem. Soc. 146 (2024) 22335, https://doi.org/10.1021/jacs.4C04814.  doi: 10.1021/jacs.4C04814

    42. [42]

      Z. Lian, H. Wang, Z. Chen, C.L. Xu, H. Yu, F.X. Ding, H.C. Mao, D. Yu, Y. Yang, B. Wang, et al., ACS Energy Lett. 10 (2025) 1517, https://doi.org/10.1021/acsenergylett.4c03332.  doi: 10.1021/acsenergylett.4c03332

    43. [43]

      Y.H. Feng, M.T. Liu, J.X. Wu, C. Yang, Q. Liu, Y.W. Tang, X. Zhu, G.X. Wei, H.J. Dong, X.Y. Fan, et al., Angew. Chem. Int. Ed. 63 (2024), e202403585, https://doi.org/10.1002/anie.202403585.  doi: 10.1002/anie.202403585

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    4. [4]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    7. [7]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    8. [8]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      Shuang WangXiaoqi FuShanshan Yao . Synergistic optimization of ion migration and electron transfer in sodium-ion battery cathode materials. Acta Physico-Chimica Sinica, 2026, 42(5): 100206-0. doi: 10.1016/j.actphy.2025.100206

    10. [10]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 100022-0. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    13. [13]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    16. [16]

      Débora Ferreira dos Santos MoraisJosé Luis TiradoCarlos Pérez-VicenteFabiana Villela da MottaPedro LavelaMauricio BomioSergio Lavela . Unlocking the performance of sodium-ion batteries by coating Na3V2(PO4)3 with Nb2O5. Acta Physico-Chimica Sinica, 2026, 42(2): 100180-0. doi: 10.1016/j.actphy.2025.100180

    17. [17]

      Wenhui LiYakun TangYusheng ZhouYue ZhangWenhai ZhangQingtao MaLang LiuSen DongYuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119

    18. [18]

      Xue ZhangZihan HeYingqi WuWeilai YuTao Liu . Corn-distillers-derived hard carbon: a sustainable high-rate, long-life anode for sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(5): 100199-0. doi: 10.1016/j.actphy.2025.100199

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

Metrics
  • PDF Downloads(0)
  • Abstract views(230)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return