Citation: Keke Gao,  Haozhe Xu,  Xingkun Liu,  Chunwen Sun. Cr-doped lithium-rich manganese-based materials as a cathode for high-performance all-solid-state lithium batteries[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100200. doi: 10.1016/j.actphy.2025.100200 shu

Cr-doped lithium-rich manganese-based materials as a cathode for high-performance all-solid-state lithium batteries

  • Corresponding author: Chunwen Sun, csun@cumtb.edu.cn
  • Received Date: 8 July 2025
    Revised Date: 16 September 2025
    Accepted Date: 14 October 2025

  • With prospects for high energy density and safety, all-solid-state lithium-ion batteries (ASSLBs) with lithium-rich manganese-based materials (LRMs) are exploited as next-generation energy storage systems. However, the severe interfacial degradations with halide solid electrolytes (SEs) caused by the irreversible oxygen release remain to be urgently solved. In this work, we synthesized Cr-substituted LRMs with high capacity and stability. The reversible redox of Cr3+/Cr6+ contributes to an enhanced capacity, accompanied by the reversible migration of Cr6+ ions between octahedral and tetrahedral sites, effectively maintaining the structural stability of LRMs. Meanwhile, the strong Cr–O bond can stabilize the lattice oxygen, establish a stable cathode/electrolyte interface, and alleviate the voltage decay. Therefore, the ASSBs with LRMs-Cr0.1 cathode and halide electrolyte show an excellent cycling stability with 0.065% capacity decay per cycle for 500 cycles at 0.5C. Notably, the LRMs-Cr0.1//Li21Si5@Si/C full cell exhibits outstanding long-term cyclability over 1000 cycles with nearly 100% capacity retention at 0.3C, corresponding to an energy density of 413.11 Wh kg-1. This work provides guidance for developing high energy-density solid-state batteries.
  • 加载中
    1. [1]

      Y.-K. Sun, ACS Energy Lett. 5(10) (2020) 3221. https://doi.org/10.1021/acsenergylett.0c01977.

    2. [2]

      C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Nano Energy 33(2017) 363. https://doi.org/10.1016/j.nanoen.2017.01.028.

    3. [3]

      X. Hu, Q. Xia, F. Yue, X. He, Z. Mei, J. Wang, H. Xia, X. Huang, Acta Phys. Chim. Sin. 40(2) (2024) 2309046. https://doi.org/10.3866/pku.Whxb202309046.

    4. [4]

      K. Wang, K. Liu, H. Wu, Acta Phys. Chim. Sin. 39(12) (2023) 2301009. https://doi.org/10.3866/pku.Whxb202301009.

    5. [5]

      G. Xue, J. Li, J. Chen, D. Chen, C. Hu, L. Tang, B. Chen, R. Yi, Y. Shen, L. Chen, Acta Phys. Chim. Sin. 2023, 39(8) (2022) 2205012. https://doi.org/10.3866/pku.Whxb202205012.

    6. [6]

      G. Assat, J.-M. Tarascon, Nat. Energy 3(5) (2018) 373. https://doi.org/10.1038/s41560-018-0097-0.

    7. [7]

      K. Gao, C. Sun, Z. Wang, Mater. Chem. Front. 8(2024) 3082. https://doi.org/10.1039/D4QM00513A.

    8. [8]

      W. Du, Q. Shao, Y. Wei, C. Yan, P. Gao, Y. Lin, Y. Jiang, Y. Liu, X. Yu, M. Gao, et al., ACS Energy Lett. 7(9) (2022) 3006. https://doi.org/10.1021/acsenergylett.2c01637.

    9. [9]

      Y. Liu, T. Yu, S. Guo, H. Zhou, Acta Phys. Chim. Sin. 39(8) (2023) 2301027. https://doi.org/10.3866/pku.Whxb202301027.

    10. [10]

      Y. Yang, N. Hu, Y.-H. Zhang, Y. Zheng, Z. Hu, C.-Y. Kuo, H.-J. Lin, C.-T. Chen, T.-S. Chan, C.-W. Kao, et al., ACS Appl. Mater. Interfaces 15(25) (2023) 30060. https://doi.org/10.1021/acsami.3c01876.

    11. [11]

      Y. Wu, K. Zhou, F. Ren, Y. Ha, Z. Liang, X. Zheng, Z. Wang, W. Yang, M. Zhang, M. Luo, et al., Energy Environ. Sci. 15(8) (2022) 3470. https://doi.org/10.1039/d2ee01067d.

    12. [12]

      R. Yu, C. Wang, H. Duan, M. Jiang, A. Zhang, A. Fraser, J. Zuo, Y. Wu, Y. Sun, Y. Zhao, et al., Adv. Mater. 35(5) (2023) e2207234. https://doi.org/10.1002/adma.202207234.

    13. [13]

      S. Sun, C.Z. Zhao, G.Y. Liu, S.C. Wang, Z.H. Fu, W.J. Kong, J.L. Li, X. Chen, X. Zhao, Q. Zhang, Adv. Mater. 37(2024) 2414195. https://doi.org/10.1002/adma.202414195.

    14. [14]

      S. Sun, C.-Z. Zhao, H. Yuan, Z.-H. Fu, X. Chen, Y. Lu, Y.-F. Li, J.-K. Hu, J. Dong, J.-Q. Huang, et al., Sci. Adv. 8(47) (2022) eadd5189. https://doi.org/10.1126/sciadv.add5189.

    15. [15]

      Y. Wang, D. Wu, P. Chen, P. Lu, X. Wang, L. Chen, H. Li, F. Wu, Adv. Funct. Mater. 34(2023) 2309822. https://doi.org/10.1002/adfm.202309822.

    16. [16]

      W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang, P. Xu, Y. Lu, W.-Z. Huang, J.-L. Li, J.-Q. Huang, et al., J. Am. Chem. Soc. 41(146) (2024) 28190. https://doi.org/10.1021/jacs.4c08115.

    17. [17]

      B. Li, H. Yan, J. Ma, P. Yu, D. Xia, W. Huang, W. Chu, Z. Wu, Adv. Funct. Mater. 24(32) (2014) 5112. https://doi.org/10.1002/adfm.201400436.

    18. [18]

      R.-P. Qing, J.-L. Shi, D.-D. Xiao, X.-D. Zhang, Y.-X. Yin, Y.-B. Zhai, L. Gu, Y.-G. Guo, Adv. Energy Mater. 6(6) (2016) 1501914. https://doi.org/10.1002/aenm.201501914.

    19. [19]

      Y. Lyu, N. Zhao, E. Hu, R. Xiao, X. Yu, L. Gu, X.-Q. Yang, H. Li, Chem. Mater. 27(15) (2015) 5238. https://doi.org/10.1021/acs.chemmater.5b01362.

    20. [20]

      S. Liu, J. Wang, Z. Tian, Q. Li, X. Tian, Y. Cui, Y. Yang, Chem. Commun. 53(87) (2017) 11913. https://doi.org/10.1039/c7cc07545f.

    21. [21]

      G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, J. Electrochem. Soc. 159(4) (2012) A410. https://doi.org/10.1149/2.059204jes.

    22. [22]

      Z. Zhang, Z. Sun, X. Han, Y. Liu, S. Pei, Y. Li, L. Luo, P. Su, C. Lan, Z. Zhang, et al., Energy Environ. Sci. 17(3) (2024) 1061. https://doi.org/10.1039/d3ee03877g.

    23. [23]

      R. Song, J. Yao, R. Xu, Z. Li, X. Yan, C. Yu, Z. Huang, L. Zhang, Adv. Energy Mater. 13(9) (2023) 2203631. https://doi.org/10.1002/aenm.202203631.

    24. [24]

      D. Zeng, J. Yao, L. Zhang, R. Xu, S. Wang, X. Yan, C. Yu, L. Wang, Nat. Commun. 13(1) (2022) 1909. https://doi.org/10.1038/s41467-022-29596-8.

    25. [25]

      H. Yan, J. Yao, Z. Ye, Q. Lin, Z. Zhang, S. Li, D. Song, Z. Wang, C. Yu, L. Zhang, Chin. Chem. Lett. 36(1) (2025) 109568. https://doi.org/10.1016/j.cclet.2024.109568.

    26. [26]

      H. Yan, R. Song, R. Xu, S. Li, Q. Lin, X. Yan, Z. Wang, C. Yu, L. Zhang, J. Energy Chem. 86(2023) 499. https://doi.org/10.1016/j.jechem.2023.07.028.

    27. [27]

      T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Electrochim. Acta 184(2015) 483. https://doi.org/10.1016/j.electacta.2015.09.097.

    28. [28]

      C. Zhang, M. Yan, W. Li, C. Han, J. Li, H. Zhao, G. Jia, S. An, X. Qiu, ACS Appl. Mater. Interfaces 13(41) (2021) 48653. https://doi.org/10.1021/acsami.1c13462.

    29. [29]

      X. Chen, X. Zhai, Y. Wu, X. Wang, L. Zhang, C. Shang, H. Zhang, C. Zhao, J. Shang, D. Liu, J. Energy Storage 114(2025) 115826. https://doi.org/10.1016/j.est.2025.115826.

    30. [30]

      J. Song, H. Wang, Y. Zuo, K. Zhang, T. Yang, Y. Yang, C. Gao, T. Chen, G. Feng, Z. Jiang, et al., Electrochem. Energy Rev. 6(1) (2023) 20. https://doi.org/10.1007/s41918-023-00184-8.

    31. [31]

      G. Singh, S.L. Gupta, R. Prasad, S. Auluck, R. Gupta, A. Sil, J. Phys. Chem. Solids 70(8) (2009) 1200. https://doi.org/10.1016/j.jpcs.2009.07.001.

    32. [32]

      S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angew. Chem. Int. Ed 60(5) (2021) 2208. https://doi.org/10.1002/anie.202000262.

    33. [33]

      D. Luo, X. Ding, J. Fan, Z. Zhang, P. Liu, X. Yang, J. Guo, S. Sun, Z. Lin, Angew. Chem. Int. Ed 59(51) (2020) 23061. https://doi.org/10.1002/anie.202010531.

    34. [34]

      C.-C. Wang, A. Manthiram, J. Mater. Chem. A 1(35) (2013) 10209. https://doi.org/10.1039/c3ta11703k.

    35. [35]

      B. Song, M.O. Lai, L. Lu, Electrochim. Acta 80(2012) 187. https://doi.org/10.1016/j.electacta.2012.06.118.

    36. [36]

      G. Ceder, MRS Bull. 35(9) (2010) 693. https://doi.org/10.1557/mrs2010.681.

    37. [37]

      G. Cao, X. Yang, Z. Yin, Y. Lei, H. Wang, J. Li, Bull. Chem. Soc. Jpn. 92(7) (2019) 1205. https://doi.org/10.1246/bcsj.20190061.

    38. [38]

      X. Ding, Y. Wen, C. Qing, Y. Wei, P. Wang, J. Liu, Z. Peng, Y. Song, H. Chen, Q. Rong, J. Alloys Compd. 986(2024) 174041. https://doi.org/10.1016/j.jallcom.2024.174041.

    39. [39]

      W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, J. Jiang, J. Nanomater. 2017(1) (2017) 9378349. https://doi.org/10.1155/2017/9378349.

    40. [40]

      J. Liu, J. Wang, Y. Ni, Y. Zhang, J. Luo, F. Cheng, J. Chen, Small Methods 3(12) (2019) 1900350. https://doi.org/10.1002/smtd.201900350.

    41. [41]

      J. Li, F.L. Deepak, Chem. Rev. 122(23) (2022) 16911. https://doi.org/10.1021/acs.chemrev.1c01067.

    42. [42]

      H. Yamauchi, J. Ikejiri, K. Tsunoda, A. Tanaka, F. Sato, T. Honma, T. Komatsu, Sci. Rep. 10(1) (2020) 9453. https://doi.org/10.1038/s41598-020-66410-1.

    43. [43]

      I. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek, L. Nazar, Energy Environ. Sci. 15(9) (2022) 3933. https://doi.org/10.1039/D2EE00803C.

    44. [44]

      K. Gao, F. Yin, F. Mi, C. Sun, ACS Appl. Mater. Interfaces 17(22) (2025) 32511. https://doi.org/10.1021/acsami.5c05879.

    45. [45]

      B. Li, M.T. Sougrati, G. Rousse, A.V. Morozov, R. Dedryvère, A. Iadecola, A. Senyshyn, L. Zhang, A.M. Abakumov, M.-L. Doublet, et al., Nat. Chem. 13(11) (2021) 1070. https://doi.org/10.1038/s41557-021-00775-2.

    46. [46]

      J.R. Croy, K.G. Gallagher, M. Balasubramanian, Z. Chen, Y. Ren, D. Kim, S.-H. Kang, D.W. Dees, M.M. Thackeray, J. Phys. Chem. C 117(13) (2013) 6525. https://doi.org/10.1021/jp312658q.

    47. [47]

      Y. Lu, C.-Z. Zhao, R. Zhang, H. Yuan, L.-P. Hou, Z.-H. Fu, X. Chen, J.-Q. Huang, Q. Zhang, Sci. Adv. 7(38) (2021) eabi5520. https://doi.org/doi:10.1126/sciadv.abi5520.

    48. [48]

      Y. Zhang, Y. Chen, M. Yan, F. Chen, J. Power Sources 283(2015) 464. https://doi.org/10.1016/j.jpowsour.2015.02.107.

    49. [49]

      Y. Yang, C. Gao, T. Luo, J. Song, T. Yang, H. Wang, K. Zhang, Y. Zuo, W. Xiao, Z. Jiang, et al., Adv. Mater. 35(52) (2023) 2307138. https://doi.org/10.1002/adma.202307138.

    50. [50]

      J. Ahn, J.H. Kim, B.W. Cho, K.Y. Chung, S. Kim, J.W. Choi, S.H. Oh, Nano Lett. 17(12) (2017) 7869. https://doi.org/10.1021/acs.nanolett.7b04158.

    51. [51]

      Y. Liu, Z. Yang, J. Li, B. Niu, K. Yang, F. Kang, J. Mater. Chem. A 6(28) (2018) 13883. https://doi.org/10.1039/c8ta04568b.

    52. [52]

      Y. Liu, Z. Zhang, Y. Gao, G. Yang, C. Li, J. Zheng, A. Dou, Q. Wang, M. Su, J. Alloys Compd. 657(2016) 37. https://doi.org/10.1016/j.jallcom.2015.10.060.

    53. [53]

      M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha, K. Ahn, Y. Huang, S.J. Kang, J. Li, J. Cho, Nat. Energy 6(4) (2021) 362. https://doi.org/10.1038/s41560-021-00782-0.

    54. [54]

      Z. Yu, B. Singh, Y. Yu, L.F. Nazar, Nat. Mater. 24(7) (2025) 1082. https://doi.org/10.1038/s41563-025-02238-2.

    55. [55]

      W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu, J. Xu, Y. Wu, T. Ma, et al., Nat. Energy 8(8) (2023) 800. https://doi.org/10.1038/s41560-023-01279-8.

    56. [56]

      Z. Wang, Q. Su, H. Deng, Y. Fu, ChemElectroChem 2(9) (2015) 1292. https://doi.org/10.1002/celc.201500201.

    57. [57]

      M.-J. Wang, A.-F. Shao, F.-D. Yu, G. Sun, D.-M. Gu, Z.-B. Wang, ACS Sustainable Chem. Eng. 7(15) (2019) 12825. https://doi.org/10.1021/acssuschemeng.9b01719.

    58. [58]

      G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvere, J.M. Tarascon, Nat. Commun. 8(1) (2017) 2219. https://doi.org/10.1038/s41467-017-02291-9.

    59. [59]

      W. Zhang, D.A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schröder, R. Koerver, T. Leichtweiss, P. Hartmann, W.G. Zeier, et al., ACS Appl. Mater. Interfaces 9(21) (2017) 17835. https://doi.org/10.1021/acsami.7b01137.

    60. [60]

      A. Zhang, J. Wang, R. Yu, H. Zhuo, C. Wang, Z. Ren, J. Wang, ACS Appl. Mater. Interfaces 15(6) (2023) 8190. https://doi.org/10.1021/acsami.2c21569.

    61. [61]

      G.G. Khan, S. Ghosh, A. Sarkar, G. Mandal, G.D. Mukherjee, U. Manju, N. Banu, B.N. Dev, J. Appl. Phys. 118(7) (2015) 074303. https://doi.org/10.1063/1.4928952.

    62. [62]

      C.H. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M.C. Holland, M.L. Huang, C.H. Lin, C.H. Hsieh, Y.S. Chang, et al., AIP Adv. 4(4) (2014) 047108. https://doi.org/10.1063/1.4871187.

    63. [63]

      X. Li, Q. Ye, Z. Wu, W. Zhang, H. Huang, Y. Xia, Y. Gan, X. He, X. Xia, J. Zhang, Electrochim. Acta 453(2023) 142361. https://doi.org/10.1016/j.electacta.2023.142361.

    64. [64]

      D. Foix, M. Sathiya, E. McCalla, J.-M. Tarascon, D. Gonbeau, J. Phys. Chem. C 120(2) (2016) 862. https://doi.org/10.1021/acs.jpcc.5b10475.

    65. [65]

      L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage, C. Delmas, D. Gonbeau, Chem. Mater. 20(2) (2008) 583. https://doi.org/10.1021/cm702546s.

  • 加载中
    1. [1]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    2. [2]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Vanita Vanita Roland Schoch Pascal Puphal Hasan Yilmaz Matthias Bauer Oliver Clemens . Structural and electrochemical behaviour of bilayer manganite LaSr2Mn2O6.96 cathode for all-solid-state fluoride ion batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100181-. doi: 10.1016/j.actphy.2025.100181

    4. [4]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    5. [5]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    8. [8]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    14. [14]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    15. [15]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    16. [16]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    17. [17]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-0. doi: 10.3866/PKU.WHXB202310024

    18. [18]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

Metrics
  • PDF Downloads(0)
  • Abstract views(75)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return