Citation: Xiaofei Zhang, Shanhao Xu, Zhiyuan Wang, Long He, Tiangcheng Huang, Yongming Xu, Yucui Bian, Yike Li, Haijun Chen, Zhongjun Li. Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light[J]. Acta Physico-Chimica Sinica, ;2026, 42(5): 100202. doi: 10.1016/j.actphy.2025.100202 shu

Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light

  • The carbon-doped BiOCl was prepared using glucose as a carbon source. The carbon dopants are mainly concentrated in the surface or shallow lattice of the crystals with partial bonded to oxygen atoms. The conversion of benzylamine for its self-coupling (> 99%) is boosted by 12 times over carbon-doped BiOCl that of bare BiOCl under visible light at room temperature using molecular oxygen as a green oxidant. The doped catalyst shows good functional groups toleration of amines and facet-dependent photocatalytic activity. Comprehensive characterizations verify that doping of carbon causes the formation of doping energy level in the original band gap of crystal, which widens the absorption range of BiOCl to visible light and decreases its work function. Meanwhile, the doping of carbon also enhances the electric field in the BiOCl and the most efficient dopant is the single and bilayer graphene which can capture the conduction band electrons that are excited to higher energy levels following the electron-hole separation. This retards the electrons recombination with holes and improves the separation efficiency of photo-generated carriers. Moreover, the O2 activation is enhanced. This work provides a reference for the rational design of photocatalysts and the realization of high-efficiency and directional organic conversion.
  • 加载中
    1. [1]

      M. Largeron, M. -B. Fleury, Science 339 (2013) 43, https://www.science.org/doi/10.1126/science.1232220.
       

    2. [2]

      T. Sonobe, K. Oisaki, M. Kanai, Chem. Sci. 3 (2012) 3249, https://doi.org/10.1039/C2SC20699D.  doi: 10.1039/C2SC20699D

    3. [3]

      Y. X. Guo, B. Liu, J. W. Zhang, C. T. Wang, G. L. Wang, C. S. Pan, H. Zhao, Y. M. Dong, Y. F. Zhu, Appl. Catal., B: Environ. Energy 350 (2024) 123915, https://doi.org/10.1016/j.apcatb.2024.123915.  doi: 10.1016/j.apcatb.2024.123915

    4. [4]

      L. J. Yang, Z. X. Chen, Q. C. Cao, H. R. Liao, J. Gao, L. Zhang, W. Y. Wei, H. Li, J. M. Lu, Adv. Mater. 36 (2024) 2306758, https://doi.org/10.1002%2Fadma.202306758.

    5. [5]

      Y. X. Liu, H. Tan, J. Z. Sun, Y. N. Wei, M. H. Liu, J. X. Hong, S. C. Shang, X. Y. Wang, L. Li, Y. Gu, et al., Adv. Funct. Mater. 33 (2023) 2302874, https://doi.org/10.1002/adfm.202302874.  doi: 10.1002/adfm.202302874

    6. [6]

      B. Chen, L. Y. Wang, S. Gao, ACS Catal. 5 (2015) 5851, https://doi.org/10.1021/acscatal.5b01479.  doi: 10.1021/acscatal.5b01479

    7. [7]

      X. Wang, C. Wang, H. -Q. Tan, T. -Y. Qiu, Y. -M. Xing, Q. -K. Shang, Y. -N. Zhao, X. -Y. Zhao, X. -Y. Zhao, Y. -G. Li, Chem. Eng. J. 431 (2022) 134051, https://doi.org/10.1016/j.cej.2021.134051.  doi: 10.1016/j.cej.2021.134051

    8. [8]

      B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem. Int. Ed. 49 (2010) 1468, https://doi.org/10.1002/ANIE.200907018.  doi: 10.1002/ANIE.200907018

    9. [9]

      L. Blackburn, R. J. K. Taylor, Org. Lett. 3 (2001) 1637, https://doi.org/10.1021/ol015819b.  doi: 10.1021/ol015819b

    10. [10]

      K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, J. Am. Chem. Soc. 126 (2004) 5192, https://doi.org/10.1021/ja0400382.  doi: 10.1021/ja0400382

    11. [11]

      T. Mukaiyama, A. Kawana, Y. Fukuda, J. -I. Matsuo, Chem. Lett. 30 (2001) 390, https://doi.org/10.1246/cl.2001.390.  doi: 10.1246/cl.2001.390

    12. [12]

      S. -I. Naya, K. Kimura, H. Tada, ACS Catal. 3 (2013) 10, https://doi.org/10.1021/cs300682d.  doi: 10.1021/cs300682d

    13. [13]

      G. Csjernyik, A. H. Éll, L. Fadini, B. Pugin, J. -E. Bäckvall, J. Org. Chem. 67 (2002) 1657, https://doi.org/10.1021/jo0163750.  doi: 10.1021/jo0163750

    14. [14]

      S. Kodama, J. Yoshida, A. Nomoto, Y. Ueta, S. Yano, M. Ueshima, A. Ogawa, Tetra. Lett. 1 (2010) 2450, https://doi.org/10.1016/j.tetlet.2010.02.150.  doi: 10.1016/j.tetlet.2010.02.150

    15. [15]

      M. Largeron, M. -B. Fleury, Angew. Chem. Int. Ed. 51 (2012) 5409, https://doi.org/10.1002/anie.201200587.  doi: 10.1002/anie.201200587

    16. [16]

      H. Shechter, S. S. Rawalay, M. Tubis, J. Am. Chem. Soc. 86 (1964) 1701, https://doi.org/10.1021/ja01063a012.  doi: 10.1021/ja01063a012

    17. [17]

      R. Yamaguchi, C. Ikeda, Y. Takahashi, K. -I. Fujita, J. Am. Chem. Soc. 131 (2009) 8410, https://doi.org/10.1021/ja9022623.  doi: 10.1021/ja9022623

    18. [18]

      B. L. Zhu, M. Lazar, B. G. Trewyn, R. J. Angelici, J. Catal. 260 (2008) 1, https://doi.org/10.1016/j.jcat.2008.08.012.  doi: 10.1016/j.jcat.2008.08.012

    19. [19]

      H. Huang, J. Huang, Y. -M. Liu, H. -Y. He, Y. Cao, K. -N. Fan, Green Chem. 14 (2012) 930, https://doi.org/10.1039/C2GC16681J.  doi: 10.1039/C2GC16681J

    20. [20]

      S. Biswas, B. Dutta, K. Mullick, C. -H. Kuo, A. S. Poyraz, S. L. Suib, ACS Catal. 5 (2015) 4394, https://doi.org/10.1021/acscatal.5b00325.  doi: 10.1021/acscatal.5b00325

    21. [21]

      B. Dutta, S. March, L. Achola, S. Sahoo, J. K. He, A. S. Amin, Y. Wu, S. Poges, S. P. Alpay, S. L. Suib, Green Chem. 20 (2018) 3180, https://doi.org/10.1039/C8GC00862K.  doi: 10.1039/C8GC00862K

    22. [22]

      B. Chen, L. Wang, W. Dai, S. Shang, Y. Lv, S. Gao, ACS Catal. 5 (2015) 2788, https://doi.org/10.1021/acscatal.5b00244.  doi: 10.1021/acscatal.5b00244

    23. [23]

      Z. J. Gu, Z. Shan, Y. L. Wang, J. J. Wang, T. T. Liu, X. M. Li, Z. Y. Yu, J. Su, G. Zhang, Chin. Chem. Lett. 35 (2024) 108356, https://doi.org/10.1016/j.cclet.2023.108356.  doi: 10.1016/j.cclet.2023.108356

    24. [24]

      R. Sakamoto, R. Toyoda, G. Jingyan, Y. Nishina, K. Kamiya, H. Nishihara, T. Ogoshi, Coord. Chem. Rev. 466 (2022) 214577, https://doi.org/10.1016/j.ccr.2022.214577.  doi: 10.1016/j.ccr.2022.214577

    25. [25]

      S. -L. Meng, C. Ye, X. -B. Li, C. -H. Tung, L. -Z. Wu, J. Am. Chem. Soc. 144 (2022) 16219, https://doi.org/10.1021/jacs.2c02341.  doi: 10.1021/jacs.2c02341

    26. [26]

      H. J. Chen, R. H. Xu, D. Chen, T. L Lu, H. J. Li, M. Wang, ACS Catal. 14 (2024) 1977, https://doi.org/10.1021/acscatal.3c05263.  doi: 10.1021/acscatal.3c05263

    27. [27]

      W. J. Cao, W. J. Zhang, L. Dong, Z. Ma, J. S. Xu, X. L. Gu, Z. P. Chen, Exploration 3 (2023) 20220169, https://doi.org/10.1002/EXP.20220169.  doi: 10.1002/EXP.20220169

    28. [28]

      A. Khampuanbut, S. Santalelat, A. Pankiew, D. Channei, S. Pornsuwan, K. Faungnawakij, S. Phanichphant, B. Inceesungvorn, J. Colloid Interface Sci. 560 (2020) 213, https://doi.org/10.1016/j.jcis.2019.10.057.  doi: 10.1016/j.jcis.2019.10.057

    29. [29]

      Y. -D. Sun, C. Zeng, X. Zhang, Z. -Q. Zhang, B. Yang, S. -Q. Guo, Rare Met. 43 (2024) 1488, https://doi.org/10.1007/s12598-023-02569-6.  doi: 10.1007/s12598-023-02569-6

    30. [30]

      Q. Chen, H. Wang, C. C. Guan, R. F. Duan, R. Fang, Y. F. Hu, Xun, Appl. Catal. B Environ. 262 (2020) 118258, https://doi.org/10.1016/j.apcatb.2019.118258.  doi: 10.1016/j.apcatb.2019.118258

    31. [31]

      S. Juntrapirom, S. Anuchai, O. Thongsook, S. Pornsuwan, P. Meepowpan, P. Thavornyutikarn, S. Phanichphant, D. Tantraviwat, B. Inceesungvorn, Chem. Eng. J. 394 (2020) 124934, https://doi.org/10.1016/j.cej.2020.124934.  doi: 10.1016/j.cej.2020.124934

    32. [32]

      W. Zou, X. -H. Liu, C. Xue, X. -T. Zhou, H. -Y. Yu, P. Fan, H. -B. Ji, Appl. Catal. B. Environ. 285 (2021) 119863, https://doi.org/10.1016/j.apcatb.2020.119863.  doi: 10.1016/j.apcatb.2020.119863

    33. [33]

      A. Yuan, H. Lei, Z. S. Wang, X. P. Dong, J. Colloid Interface Sci. 560 (2020) 40, https://doi.org/10.1016/j.jcis.2019.10.060.  doi: 10.1016/j.jcis.2019.10.060

    34. [34]

      K. -L. Zhang, C. -M. Liu, F. -Q. Huang, C. Zheng, W. -D. Wang, Appl. Catal. B Environ. 68 (2006) 125, https://doi.org/10.1016/j.apcatb.2006.08.002.  doi: 10.1016/j.apcatb.2006.08.002

    35. [35]

      Y. Y. Li, J. P. Liu, J. Jiang, J. G. Yu, Dalton Trans. 40 (2011) 6632, https://doi.org/10.1039/C1DT10691K.  doi: 10.1039/C1DT10691K

    36. [36]

      Y. Xu, S. C. Xu, S. Wang, Y. X. Zhang, G. H. Li, Dalton Trans. 43 (2014) 479, https://doi.org/10.1039/C3DT52004H.  doi: 10.1039/C3DT52004H

    37. [37]

      J. Jiang, K. Zhao, X. Y. Xiao, L. H. Zhang, J. Am. Chem. Soc. 134 (2012) 4473, https://doi.org/10.1021/ja210484t.  doi: 10.1021/ja210484t

    38. [38]

      C. -Y. Wang, Y. -J. Zhang, W. -K. Wang, D. -N. Pei, G. -X. Huang, J. -J. Chen, X. Zhang, H. -Q. Yu, Appl. Catal. B Environ. 221 (2018) 320, https://doi.org/10.1016/j.apcatb.2017.09.036.  doi: 10.1016/j.apcatb.2017.09.036

    39. [39]

      J. Shang, T. Z. Chen, X. W. Wang, L. Y. Sun, Q. Q. Su, Chem. Phys. Lett. 706 (2018) 483, https://doi.org/10.1016/j.cplett.2018.06.054.  doi: 10.1016/j.cplett.2018.06.054

    40. [40]

      Y. H. Ren, J. H. Zou, K. Q. Jing, Y. Y. Liu, B. B. Guo, Y. J. Song, Y. Yu, L. Wu, J. Catal. 380 (2019) 123, https://doi.org/10.1016/j.jcat.2019.10.018.  doi: 10.1016/j.jcat.2019.10.018

    41. [41]

      B. X. Zhang, J. L. Zhang, R. Duan, Q. Wan, X. N. Tan, Z. Z. S, B. X. Han, L. R. Zheng, G. Mo, Nano Energy 78 (2020) 105340, https://doi.org/10.1016/j.nanoen.2020.105340.  doi: 10.1016/j.nanoen.2020.105340

    42. [42]

      H. J. Chen, L. M. Peng, Y. C. Bian, X. Q. Shen, J. Li, H. -C. Yao, S. -Q. Zang, Z. J. Li, Appl. Catal. B Environ. 284 (2021) 119704, https://doi.org/10.1016/j.apcatb.2020.119704.  doi: 10.1016/j.apcatb.2020.119704

    43. [43]

      W. X. Ouyang, F. Teng, X. S. Fang, Adv. Funct. Mater. 28 (2018) 1707178, https://doi.org/10.1002/adfm.201707178.  doi: 10.1002/adfm.201707178

    44. [44]

      J. Li, K. Zhao, Y. Yu, L. Z. Zhang, Adv. Funct. Mater. 25 (2015) 2189, https://doi.org/10.1002/adfm.201404178.  doi: 10.1002/adfm.201404178

    45. [45]

      R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A. M. Rao, M. Ishigami, ACS Nano 5 (2011) 1594, https://doi.org/10.1021/nn1031017.  doi: 10.1021/nn1031017

    46. [46]

      J. Li, L. J. Cai, J. Shang, Y. Yu, L. Z. Zhang, Adv. Mater. 28 (2016) 4059, https://doi.org/10.1002/adma.201600301.  doi: 10.1002/adma.201600301

    47. [47]

      F. Guo, C. L. Mao, C. Liang, P. Xing, L. H. Yu, Y. B. Shi, S. Y. Cao, F. Y. Wang, X. Liu, Z. H. Ai, et al., Angew. Chem. Int. Ed. 62 (2023) e202314243, https://doi.org/10.1002/anie.202314243.  doi: 10.1002/anie.202314243

    48. [48]

      T. L. Lu, Z. Y. Yang, H. J. Li, H. J. Chen, J. Xu, C. C. Xu, J. S. Wang, Z. J. Li, Y. S. Zhang, J. Catal. 410 (2022) 103, https://doi.org/10.1016/j.jcat.2022.04.020.  doi: 10.1016/j.jcat.2022.04.020

    49. [49]

      J. Di, W. Jiang, Mater. Today Catal. 1 (2023) 100001, https://doi.org/10.1016/j.mtcata.2023.100001.  doi: 10.1016/j.mtcata.2023.100001

    50. [50]

      K. Yang, X. J. Liu, J. Xu, Y. Gong, S. L. Shen, J. C. Fan, X. J. Zhang, Y. H. Xue, Prog. Nat. Sci. -Mater. 34 (2024) 102, https://doi.org/10.1016/j.pnsc.2024.02.004.  doi: 10.1016/j.pnsc.2024.02.004

    51. [51]

      Q. H. Li, Y. F. Zhang, L. L. Xu, H. J. Chen, L. Zhang, M. S. Khalid, Z. W. Li, Z. J. Li, G. Li, Appl. Catal. B Environ. Energy 361 (2025) 124706, https://doi.org/10.1016/j.apcatb.2024.124706.  doi: 10.1016/j.apcatb.2024.124706

    52. [52]

      J. Ning, B. H. Zhang, L. Siqin, G. H. Liu, Q. Wu, S. Q. Xue, T. T. Shao, F. C. Zhang, W. B. Zhang, X. H. Liu, Exploration 3 (2023) 20230050, https://doi.org/10.1002/EXP.20230050.  doi: 10.1002/EXP.20230050

    53. [53]

      J. H. Cho, J. Ma, S. Y. Kim, Exploration 3 (2023) 20230001, https://doi.org/10.1002/EXP.20230001.  doi: 10.1002/EXP.20230001

    54. [54]

      J. Di, C. Chen, Y. Wu, Y. Zhao, C. Zhu, Y. Zhang, C. Wang, H. Chen, J. Xiong, M. Xu, et al., Adv. Mater. 2022, 34, e2204959, https://doi.org/10.1002/adma.202204959.  doi: 10.1002/adma.202204959

    55. [55]

      J. Di, C. Chen, Y. Wu, H. Chen, J. Xiong, R. Long, S. Z. Li, L. Song, W. Jiang, Z. Liu, Adv. Mater. 36 (2024) e2401914, https://doi.org/10.1002/adma.202401914.  doi: 10.1002/adma.202401914

    56. [56]

      H. J. Chen, C. Liu, M. Wang, C. F. Zhang, N. C. Luo, Y. H. Wang, H. Abroshan, G. Li, F. Wang, ACS Catal. 7 (2017) 3632, https://doi.org/10.1021/acscatal.6b03509.  doi: 10.1021/acscatal.6b03509

  • 加载中
    1. [1]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    2. [2]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    3. [3]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    4. [4]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    9. [9]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    14. [14]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    15. [15]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    17. [17]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(0)
  • Abstract views(209)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return