Citation: Shuang Wang, Xiaoqi Fu, Shanshan Yao. Synergistic optimization of ion migration and electron transfer in sodium-ion battery cathode materials[J]. Acta Physico-Chimica Sinica, ;2026, 42(5): 100206. doi: 10.1016/j.actphy.2025.100206 shu

Synergistic optimization of ion migration and electron transfer in sodium-ion battery cathode materials

  • Corresponding author: Xiaoqi Fu, xfu@ujs.edu.cn Shanshan Yao, yaosshan@hotmail.com
  • Received Date: 11 August 2025
    Revised Date: 21 September 2025
    Accepted Date: 21 October 2025

  • Sodium-ion batteries (SIBs) have demonstrated enormous application potential in large-scale energy storage systems due to their abundant sodium resources, low cost, and environmental friendliness. The ion migration rate and electron transfer efficiency of cathode materials are key factors determining the rate performance, cycle life, and capacity retention rate of batteries, and synergistic improvement of both is essential to overcoming performance bottlenecks. This paper takes the three mainstream cathode materials of sodium-ion batteries as its research objects, including layered transition metal oxides (LTMOs), polyanionic compounds (PACs), and Prussian blue analogues (PBAs). It systematically reviews the structural basis of ion migration channels and electron transfer pathways in different material systems and thoroughly analyzes their synergistic regulatory mechanisms. Combining the latest research findings, this paper explains, from three dimensions of elemental optimization, structural design, and composite modification, the specific pathways and mechanisms for synergistically enhancing the efficiency of ion channels and the continuity of electronic pathways. It distills universal strategies for designing high-performance SIBs cathode materials, providing a valuable reference for further developing SIBs cathode materials that combine high capacity, exceptional rate performance, and robust stability.
  • 加载中
    1. [1]

      M.M. Thackeray, K. Amine, Nat. Energy 6 (2021) 933, https://doi.org/10.1038/s41560-021-00860-3.  doi: 10.1038/s41560-021-00860-3

    2. [2]

      C. Zhao, H. Jeong, I. Hwang, T.Y. Li, Y. Wang, J.M. Bai, L.X. Li, S.Y. Zhou, C.C. Su, W.Q. Xu, et al., Joule 8 (2024) 3397, https://doi.org/10.1016/j.joule.2024.09.004.  doi: 10.1016/j.joule.2024.09.004

    3. [3]

      D.K. Saini, C. Muniyappa, A. Yadav, S. Zaphar, Energ. Source, Part A 47 (2025) 12247, https://doi.org/10.1080/15567036.2025.2507096.  doi: 10.1080/15567036.2025.2507096

    4. [4]

      C.X. Li, J.Y. Yue, W.J. Wang, C. Li, Energ. Source, Part A 47 (2025) 11976, https://doi.org/10.1080/15567036.2025.2504542.  doi: 10.1080/15567036.2025.2504542

    5. [5]

      X.C. Hu, Q.Y. Xia, F. Yue, X.Y. He, Z.H. Mei, J.S. Wang, H. Xia, X.D. Huang, Acta Phys. Chim. Sin. 40 (2024) 2309046, https://doi.org/10.3866/PKU.WHXB202309046.  doi: 10.3866/PKU.WHXB202309046

    6. [6]

      H. Chen, D.Y. Yang, G. Huang, X.B. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2305059, https://doi.org/10.3866/PKU.WHXB202305059.  doi: 10.3866/PKU.WHXB202305059

    7. [7]

      R. Yang, H. Li, Q.F. Meng, W.J. Li, J.L. Wu, Y.J. Fang, C. Huang, Y.L. Cao, Acta Phys. Chim. Sin. 40 (2024) 2308053, https://doi.org/10.3866/PKU.WHXB202308053.  doi: 10.3866/PKU.WHXB202308053

    8. [8]

      D. Wang, X.B. Yin, J.F. Wu, Y.Q. Luo, S.Q. Shi, Acta Phys. Chim. Sin. 40 (2024) 2307029, https://doi.org/10.3866/PKU.WHXB202307029.  doi: 10.3866/PKU.WHXB202307029

    9. [9]

      L.Y. Zhu, Y. Cao, T. Xu, H.B. Yang, L.Y. Wang, L. Dai, F.S. Pan, C.J. Chen, C.L. Si, Energy Environ. Sci. 18 (2025) 5675, https://doi.org/10.1039/d5ee00494b.  doi: 10.1039/d5ee00494b

    10. [10]

      V. Verma, B. Kumar, Energ. Source, Part A 47 (2025) 161, https://doi.org/10.1080/15567036.2024.2442068.  doi: 10.1080/15567036.2024.2442068

    11. [11]

      Y. Akbas, M. Petranikova, B. Ebin, Sep. Purif. Technol. 376 (2025) 134056, https://doi.org/10.1016/j.seppur.2025.134056.  doi: 10.1016/j.seppur.2025.134056

    12. [12]

      H.D. Chen, Y.C. Qiu, Z.Y. Cai, W.H. Liang, L. Liu, M.M. Li, X.H. Hou, F.M. Chen, X.Z. Zhou, T.F. Cheng, et al., Angew. Chem. Int. Ed. 64 (2025) e202423357, https://doi.org/10.1002/anie.202423357.  doi: 10.1002/anie.202423357

    13. [13]

      Y.X. Zhang, Z.Y. Liu, J.H. Wang, H. Du, Q. Sun, R.T. Gao, Z.M. Xu, Waste Manage. 198 (2025) 95, https://doi.org/10.1016/j.wasman.2025.02.049.  doi: 10.1016/j.wasman.2025.02.049

    14. [14]

      J. Xia, L. Gao, M.L. Cao, C.K. Zhang, M.S. Tan, Q. Wang, F. Lv, L.J. Tao, Appl. Surf. Sci. 695 (2025) 162888, https://doi.org/10.1016/j.apsusc.2025.162888.  doi: 10.1016/j.apsusc.2025.162888

    15. [15]

      J. Cheon, J.E. Gozum, G.S. Girolami, Chem. Mater. 9 (1997) 1847, https://doi.org/10.1021/cm970138p.  doi: 10.1021/cm970138p

    16. [16]

      X.F. Wang, X. Shen, Z.X. Wang, R.C. Yu, L.Q. Chen, ACS Nano 8 (2014) 11394, https://doi.org/10.1021/nn505501v.  doi: 10.1021/nn505501v

    17. [17]

      R. Mahlouji, W.M.M. Kessels, A.A. Sagade, A.A. Bol, Nanoscale Adv. 5 (2023) 4718, https://doi.org/10.1039/d3na00387f.  doi: 10.1039/d3na00387f

    18. [18]

      J.K. Liang, H.X. Li, L. Chen, M.N. Ren, O.A. Fakayode, J.Y. Han, C.S. Zhou, Ind. Crop. Prod. 193 (2023) 116214, https://doi.org/10.1016/j.indcrop.2022.116214.  doi: 10.1016/j.indcrop.2022.116214

    19. [19]

      Y.Y. Wang, W.T. Li, X.T. Hu, X.N. Zhang, X.W. Huang, Z.H. Li, M.Y. Li, X.B. Zou, J.Y. Shi, Food Chem. 352 (2021) 129352, https://doi.org/10.1016/j.foodchem.2021.129352.  doi: 10.1016/j.foodchem.2021.129352

    20. [20]

      X.D. Gao, X.Y. Zhang, X.Y. Liu, Y.F. Tian, Q.Y. Cai, M. Jia, X.H. Yan, Small Methods 7 (2023) 2300152, https://doi.org/10.1002/smtd.202300152.  doi: 10.1002/smtd.202300152

    21. [21]

      Z. Naseem, J. Iqbal, M. Zahid, A. Shaheen, S. Hussain, W. Yaseen, J. Food Meas. Charact. 15 (2021) 1487, https://doi.org/10.1007/s11694-020-00744-2.  doi: 10.1007/s11694-020-00744-2

    22. [22]

      Y. Gao, H. Zhang, X.H. Liu, Z. Yang, X.X. He, L. Li, Y. Qiao, S.L. Chou, Adv. Energy Mater. 11 (2021) 2101751, https://doi.org/10.1002/aenm.202101751.  doi: 10.1002/aenm.202101751

    23. [23]

      H. Zhang, X.P. Tan, H.H. Li, S. Passerini, W. Huang, Energy Environ. Sci. 14 (2021) 5788, https://doi.org/10.1039/d1ee01392k.  doi: 10.1039/d1ee01392k

    24. [24]

      X.L. Yu, Y.W. Yao, X.X. Wang, S.X. Cen, D.C. Li, H.R. Ma, J.J. Chen, D.J. Wang, Z.Y. Mao, C.L. Dong, Energy Storage Mater. 54 (2023) 221, https://doi.org/10.1016/j.ensm.2022.10.038.  doi: 10.1016/j.ensm.2022.10.038

    25. [25]

      K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Small Methods 3 (2019) 1800220, https://doi.org/10.1002/smtd.201800220.  doi: 10.1002/smtd.201800220

    26. [26]

      T. Kim, S.H. Hyeok Ahn, Y.Y. Song, B.J. Jin Park, C. Lee, A. Choi, M.H. Kim, D.H. Seo, S.K. Jung, H.W. Lee, Angew. Chem. Int. Ed. 62 (2023) e202309852, https://doi.org/10.1002/anie.202309852.  doi: 10.1002/anie.202309852

    27. [27]

      X.Y. Zhang, M.J. Hou, J.Y. Zhang, Y.J. Zhou, F.P. Li, K. Ren, X.T. Feng, P.Y. Dou, S.C. Bi, K. Hayashi, et al., J. Colloid Interface Sci. 700 (2025) 138337, https://doi.org/10.1016/j.jcis.2025.138337.  doi: 10.1016/j.jcis.2025.138337

    28. [28]

      X.Y. Xiao, Z.Q. Jin, B.C. Wang, Y.Z. Ye, A. Xu, X.T. Xie, M.X. Pei, J. Lu, W.K. Wang, Y.Q. Huang, J. Colloid Interface Sci. 698 (2025) 137985, https://doi.org/10.1016/j.jcis.2025.137985.  doi: 10.1016/j.jcis.2025.137985

    29. [29]

      D.L. Chen, Z.R. Ye, P. Jia, Z.Y. Zhao, J.W. Lin, X. Wang, Z.Z. Ye, T.T. Li, L.Q. Zhang, J.G. Lu, Small Methods 8 (2024) 2301423, https://doi.org/10.1002/smtd.202301423.  doi: 10.1002/smtd.202301423

    30. [30]

      X.C. Ge, L. He, C.H. Guan, X. Wang, J. Li, Y.Q. Lai, Z. Zhang, ACS Nano 18 (2023) 1714, https://doi.org/10.1021/acsnano.3c10319.  doi: 10.1021/acsnano.3c10319

    31. [31]

      F.X. Ding, H.B. Wang, Q.H. Zhang, L.R. Zheng, H. Guo, P.F. Yu, N. Zhang, Q.B. Guo, F. Xie, R.B. Dang, et al., J. Am. Chem. Soc. 145 (2023) 13592, https://doi.org/10.1021/jacs.3c00879.  doi: 10.1021/jacs.3c00879

    32. [32]

      K. Fang, J.H. Yin, G.F. Zeng, Z.X. Wu, Y.L. Tang, D.Y. Yu, H.Y. Luo, Q.R. Liu, Q.H. Zhang, T. Qiu, et al., J. Am. Chem. Soc. 146 (2024) 31860, https://doi.org/10.1021/jacs.4c11049.  doi: 10.1021/jacs.4c11049

    33. [33]

      X. Shen, Q. Zhou, M. Han, X.G. Qi, B. Li, Q.Q. Zhang, J.M. Zhao, C. Yang, H.Z. Liu, Y.S. Hu, Nat. Commun. 12 (2021) 2848, https://doi.org/10.1038/s41467-021-23132-w.  doi: 10.1038/s41467-021-23132-w

    34. [34]

      H. Zhang, J.Y. Li, J.H. Liu, Y. Gao, Y.M. Fan, X.H. Liu, C.F. Guo, H.X. Liu, X.D. Chen, X.Q. Wu, et al., Nat. Commun. 16 (2025) 2520, https://doi.org/10.1038/s41467-025-57663-3.  doi: 10.1038/s41467-025-57663-3

    35. [35]

      H.H. Zhang, S.Y. Lin, C.Y. Shu, Z.X. Tang, X.W. Wang, Y.P. Wu, W. Tang, Mater. Today 85 (2025) 231, https://doi.org/10.1016/j.mattod.2025.02.014.  doi: 10.1016/j.mattod.2025.02.014

    36. [36]

      S.H. Guo, J. Yi, Y. Sun, H.S. Zhou, Energy Environ. Sci. 9 (2016) 2978, https://doi.org/10.1039/C6EE01807F.  doi: 10.1039/C6EE01807F

    37. [37]

      D.W. Hou, E. Gabriel, K. Graff, T.Y. Li, Y. Ren, Z.H.B. Wang, Y.Z. Liu, H. Xiong, J. Mater. Res. 37 (2022) 1156, https://doi.org/10.1557/s43578-022-00519-z.  doi: 10.1557/s43578-022-00519-z

    38. [38]

      L.Y. Kong, J.Y. Li, H.X. Liu, Y.F. Zhu, J.Q. Wang, Y.F. Liu, X.Y. Zhang, H.Y. Hu, H.H. Dong, Z.C. Jian, et al., J. Am. Chem. Soc. 146 (2024) 32317, https://doi.org/10.1021/jacs.4c04766.  doi: 10.1021/jacs.4c04766

    39. [39]

      J.Y. Li, H.Y. Hu, H.W. Li, Y.F. Liu, Y. Su, X.B. Jia, L.F. Zhao, Y.M. Fan, Q.F. Gu, H. Zhang, et al., ACS Nano 18 (2024) 12945, https://doi.org/10.1021/acsnano.4c00966.  doi: 10.1021/acsnano.4c00966

    40. [40]

      Y. Xiao, H.R. Wang, H.Y. Hu, Y.F. Zhu, S. Li, J.Y. Li, X.W. Wu, S.L. Chou, Adv. Mater. 34 (2022) 2202695, https://doi.org/10.1002/adma.202202695.  doi: 10.1002/adma.202202695

    41. [41]

      M. Ren, S. Zhao, S.N. Gao, T. Zhang, M.C. Hou, W. Zhang, K. Feng, J. Zhong, W.B. Hua, S. Indris, et al. J. Am. Chem. Soc. 145 (2023) 224, https://doi.org/10.1021/jacs.2c09725.  doi: 10.1021/jacs.2c09725

    42. [42]

      F.X. Ding, P.X. Ji, Z. Han, X.Y. Hou, Y. Yang, Z.L. Hu, Y.S. Niu, Y. Liu, J. Zhang, X.H. Rong, et al., Nat. Energy 9 (2024) 1529, https://doi.org/10.1038/s41560-024-01616-5.  doi: 10.1038/s41560-024-01616-5

    43. [43]

      X.Y. Liu, S. Li, Y.F. Zhu, X.Y. Zhang, Y. Su, M.Y. Li, H.W. Li, B.B. Chen, Y.F. Liu, Y. Xiao, Adv. Funct. Mater. 35 (2025) 2414130, https://doi.org/10.1002/adfm.202414130.  doi: 10.1002/adfm.202414130

    44. [44]

      Q.H. Shi, R.J. Qi, X.C. Feng, J. Wang, Y. Li, Z.P. Yao, X. Wang, Q.Q. Li, X.G. Lu, J.J. Zhang, et al., Nat. Commun. 13 (2022) 3205, https://doi.org/10.1038/s41467-022-30942-z.  doi: 10.1038/s41467-022-30942-z

    45. [45]

      Q.C. Wang, J.K. Meng, X.Y. Yue, Q.Q. Qiu, Y. Song, X.J. Wu, Z.W. Fu, Y.Y. Xia, Z. Shadike, J.P. Wu, et al., J. Am. Chem. Soc. 141 (2019) 840, https://doi.org/10.1021/jacs.8b08638.  doi: 10.1021/jacs.8b08638

    46. [46]

      C.L. Zhao, Q.D. Wang, Z.P. Yao, J.L. Wang, B. Sánchez-Lengeling, F.X. Ding, X.G. Qi, Y.X. Lu, X.D. Bai, B.H. Li, et al., Science 370 (2020) 708, https://doi.org/10.1126/science.aay9972.  doi: 10.1126/science.aay9972

    47. [47]

      H.Y. Ma, B.C. Zhao, J. Bai, P.Y. Wang, W.Y. Li, Y.J. Mao, X.G. Zhu, Z.G. Sheng, X.B. Zhu, Y.P. Sun, Adv. Sci. 10 (2023) 2203552, https://doi.org/10.1002/advs.202203552.  doi: 10.1002/advs.202203552

    48. [48]

      H. Zhang, Z.Y. Gu, X.T. Wang, X.X. Zhao, Y.L. Heng, Y. Liu, J.L. Yang, S.H. Zheng, X.L. Wu, Adv. Mater. 36 (2024) 2410797, https://doi.org/10.1002/adma.202410797.

    49. [49]

      Z.W. Fan, W.D. Song, N. Yang, C.J. Lou, R.Y. Tian, W.B. Hua, M.X. Tang, F. Du, Angew. Chem. Int. Ed. 63 (2024) e202316957, https://doi.org/10.1002/anie.202316957.  doi: 10.1002/anie.202316957

    50. [50]

      C.Y. Liu, K. Chen, F.M. Li, A.L. Zhao, P. Liu, Z.X. Chen, Y.J. Fang, Y.L. Cao, J. Am. Chem. Soc. 147 (2025) 14635, https://doi.org/10.1021/jacs.5c02485.  doi: 10.1021/jacs.5c02485

    51. [51]

      M. Xie, X.Y. Li, Y.F. Chen, X.Y. Liao, Q.J. Zheng, H. Zhang, K.H. Lam, D.M. Lin, J. Colloid Interface Sci. 700 (2025) 138461, https://doi.org/10.1016/j.jcis.2025.138461.  doi: 10.1016/j.jcis.2025.138461

    52. [52]

      H.M. Li, T.L. Wang, X. Wang, G.D. Li, J.X. Shen, J.L. Chai, Chem. Eur. J. 27 (2021) 9022, https://doi.org/10.1002/chem.202100096.  doi: 10.1002/chem.202100096

    53. [53]

      X.G. Zeng, J. Peng, Y. Guo, H.F. Zhu, X. Huang, Front. Chem. 8 (2020) 635, https://doi.org/10.3389/fchem.2020.00635.  doi: 10.3389/fchem.2020.00635

    54. [54]

      Z.Y. Gu, X.X. Zhao, K. Li, J.M. Cao, X.T. Wang, J.Z. Guo, H.H. Liu, S.H. Zheng, D.H. Liu, H.Y. Wu, et al., Adv. Mater. 36 (2024) 2400690, https://doi.org/10.1002/adma.202400690.  doi: 10.1002/adma.202400690

    55. [55]

      L.F. Wen, J.Y. Zhang, J. Zhang, L.F. Zhao, X. Wang, S. Wang, S.Y. Ma, W.B. Li, J. Luo, J.M. Ge, et al., eScience 5 (2025) 100313, https://doi.org/10.1016/j.esci.2024.100313.  doi: 10.1016/j.esci.2024.100313

    56. [56]

      J.H. Wang, C.J. Lou, Y.D. Lu, L.H. He, M.X. Tang, X.L. Wu, F.Q. Lu, Chem. Eng. J. 512 (2025) 162741, https://doi.org/10.1016/j.cej.2025.162741.  doi: 10.1016/j.cej.2025.162741

    57. [57]

      W. Zhang, Y.L. Wu, Z.M. Xu, H.X. Li, M. Xu, J.W. Li, Y.H. Dai, W. Zong, R.W. Chen, L. He, et al., Adv. Energy Mater. 12 (2022) 2201065, https://doi.org/10.1002/aenm.202201065.  doi: 10.1002/aenm.202201065

    58. [58]

      B.C. Chen, J.H. Wang, Z.Y. Xu, J. Miao, Y. Lu, Z.H. Yan, K. Zhang, J. Chen, Adv. Mater. (2025) e09966, https://doi.org/10.1002/adma.202509966  doi: 10.1002/adma.202509966

    59. [59]

      S. Ghosh, N. Barman, P. Senguttuvan, Small 16 (2020) 2003973, https://doi.org/10.1002/smll.202003973.  doi: 10.1002/smll.202003973

    60. [60]

      H.Y. Ding, X.L. Li, H. Li, J.F. He, ACS Sustainable Chem. Eng. 12 (2024) 10528, https://doi.org/10.1021/acssuschemeng.4c02890.  doi: 10.1021/acssuschemeng.4c02890

    61. [61]

      Z.Y. Zou, Y.B. Mu, M.S. Han, Y.Q. Chu, J. Liu, K.X. Zheng, Q. Zhang, M.R. Song, Q.P. Jian, Y.L. Wang, et al., Energy Environ. Sci. 18 (2025) 2216, https://doi.org/10.1039/d4ee05110f.  doi: 10.1039/d4ee05110f

    62. [62]

      L. Yang, W.G. Chang, C.G. Xie, J.C. Jin, Y.J. Xia, X.Q. Yuan, Mater. Res. Express 7 (2020) 015527, https://doi.org/10.1088/2053-1591/ab67f3.  doi: 10.1088/2053-1591/ab67f3

    63. [63]

      M.Y. Zheng, Z.Y. Bai, Y.W. He, S.Q. Wu, Y. Yang, Z.Z. Zhu, ACS Omega 5 (2020) 5192, https://doi.org/10.1021/acsomega.9b04213.  doi: 10.1021/acsomega.9b04213

    64. [64]

      H.M. Wang, Z.B. Pan, H.T. Zhang, C.R. Dong, Y. Ding, Y.L. Cao, Z.X. Chen, Small Methods 5 (2021) 2100372, https://doi.org/10.1002/smtd.202100372.  doi: 10.1002/smtd.202100372

    65. [65]

      X. Gao, L.L. Guo, S.J. Zhang, H.Q. Li, N. Chen, Y.H. Han, B.H. He, P.Y. Ma, W.S. Gao, Y.X. Bai, Angew. Chem. Int. Ed. 64 (2025) e202421916, https://doi.org/10.1002/anie.202421916.  doi: 10.1002/anie.202421916

    66. [66]

      H. Zhang, Y. Gao, J. Peng, Y.M. Fan, L.F. Zhao, L. Li, Y. Xiao, W.K. Pang, J.Z. Wang, S.L. Chou, Angew. Chem. Int. Ed. 62 (2023) e202303953, https://doi.org/10.1002/anie.202303953.  doi: 10.1002/anie.202303953

    67. [67]

      B.B. Kuang, W.C. Feng, Y.X. Shi, L. Chen, Z.L. Yang, Q. Li, W.T. Li, S.X. Wei, Y.W. Liu, Z. Liu, et al., Inorg. Chem. 64 (2025) 15392, https://doi.org/10.1021/acs.inorgchem.5c01143.  doi: 10.1021/acs.inorgchem.5c01143

    68. [68]

      W.L. Wang, Y. Gang, Z. Hu, Z.C. Yan, W.J. Li, Y.C. Li, Q.F. Gu, Z.X. Wang, S.L. Chou, H.K. Liu, et al., Nat. Commun. 11 (2020) 980, https://doi.org/10.1038/s41467-020-14444-4.  doi: 10.1038/s41467-020-14444-4

    69. [69]

      X.Y. Zhao, N.B. Liu, M.X. Zheng, X.H. Wang, Y.N. Xu, J.W. Liu, F.J. Li, L.B. Wang, ACS Energy Lett. 9 (2024) 2748, https://doi.org/10.1021/acsenergylett.4c00976.  doi: 10.1021/acsenergylett.4c00976

    70. [70]

      J. Peng, J.Q. Huang, Y. Gao, Y. Qiao, H.H. Dong, Y. Liu, L. Li, J.Z. Wang, S.X. Dou, S.L. Chou, Small 19 (2023) 2300435, https://doi.org/10.1002/smll.202300435.  doi: 10.1002/smll.202300435

    71. [71]

      X.Y. Cai, Z. Shadike, N. Wang, X.L. Li, Y. Wang, Q.F. Zheng, Y.X. Zhang, W.X. Lin, L.S. Li, L.W. Chen, et al., J. Am. Chem. Soc. 147 (2025) 5860, https://doi.org/10.1021/jacs.4c14587.  doi: 10.1021/jacs.4c14587

    72. [72]

      F.P. Zhang, J.H. Liao, L. Xu, W.W. Wu, X.H. Wu, ACS Appl. Mater. Interfaces 13 (2021) 40695, https://doi.org/10.1021/acsami.1c12062.  doi: 10.1021/acsami.1c12062

    73. [73]

      X.R. Qi, B.X. Hou, R.F. Zhang, X.C. Chen, Z.R. Fu, X. Zhou, H.Y. Liu, N.Z. Shang, S.H. Zhang, L.G. Wang, et al., Carbon Energy 7 (2025) e70030, https://doi.org/10.1002/cey2.70030.  doi: 10.1002/cey2.70030

    74. [74]

      H.K. Wang, X. Zhang, X.P. Wang, G.W. Zhang, W.H. Liu, P. Hu, C.H. Han, ACS Appl. Energy Mater. 6 (2023) 4297, https://doi.org/10.1021/acsaem.3c00229.  doi: 10.1021/acsaem.3c00229

    75. [75]

      Z.Y. Chen, X.Y. Fu, L.L. Zhang, B. Yan, X.L. Yang, ACS Appl. Mater. Interfaces 14 (2022) 5506, https://doi.org/10.1021/acsami.1c23793.  doi: 10.1021/acsami.1c23793

    76. [76]

      Z.H. Wu, Y.X. Ni, N. Jiang, J.H. Li, L.M. Zhou, L.H. He, L. Zhang, K. Zhang, F.Y. Cheng, J. Chen, Adv. Mater. 37 (2025) 2419137, https://doi.org/10.1002/adma.202419137.  doi: 10.1002/adma.202419137

    77. [77]

      X.N. Li, X.Y. Tang, M. Ge, M.D. Zhang, W.F. Liu, X.J. Liu, Y.T. Cui, H.S. Zhang, Y.H. Yin, S.T. Yang, Langmuir 40 (2024) 11116, https://doi.org/10.1021/acs.langmuir.4c00676.  doi: 10.1021/acs.langmuir.4c00676

    78. [78]

      B. Wang, J. Ma, K.J. Wang, D.K. Wang, G.J. Xu, X.G. Wang, Z.W. Hu, C.W. Pao, J.L. Chen, L. Du, et al., Adv. Energy Mater. 14 (2024) 2401090, https://doi.org/10.1002/aenm.202401090.  doi: 10.1002/aenm.202401090

    79. [79]

      L. Wang, L.L. Wang, H.C. Wang, H.H. Dong, W.W. Sun, L.P. Lv, C. Yang, Y. Xiao, F.X. Wu, Y. Wang, et al., Adv. Funct. Mater. 35 (2025) 2417258, https://doi.org/10.1002/adfm.202417258.  doi: 10.1002/adfm.202417258

    80. [80]

      Y.B. Bhaskara Rao, K.R. Achary, L.N. Patro, ACS Omega 7 (2022) 48192, https://doi.org/10.1021/acsomega.2c06261.  doi: 10.1021/acsomega.2c06261

    81. [81]

      Y.Y. He, S.L. Dreyer, Y.Y. Ting, Y. Ma, Y. Hu, D. Goonetilleke, Y.S. Tang, T. Diemant, B. Zhou, P.M. Kowalski, et al., Angew. Chem. Int. Ed. 63 (2024) e202315371, https://doi.org/10.1002/anie.202315371.  doi: 10.1002/anie.202315371

    82. [82]

      H. Chen, Z.G. Wu, Y.J. Zhong, T.R. Chen, X.H. Liu, J. Qu, W. Xiang, J.T. Li, X.C. Chen, X.D. Guo, et al., Electrochim. Acta 308 (2019) 64, https://doi.org/10.1016/j.electacta.2019.04.003.  doi: 10.1016/j.electacta.2019.04.003

    83. [83]

      X.Y. Wang, J.J. Li, Q.M. Wang, H.M. Li, J.X. Liang, L.B. Zhang, X. Wang, K. Ding, H.M. Liu, Z.F. Ma, et al., Adv. Energy Mater. 15 (2025) 2502300, https://doi.org/10.1002/aenm.202502300.  doi: 10.1002/aenm.202502300

    84. [84]

      Y.S. Shi, P.F. Jiang, S.C. Wang, W.X. Chen, B. Wei, X.Y. Lu, G.Y. Qian, W.H. Kan, H.C. Chen, W. Yin, et al., Nat. Commun. 13 (2022) 7888, https://doi.org/10.1038/s41467-022-35597-4.  doi: 10.1038/s41467-022-35597-4

    85. [85]

      J.M. Feng, D. Fang, Z. Yang, J.J. Zhong, C.L. Zheng, Z.C. Wei, J.L. Li, J. Power Sources 553 (2023) 232292, https://doi.org/10.1016/j.jpowsour.2022.232292.  doi: 10.1016/j.jpowsour.2022.232292

    86. [86]

      Y. Su, N.N. Zhang, J.Y. Li, Y.F. Liu, H.Y. Hu, J.Q. Wang, H.W. Li, L.Y. Kong, X.B. Jia, Y.F. Zhu, et al., ACS Appl. Mater. Interfaces 15 (2023) 44839, https://doi.org/10.1021/acsami.3c07164.  doi: 10.1021/acsami.3c07164

    87. [87]

      M.Z. Liu, M. Li, B.L. Zhang, H.M. Li, J.X. Liang, X.Y. Hu, H.M. Liu, Z.F. Ma, ACS Sustainable Chem. Eng. 11 (2023) 18102, https://doi.org/10.1021/acssuschemeng.3c06667.  doi: 10.1021/acssuschemeng.3c06667

    88. [88]

      Y.C. Liu, Q.Y. Shen, X.D. Zhao, J. Zhang, X.B. Liu, T.S. Wang, N. Zhang, L.F. Jiao, J. Chen, L.Z. Fan, Adv. Funct. Mater. 30 (2020) 1907837, https://doi.org/10.1002/adfm.201907837.  doi: 10.1002/adfm.201907837

    89. [89]

      Z.X. Jing, L.T. Kong, M. Mamoor, L. Wang, B. Zhang, B. Wang, Y.J. Zhai, F.B. Wang, G.M. Qu, Y.Y. Kong, D.D. Wang, L.Q. Xu, J. Am. Chem. Soc. 147 (2025) 3702, https://doi.org/10.1021/jacs.4c16031.  doi: 10.1021/jacs.4c16031

    90. [90]

      N. Jiang, J.T. Yu, Z.H. Wu, J.H. Zhao, Y.Y. Zeng, H.X. Li, M. Meng, Y.T. He, P.X. Jiao, H.C. Pan, et al., J. Chen, Angew. Chem. Int. Ed. 136 (2024) e202410080, https://doi.org/10.1002/anie.202410080.  doi: 10.1002/anie.202410080

    91. [91]

      X.G. Yuan, Y.J. Guo, L. Gan, X.A. Yang, W.H. He, X.S. Zhang, Y.X. Yin, S. Xin, H.R. Yao, Z.G. Huang, et al., Adv. Funct. Mater. 32 (2022) 2111466, https://doi.org/10.1002/adfm.202111466.  doi: 10.1002/adfm.202111466

    92. [92]

      P. Senguttuvan, G. Rousse, J. Oró-Solé, J.M. Tarascon, M.R. Palacín, J. Mater. Chem. A 1 (2013) 15284, https://doi.org/10.1039/c3ta13756b.  doi: 10.1039/c3ta13756b

    93. [93]

      P.K. Pathak, K.P. Agrim, C. Park, H. Ahn, R.R. Salunkhe, ACS Appl. Energy Mater. 7 (2024) 11352, https://doi.org/10.1021/acsaem.3c03262.  doi: 10.1021/acsaem.3c03262

    94. [94]

      Q.Y. Shen, X.D. Zhao, Y.C. Liu, Y.P. Li, J. Zhang, N. Zhang, C.H. Yang, J. Chen, Adv. Sci. 7 (2020) 2002199, https://doi.org/10.1002/advs.202002199.  doi: 10.1002/advs.202002199

    95. [95]

      Y.J. Cao, X.P. Xia, Y. Liu, N. Wang, J.X. Zhang, D.Q. Zhao, Y.Y. Xia, J. Power Sources 461 (2020) 228130, https://doi.org/10.1016/j.jpowsour.2020.228130.  doi: 10.1016/j.jpowsour.2020.228130

    96. [96]

      W.C. Zhuo, J.L. Li, X.D. Li, L. Ma, G.H. Yan, H. Wang, S.Z. Tan, W.J. Mai, Surf. Interfaces 23 (2021) 100911, https://doi.org/10.1016/j.surfin.2020.100911.  doi: 10.1016/j.surfin.2020.100911

    97. [97]

      Q. Zhang, Q.F. Gu, Y. Li, H.N. Fan, W.B. Luo, H.K. Liu, S.X. Dou, iScience 19 (2019) 244, https://doi.org/10.1016/j.isci.2019.07.029.  doi: 10.1016/j.isci.2019.07.029

    98. [98]

      X. Ding, X.F. Yang, J. Li, Y.B. Yang, L.W. Liu, Y. Xiao, L.L. Han, ACS Nano 18 (2024) 35632, https://doi.org/10.1021/acsnano.4c14284.  doi: 10.1021/acsnano.4c14284

    99. [99]

      Y. Liu, D.D. He, Y.J. Cheng, L. Li, Z.S. Lu, R. Liang, Y.Y. Fan, Y. Qiao, S.L. Chou, Small 16 (2020) 1906946, https://doi.org/10.1002/smll.201906946.  doi: 10.1002/smll.201906946

    100. [100]

      H. Fu, J.L. Li, L.Y. Wang, X.J. Yang, X.S. Li, W. Lu, J. Phys. Chem. C 126 (2022) 20196, https://doi.org/10.1021/acs.jpcc.2c05700.  doi: 10.1021/acs.jpcc.2c05700

    101. [101]

      J. Darga, A. Manthiram, ACS Appl. Mater. Interfaces 14 (2022) 52729, https://doi.org/10.1021/acsami.2c12098.  doi: 10.1021/acsami.2c12098

    102. [102]

      X. Tang, H.Y. Ding, J.H. Teng, H.M. Zhao, J. Li, K.B. Zhang, ACS Appl. Energy Mater. 6 (2023) 8443, https://doi.org/10.1021/acsaem.3c01195.  doi: 10.1021/acsaem.3c01195

    103. [103]

      J. Peng, Y. Gao, H. Zhang, Z.G. Liu, W. Zhang, L. Li, Y. Qiao, W.S. Yang, J.Z. Wang, S.X. Dou, et al., Angew. Chem. Int. Ed. 61 (2022) e202205867, https://doi.org/10.1002/anie.202205867.  doi: 10.1002/anie.202205867

    104. [104]

      C.Q.X. Lim, Z.K. Tan, ACS Appl. Energy Mater. 4 (2021) 6214, https://doi.org/10.1021/acsaem.1c00987.  doi: 10.1021/acsaem.1c00987

    105. [105]

      X. Zhou, F.F. Hong, S. Wang, T. Zhao, J.L. Peng, B. Zhang, W.F. Fan, W.Y. Xing, M.H. Zuo, P. Zhang, et al., eScience 4 (2024) 100276, https://doi.org/10.1016/j.esci.2024.100276.  doi: 10.1016/j.esci.2024.100276

    106. [106]

      S.L. Dreyer, F.M. Maddar, A. Kondrakov, J. Janek, I. Hasa, T. Brezesinski, Batteries Supercaps 7 (2024) e202300595, https://doi.org/10.1002/batt.202300595.  doi: 10.1002/batt.202300595

    107. [107]

      H. Chen, J. Wu, M. Li, J. Zhao, Z. Li, M. Wang, X. Li, C. Li, X. Chen, X. Li, et al., eScience 5 (2025) 100281, https://doi.org/10.1016/j.esci.2024.100281.  doi: 10.1016/j.esci.2024.100281

    108. [108]

      Z.Y. Gu, J.M. Cao, J.Z. Guo, X.T. Wang, X.X. Zhao, S.H. Zheng, Z.H. Sun, J.L. Yang, K.Y. Zhang, H.J. Liang, et al., J. Am. Chem. Soc. 146 (2024) 4652, https://doi.org/10.1021/jacs.3c11739.  doi: 10.1021/jacs.3c11739

  • 加载中
    1. [1]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    2. [2]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Peicai LiXubin WangQinghua ZhangBowen WangXiaohui RongYong-Sheng HuZhongtao Li . High-rate and long-cycling P2-type cathode material for sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(5): 100214-0. doi: 10.1016/j.actphy.2025.100214

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    9. [9]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    10. [10]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    11. [11]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    13. [13]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(2)
  • Abstract views(226)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return