Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light
- Corresponding author: Yike Li, liyike@zzu.edu.cn Haijun Chen, chenhaijun@zzu.edu.cn
Citation:
Xiaofei Zhang, Shanhao Xu, Zhiyuan Wang, Long He, Tiangcheng Huang, Yongming Xu, Yucui Bian, Yike Li, Haijun Chen, Zhongjun Li. Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light[J]. Acta Physico-Chimica Sinica,
;2026, 42(5): 100202.
doi:
10.1016/j.actphy.2025.100202
M. Largeron, M. -B. Fleury, Science 339 (2013) 43, https://www.science.org/doi/10.1126/science.1232220.
T. Sonobe, K. Oisaki, M. Kanai, Chem. Sci. 3 (2012) 3249, https://doi.org/10.1039/C2SC20699D.
doi: 10.1039/C2SC20699D
Y. X. Guo, B. Liu, J. W. Zhang, C. T. Wang, G. L. Wang, C. S. Pan, H. Zhao, Y. M. Dong, Y. F. Zhu, Appl. Catal., B: Environ. Energy 350 (2024) 123915, https://doi.org/10.1016/j.apcatb.2024.123915.
doi: 10.1016/j.apcatb.2024.123915
L. J. Yang, Z. X. Chen, Q. C. Cao, H. R. Liao, J. Gao, L. Zhang, W. Y. Wei, H. Li, J. M. Lu, Adv. Mater. 36 (2024) 2306758,
Y. X. Liu, H. Tan, J. Z. Sun, Y. N. Wei, M. H. Liu, J. X. Hong, S. C. Shang, X. Y. Wang, L. Li, Y. Gu, et al., Adv. Funct. Mater. 33 (2023) 2302874, https://doi.org/10.1002/adfm.202302874.
doi: 10.1002/adfm.202302874
B. Chen, L. Y. Wang, S. Gao, ACS Catal. 5 (2015) 5851, https://doi.org/10.1021/acscatal.5b01479.
doi: 10.1021/acscatal.5b01479
X. Wang, C. Wang, H. -Q. Tan, T. -Y. Qiu, Y. -M. Xing, Q. -K. Shang, Y. -N. Zhao, X. -Y. Zhao, X. -Y. Zhao, Y. -G. Li, Chem. Eng. J. 431 (2022) 134051, https://doi.org/10.1016/j.cej.2021.134051.
doi: 10.1016/j.cej.2021.134051
B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem. Int. Ed. 49 (2010) 1468, https://doi.org/10.1002/ANIE.200907018.
doi: 10.1002/ANIE.200907018
L. Blackburn, R. J. K. Taylor, Org. Lett. 3 (2001) 1637, https://doi.org/10.1021/ol015819b.
doi: 10.1021/ol015819b
K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, J. Am. Chem. Soc. 126 (2004) 5192, https://doi.org/10.1021/ja0400382.
doi: 10.1021/ja0400382
T. Mukaiyama, A. Kawana, Y. Fukuda, J. -I. Matsuo, Chem. Lett. 30 (2001) 390, https://doi.org/10.1246/cl.2001.390.
doi: 10.1246/cl.2001.390
S. -I. Naya, K. Kimura, H. Tada, ACS Catal. 3 (2013) 10, https://doi.org/10.1021/cs300682d.
doi: 10.1021/cs300682d
G. Csjernyik, A. H. Éll, L. Fadini, B. Pugin, J. -E. Bäckvall, J. Org. Chem. 67 (2002) 1657, https://doi.org/10.1021/jo0163750.
doi: 10.1021/jo0163750
S. Kodama, J. Yoshida, A. Nomoto, Y. Ueta, S. Yano, M. Ueshima, A. Ogawa, Tetra. Lett. 1 (2010) 2450, https://doi.org/10.1016/j.tetlet.2010.02.150.
doi: 10.1016/j.tetlet.2010.02.150
M. Largeron, M. -B. Fleury, Angew. Chem. Int. Ed. 51 (2012) 5409, https://doi.org/10.1002/anie.201200587.
doi: 10.1002/anie.201200587
H. Shechter, S. S. Rawalay, M. Tubis, J. Am. Chem. Soc. 86 (1964) 1701, https://doi.org/10.1021/ja01063a012.
doi: 10.1021/ja01063a012
R. Yamaguchi, C. Ikeda, Y. Takahashi, K. -I. Fujita, J. Am. Chem. Soc. 131 (2009) 8410, https://doi.org/10.1021/ja9022623.
doi: 10.1021/ja9022623
B. L. Zhu, M. Lazar, B. G. Trewyn, R. J. Angelici, J. Catal. 260 (2008) 1, https://doi.org/10.1016/j.jcat.2008.08.012.
doi: 10.1016/j.jcat.2008.08.012
H. Huang, J. Huang, Y. -M. Liu, H. -Y. He, Y. Cao, K. -N. Fan, Green Chem. 14 (2012) 930, https://doi.org/10.1039/C2GC16681J.
doi: 10.1039/C2GC16681J
S. Biswas, B. Dutta, K. Mullick, C. -H. Kuo, A. S. Poyraz, S. L. Suib, ACS Catal. 5 (2015) 4394, https://doi.org/10.1021/acscatal.5b00325.
doi: 10.1021/acscatal.5b00325
B. Dutta, S. March, L. Achola, S. Sahoo, J. K. He, A. S. Amin, Y. Wu, S. Poges, S. P. Alpay, S. L. Suib, Green Chem. 20 (2018) 3180, https://doi.org/10.1039/C8GC00862K.
doi: 10.1039/C8GC00862K
B. Chen, L. Wang, W. Dai, S. Shang, Y. Lv, S. Gao, ACS Catal. 5 (2015) 2788, https://doi.org/10.1021/acscatal.5b00244.
doi: 10.1021/acscatal.5b00244
Z. J. Gu, Z. Shan, Y. L. Wang, J. J. Wang, T. T. Liu, X. M. Li, Z. Y. Yu, J. Su, G. Zhang, Chin. Chem. Lett. 35 (2024) 108356, https://doi.org/10.1016/j.cclet.2023.108356.
doi: 10.1016/j.cclet.2023.108356
R. Sakamoto, R. Toyoda, G. Jingyan, Y. Nishina, K. Kamiya, H. Nishihara, T. Ogoshi, Coord. Chem. Rev. 466 (2022) 214577, https://doi.org/10.1016/j.ccr.2022.214577.
doi: 10.1016/j.ccr.2022.214577
S. -L. Meng, C. Ye, X. -B. Li, C. -H. Tung, L. -Z. Wu, J. Am. Chem. Soc. 144 (2022) 16219, https://doi.org/10.1021/jacs.2c02341.
doi: 10.1021/jacs.2c02341
H. J. Chen, R. H. Xu, D. Chen, T. L Lu, H. J. Li, M. Wang, ACS Catal. 14 (2024) 1977, https://doi.org/10.1021/acscatal.3c05263.
doi: 10.1021/acscatal.3c05263
W. J. Cao, W. J. Zhang, L. Dong, Z. Ma, J. S. Xu, X. L. Gu, Z. P. Chen, Exploration 3 (2023) 20220169, https://doi.org/10.1002/EXP.20220169.
doi: 10.1002/EXP.20220169
A. Khampuanbut, S. Santalelat, A. Pankiew, D. Channei, S. Pornsuwan, K. Faungnawakij, S. Phanichphant, B. Inceesungvorn, J. Colloid Interface Sci. 560 (2020) 213, https://doi.org/10.1016/j.jcis.2019.10.057.
doi: 10.1016/j.jcis.2019.10.057
Y. -D. Sun, C. Zeng, X. Zhang, Z. -Q. Zhang, B. Yang, S. -Q. Guo, Rare Met. 43 (2024) 1488, https://doi.org/10.1007/s12598-023-02569-6.
doi: 10.1007/s12598-023-02569-6
Q. Chen, H. Wang, C. C. Guan, R. F. Duan, R. Fang, Y. F. Hu, Xun, Appl. Catal. B Environ. 262 (2020) 118258, https://doi.org/10.1016/j.apcatb.2019.118258.
doi: 10.1016/j.apcatb.2019.118258
S. Juntrapirom, S. Anuchai, O. Thongsook, S. Pornsuwan, P. Meepowpan, P. Thavornyutikarn, S. Phanichphant, D. Tantraviwat, B. Inceesungvorn, Chem. Eng. J. 394 (2020) 124934, https://doi.org/10.1016/j.cej.2020.124934.
doi: 10.1016/j.cej.2020.124934
W. Zou, X. -H. Liu, C. Xue, X. -T. Zhou, H. -Y. Yu, P. Fan, H. -B. Ji, Appl. Catal. B. Environ. 285 (2021) 119863, https://doi.org/10.1016/j.apcatb.2020.119863.
doi: 10.1016/j.apcatb.2020.119863
A. Yuan, H. Lei, Z. S. Wang, X. P. Dong, J. Colloid Interface Sci. 560 (2020) 40, https://doi.org/10.1016/j.jcis.2019.10.060.
doi: 10.1016/j.jcis.2019.10.060
K. -L. Zhang, C. -M. Liu, F. -Q. Huang, C. Zheng, W. -D. Wang, Appl. Catal. B Environ. 68 (2006) 125, https://doi.org/10.1016/j.apcatb.2006.08.002.
doi: 10.1016/j.apcatb.2006.08.002
Y. Y. Li, J. P. Liu, J. Jiang, J. G. Yu, Dalton Trans. 40 (2011) 6632, https://doi.org/10.1039/C1DT10691K.
doi: 10.1039/C1DT10691K
Y. Xu, S. C. Xu, S. Wang, Y. X. Zhang, G. H. Li, Dalton Trans. 43 (2014) 479, https://doi.org/10.1039/C3DT52004H.
doi: 10.1039/C3DT52004H
J. Jiang, K. Zhao, X. Y. Xiao, L. H. Zhang, J. Am. Chem. Soc. 134 (2012) 4473, https://doi.org/10.1021/ja210484t.
doi: 10.1021/ja210484t
C. -Y. Wang, Y. -J. Zhang, W. -K. Wang, D. -N. Pei, G. -X. Huang, J. -J. Chen, X. Zhang, H. -Q. Yu, Appl. Catal. B Environ. 221 (2018) 320, https://doi.org/10.1016/j.apcatb.2017.09.036.
doi: 10.1016/j.apcatb.2017.09.036
J. Shang, T. Z. Chen, X. W. Wang, L. Y. Sun, Q. Q. Su, Chem. Phys. Lett. 706 (2018) 483, https://doi.org/10.1016/j.cplett.2018.06.054.
doi: 10.1016/j.cplett.2018.06.054
Y. H. Ren, J. H. Zou, K. Q. Jing, Y. Y. Liu, B. B. Guo, Y. J. Song, Y. Yu, L. Wu, J. Catal. 380 (2019) 123, https://doi.org/10.1016/j.jcat.2019.10.018.
doi: 10.1016/j.jcat.2019.10.018
B. X. Zhang, J. L. Zhang, R. Duan, Q. Wan, X. N. Tan, Z. Z. S, B. X. Han, L. R. Zheng, G. Mo, Nano Energy 78 (2020) 105340, https://doi.org/10.1016/j.nanoen.2020.105340.
doi: 10.1016/j.nanoen.2020.105340
H. J. Chen, L. M. Peng, Y. C. Bian, X. Q. Shen, J. Li, H. -C. Yao, S. -Q. Zang, Z. J. Li, Appl. Catal. B Environ. 284 (2021) 119704, https://doi.org/10.1016/j.apcatb.2020.119704.
doi: 10.1016/j.apcatb.2020.119704
W. X. Ouyang, F. Teng, X. S. Fang, Adv. Funct. Mater. 28 (2018) 1707178, https://doi.org/10.1002/adfm.201707178.
doi: 10.1002/adfm.201707178
J. Li, K. Zhao, Y. Yu, L. Z. Zhang, Adv. Funct. Mater. 25 (2015) 2189, https://doi.org/10.1002/adfm.201404178.
doi: 10.1002/adfm.201404178
R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A. M. Rao, M. Ishigami, ACS Nano 5 (2011) 1594, https://doi.org/10.1021/nn1031017.
doi: 10.1021/nn1031017
J. Li, L. J. Cai, J. Shang, Y. Yu, L. Z. Zhang, Adv. Mater. 28 (2016) 4059, https://doi.org/10.1002/adma.201600301.
doi: 10.1002/adma.201600301
F. Guo, C. L. Mao, C. Liang, P. Xing, L. H. Yu, Y. B. Shi, S. Y. Cao, F. Y. Wang, X. Liu, Z. H. Ai, et al., Angew. Chem. Int. Ed. 62 (2023) e202314243, https://doi.org/10.1002/anie.202314243.
doi: 10.1002/anie.202314243
T. L. Lu, Z. Y. Yang, H. J. Li, H. J. Chen, J. Xu, C. C. Xu, J. S. Wang, Z. J. Li, Y. S. Zhang, J. Catal. 410 (2022) 103, https://doi.org/10.1016/j.jcat.2022.04.020.
doi: 10.1016/j.jcat.2022.04.020
J. Di, W. Jiang, Mater. Today Catal. 1 (2023) 100001, https://doi.org/10.1016/j.mtcata.2023.100001.
doi: 10.1016/j.mtcata.2023.100001
K. Yang, X. J. Liu, J. Xu, Y. Gong, S. L. Shen, J. C. Fan, X. J. Zhang, Y. H. Xue, Prog. Nat. Sci. -Mater. 34 (2024) 102, https://doi.org/10.1016/j.pnsc.2024.02.004.
doi: 10.1016/j.pnsc.2024.02.004
Q. H. Li, Y. F. Zhang, L. L. Xu, H. J. Chen, L. Zhang, M. S. Khalid, Z. W. Li, Z. J. Li, G. Li, Appl. Catal. B Environ. Energy 361 (2025) 124706, https://doi.org/10.1016/j.apcatb.2024.124706.
doi: 10.1016/j.apcatb.2024.124706
J. Ning, B. H. Zhang, L. Siqin, G. H. Liu, Q. Wu, S. Q. Xue, T. T. Shao, F. C. Zhang, W. B. Zhang, X. H. Liu, Exploration 3 (2023) 20230050, https://doi.org/10.1002/EXP.20230050.
doi: 10.1002/EXP.20230050
J. H. Cho, J. Ma, S. Y. Kim, Exploration 3 (2023) 20230001, https://doi.org/10.1002/EXP.20230001.
doi: 10.1002/EXP.20230001
J. Di, C. Chen, Y. Wu, Y. Zhao, C. Zhu, Y. Zhang, C. Wang, H. Chen, J. Xiong, M. Xu, et al., Adv. Mater. 2022, 34, e2204959, https://doi.org/10.1002/adma.202204959.
doi: 10.1002/adma.202204959
J. Di, C. Chen, Y. Wu, H. Chen, J. Xiong, R. Long, S. Z. Li, L. Song, W. Jiang, Z. Liu, Adv. Mater. 36 (2024) e2401914, https://doi.org/10.1002/adma.202401914.
doi: 10.1002/adma.202401914
H. J. Chen, C. Liu, M. Wang, C. F. Zhang, N. C. Luo, Y. H. Wang, H. Abroshan, G. Li, F. Wang, ACS Catal. 7 (2017) 3632, https://doi.org/10.1021/acscatal.6b03509.
doi: 10.1021/acscatal.6b03509
Jiali Lei , Juan Wang , Wenhui Zhang , Guohong Wang , Zihui Liang , Jinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
Ze Luo , Yukun Zhu , Yadan Luo , Guangmin Ren , Yonghong Wang , Hua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Yuhang Zhang , Yi Li , Yuehan Cao , Yingjie Shuai , Yu Zhou , Ying Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
Yu Liu , Pengfei Li , Yize Liu , Zaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024