Citation: Xue Zhang, Zihan He, Yingqi Wu, Weilai Yu, Tao Liu. Corn-distillers-derived hard carbon: a sustainable high-rate, long-life anode for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, ;2026, 42(5): 100199. doi: 10.1016/j.actphy.2025.100199 shu

Corn-distillers-derived hard carbon: a sustainable high-rate, long-life anode for sodium-ion batteries

  • Hard carbon (HC) derived from corn-distillers is a sustainable, affordable anode candidate for sodium-ion batteries (SIBs), yet its practical deployment has been limited by insufficient reversible capacity. Here we report a temperature-gradient treatment that precisely tailors interlayer spacing, porosity, and graphitization in corn-distillers-derived hard carbon, unlocking exceptional electrochemical performance. The optimized material exhibits an interlayer spacing of 0.378 nm and a dominant pore size of 1.68 nm. It demonstrates outstanding high-rate behavior, achieving 289 and 198 mAh g-1 at 1.0 and 2.0 A g-1, respectively. Additionally, it retains 83% of its capacity after 700 cycles at 2.0 A g-1. Integrating in situ X-ray diffraction with ex situ Raman spectroscopy demonstrates a unique sodium-storage mechanism characterized by both "adsorption–intercalation and pore-filling". This approach helps elucidate the rapid kinetics and long-lasting performance. These results demonstrate that controlled structural tactics of biomass-derived HC can achieve the desired capacity, rate capability, and longevity required for practical SIB anodes—bringing an abundant, waste-derived feedstock dramatically closer to commercialization.
  • 加载中
    1. [1]

      P. Achakulwisut, P. Erickson, C. Guivarch, R. Schaeffer, E. Brutschin, S. Pye, Nat. Commun. 14 (2023) 5425, https://doi.org/10.1038/s41467-023-41105-z.  doi: 10.1038/s41467-023-41105-z

    2. [2]

      T. Liu, Y. Yang, S. Cao, R. Xiang, L. Zhang, J. Yu, Adv. Mater. 35 (2023) 2207752, https://doi.org/10.1002/adma.202207752.  doi: 10.1002/adma.202207752

    3. [3]

      S. Zhang, K. Gu, B. Lu, J. Han, J. Zhou, Acta Phys. Chim. Sin. 40 (2024) 2309028, https://doi.org/10.3866/PKU.WHXB202309028.  doi: 10.3866/PKU.WHXB202309028

    4. [4]

      M. Gutsch, J. Leker, Appl. Energy 353 (2024) 122132, https://doi.org/10.1016/j.apenergy.2023.122132.  doi: 10.1016/j.apenergy.2023.122132

    5. [5]

      M. Olutogun, A. Vanderbruggen, C. Frey, M. Rudolph, D. Bresser, S. Passerini, Carbon Energy 6 (2024) e483, https://doi.org/10.1002/cey2.483.  doi: 10.1002/cey2.483

    6. [6]

      Q. Li, P. Li, Z. Liu, J. Zhang, H. Zhang, W. Yu, X. Hu, Acta Phys. Chim. Sin. 40 (2024) 2311030, https://doi.org/10.3866/PKU.WHXB202311030.  doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Z. Yu, C. Gan, A. S. Mijailovic, A. Stone, R. Hurt, C. L. Pernia, X. Xiao, C. Shi, B. W. Sheldon, Adv. Energy Mater. 15 (2025) 2403179, https://doi.org/10.1002/aenm.202403179.  doi: 10.1002/aenm.202403179

    8. [8]

      Y. Han, X. Wang, W. Yan, A. L. Buzlukov, P. Hu, L. Zhang, J. Yu, T. Liu, ACS Appl. Mater. Interfaces 16 (2024) 35114, https://doi.org/10.1021/acsami.4c05943.  doi: 10.1021/acsami.4c05943

    9. [9]

      Z. Wu, X. Wang, S. Hou, X. Zhang, X. Nie, J. Yu, T. Liu, Chem. Commun. 60 (2024) 10029, https://doi.org/10.1039/D4CC03519D.  doi: 10.1039/D4CC03519D

    10. [10]

      W. Yu, K. Lin, D. T. Boyle, M. T. Tang, Y. Cui, Y. Chen, Z. Yu, R. Xu, Y. Lin, G. Feng, et al., Nat. Chem. 17 (2025) 246, https://doi.org/10.1038/s41557-024-01689-5.  doi: 10.1038/s41557-024-01689-5

    11. [11]

      Q. Xue, S. Li, Y. Zhao, P. Sheng, L. Xu, Z. Li, B. Zhang, H. Li, B. Wang, L. Yang, et al., Acta Phys. Chim. Sin. 40 (2024) 2303041, https://doi.org/10.3866/PKU.WHXB202303041.  doi: 10.3866/PKU.WHXB202303041

    12. [12]

      H. Xiao, H. Zheng, P. Yuan, J. Luo, L. Shen, J. Tan, X. Luo, D. Li, Y. Chen, Rare Met. 43 (2024) 4274, https://doi.org/10.1007/s12598-024-02716-7.  doi: 10.1007/s12598-024-02716-7

    13. [13]

      M. Xu, M. Liu, Z. Yang, C. Wu, J. Qian, Acta Phys Chim Sin 39 (2023) 2210043, https://doi.org/10.3866/pku.whxb202210043.  doi: 10.3866/pku.whxb202210043

    14. [14]

      H. Pei, R. Wang, Y. Li, Y. Xue, Y. Chen, J. Jiang, X. Kong, Q. Zhuang, Z. Ju, J. Colloid Interface Sci. 690 (2025) 137359, https://doi.org/10.1016/j.jcis.2025.137359.  doi: 10.1016/j.jcis.2025.137359

    15. [15]

      C. Chen, Y. Huang, Y. Zhu, Z. Zhang, Z. Guang, Z. Meng, P. Liu, ACS Sustain Chem. Eng. 8 (2020) 1497, https://doi.org/10.1021/acssuschemeng.9b05948.  doi: 10.1021/acssuschemeng.9b05948

    16. [16]

      A. Shivannanaik, B. Rameshkumar, Udayabhanu, P. Kalappa, Crit. Rev. Solid State Mater. Sci. 50 (2025) 296, https://doi.org/10.1080/10408436.2024.2417174.  doi: 10.1080/10408436.2024.2417174

    17. [17]

      Nagmani, A. Kumar, S. Puravankara, Battery Energy 1 (2022) 20220007, https://doi.org/10.1002/bte2.20220007.  doi: 10.1002/bte2.20220007

    18. [18]

      T. Liu, X. Wang, Y. Han, Y. Wu, L. Zhang, J. Yu, Chem. Commun. 59 (2023) 14811, https://doi.org/10.1039/D3CC05218D.  doi: 10.1039/D3CC05218D

    19. [19]

      X. Deng, Z. Chen, Y. Cao, Mater. Today Chem. 9 (2018) 114, https://doi.org/10.1016/j.mtchem.2018.06.002.  doi: 10.1016/j.mtchem.2018.06.002

    20. [20]

      Y. Ma, L. Zhang, Z. Yan, B. Cheng, J. Yu, T. Liu, Adv. Energy Mater. 12 (2022) 2103820, https://doi.org/10.1002/aenm.202103820.  doi: 10.1002/aenm.202103820

    21. [21]

      Z. Zhang, H. -Y. Sun, Y. Chen, Y. Zhao, M. Zhang, C. Li, Y. Sun, Z. -H. Gao, H. Li, Y. Jiang, Rare Met. 42 (2023) 4039, https://doi.org/10.1007/s12598-023-02449-z.  doi: 10.1007/s12598-023-02449-z

    22. [22]

      X. Xu, J. Liu, J. Liu, L. Ouyang, R. Hu, H. Wang, L. Yang, M. Zhu, Adv. Funct. Mater. 28 (2018) 1707573, https://doi.org/10.1002/adfm.201707573.  doi: 10.1002/adfm.201707573

    23. [23]

      X. Hu, X. Liu, K. Chen, G. Wang, H. Wang, J. Mater. Chem. A 7 (2019) 11016, https://doi.org/10.1039/C9TA01999E.  doi: 10.1039/C9TA01999E

    24. [24]

      M. Li, Z. Zhang, X. Ge, Z. Wei, Y. Yao, H. Chen, C. Wang, F. Du, G. Chen, Chem. Eng. J. 331 (2018) 203, https://doi.org/10.1016/j.cej.2017.08.077.  doi: 10.1016/j.cej.2017.08.077

    25. [25]

      Y. Zhang, P. Wang, Y. Yin, N. Liu, N. Song, L. Fan, N. Zhang, K. Sun, Carbon 150 (2019) 378, https://doi.org/10.1016/j.carbon.2019.05.048.  doi: 10.1016/j.carbon.2019.05.048

    26. [26]

      H. Zheng, D. Ma, M. Pei, C. Lin, Y. Liu, S. Deng, R. Qiu, Y. Luo, W. Yan, J. Zhang, Adv. Funct. Mater. 35 (2024) 2411651, https://doi.org/10.1002/adfm.202411651.  doi: 10.1002/adfm.202411651

    27. [27]

      L. Xu, X. Wang, G. Tang, B. Zhu, J. Yu, L. Zhang, T. Liu, Rare Met. 44 (2025) 185, https://doi.org/10.1007/s12598-024-02956-7.  doi: 10.1007/s12598-024-02956-7

    28. [28]

      W. Wang, J. Chen, J. Ouyang, H. Yin, A. Li, L. Chen, J. Huang, Y. Zhu, G. Li, Z. Hou, Rare Met. 43 (2024) 3019, https://doi.org/10.1007/s12598-024-02662-4.  doi: 10.1007/s12598-024-02662-4

    29. [29]

      S. Hou, F. Xie, X. Wang, L. Zhang, X. Nie, J. Yu, T. Liu, J. Colloid Interface Sci. 680 (2025) 334, https://doi.org/10.1016/j.jcis.2024.11.012.  doi: 10.1016/j.jcis.2024.11.012

    30. [30]

      F. Fu, M. Hu, J. Key, P. K. Shen, J. Zhu, Carbon 215 (2023) 118469, https://doi.org/10.1016/j.carbon.2023.118469.  doi: 10.1016/j.carbon.2023.118469

    31. [31]

      C. An, Y. Li, S. Wu, L. Gao, L. Lin, Q. Deng, N. Hu, Rare Met. 42 (2023) 1959, https://doi.org/10.1007/s12598-022-02233-5.  doi: 10.1007/s12598-022-02233-5

    32. [32]

      X. Xiao, J. Li, X. Meng, J. Qiu, Acta Phys. Chim. Sin. 40 (2024) 2307006, https://doi.org/10.3866/PKU.WHXB202307006.  doi: 10.3866/PKU.WHXB202307006

    33. [33]

      D. A. Stevens, J. R. Dahn, J. Electrochem. Soc. 147 (2000) 1271, https://doi.org/10.1149/1.1393348.  doi: 10.1149/1.1393348

    34. [34]

      S. Alvin, H. S. Cahyadi, J. Hwang, W. Chang, S. K. Kwak, J. Kim, Adv. Energy Mater. 10 (2020) 2000283, https://doi.org/10.1002/aenm.202000283.  doi: 10.1002/aenm.202000283

    35. [35]

      Y. Du, Y. Qiu, R. Zhuang, X. Jing, D. Liu, X. Peng, L. Yan, F. Xu, Carbon 221 (2024) 118929, https://doi.org/10.1016/j.carbon.2024.118929.  doi: 10.1016/j.carbon.2024.118929

    36. [36]

      D. Alvira, D. Antorán, J. Manyà, Chem. Eng. J. 447 (2022) 137468, https://doi.org/10.1016/j.cej.2022.137468.  doi: 10.1016/j.cej.2022.137468

    37. [37]

      J. Peng, H. Wang, X. Shi, H. J. Fan, Adv. Mater. 36 (2024) 2410326, https://doi.org/10.1002/adma.202410326.  doi: 10.1002/adma.202410326

    38. [38]

      C. Nita, B. Zhang, J. Dentzer, C. M. Ghimbeu, J. Energy Chem. 58 (2021) 207, https://doi.org/10.1016/j.jechem.2020.08.065.  doi: 10.1016/j.jechem.2020.08.065

    39. [39]

      Y. Wang, Z. Yi, L. Xie, Y. Mao, W. Ji, Z. Liu, X. Wei, F. Su, C. Chen, Adv. Mater. 36 (2024) 2401249, https://doi.org/10.1002/adma.202401249.  doi: 10.1002/adma.202401249

    40. [40]

      S. Pothaya, C. Poochai, N. Tammanoon, Y. Chuminjak, T. Kongthong, T. Lomas, C. Sriprachuabwong, A. Tuantranont, Rare Met. 43 (2024) 124, https://doi.org/10.1007/s12598-023-02414-w.  doi: 10.1007/s12598-023-02414-w

    41. [41]

      L. Zhou, Y. Cui, P. Niu, L. Ge, R. Zheng, S. Liang, W. Xing, Carbon 231 (2025) 119733, https://doi.org/10.1016/j.carbon.2024.119733.  doi: 10.1016/j.carbon.2024.119733

    42. [42]

      Z. Wang, Y. Li, H. Tang, D. Luo, J. Huang, B. Ye, W. Yan, G. Liu, Y. Yang, Ind. Crops Prod. 226 (2025) 120748, https://doi.org/10.1016/j.indcrop.2025.120748.  doi: 10.1016/j.indcrop.2025.120748

    43. [43]

      S. Wang, L. Wang, Z. Sun, S. Wang, C. Shen, Y. Tang, K. Kida, Bioresour. Technol. 337 (2021) 125492, https://doi.org/10.1016/j.biortech.2021.125492.  doi: 10.1016/j.biortech.2021.125492

    44. [44]

      Y. Liu, S. Liu, C. Huang, X. Ge, B. Xi, J. Mao, Resour. Conserv. Recycl. 176 (2022) 105900, https://doi.org/10.1016/j.resconrec.2021.105900.  doi: 10.1016/j.resconrec.2021.105900

    45. [45]

      R. He, Y. Yang, Y. Li, M. Yang, L. Kong, F. Yang, Molecules 28 (2023) 7492, https://doi.org/10.3390/molecules28227492.  doi: 10.3390/molecules28227492

    46. [46]

      Y. Xin, Y. Ge, Z. Li, Q. Zhang, H. Tian, Acta Phys. Chim. Sin. 40 (2024) 2303060, https://doi.org/10.3866/PKU.WHXB202303060.  doi: 10.3866/PKU.WHXB202303060

    47. [47]

      L. Xu, B. Feng, Y. Su, Q. Hu, G. Liu, Y. -J. Bai, S. Chang, X. Wang, D. Rodrigue, J. Hu, et al., Rare Met. 43 (2024) 6362, https://doi.org/10.1007/s12598-024-02763-0.  doi: 10.1007/s12598-024-02763-0

    48. [48]

      J. Meng, J. Li, J. Liu, X. Zhang, G. Jiang, L. Ma, Z. -Y. Hu, S. Xi, Y. Zhao, M. Yan, et al., ACS Cent. Sci. 6 (2020) 1431, https://doi.org/10.1021/acscentsci.0c00458.  doi: 10.1021/acscentsci.0c00458

    49. [49]

      Z. Yang, P. Zhao, X. He, Q. Chen, Y. Zhang, C. Li, W. Chen, Y. Liang, X. Wu, S. Chou, J. Colloid Interface Sci. 695 (2025) 137701, https://doi.org/10.1016/j.jcis.2025.137701.  doi: 10.1016/j.jcis.2025.137701

    50. [50]

      G. Pan, R. Zhao, Z. Huang, C. Cui, F. Wang, Y. Gu, Y. Gao, Z. Sun, T. Zhang, Carbon 224 (2024) 118955, https://doi.org/10.1016/j.carbon.2024.118955.  doi: 10.1016/j.carbon.2024.118955

    51. [51]

      J. Liu, B. Sun, Y. Xu, J. Wang, S. Liang, J. Wang, J. Zhang, Z. Yang, H. Yang, J. Yang, et al., Small 21 (2025) e04810, https://doi.org/10.1002/smll.202504810.  doi: 10.1002/smll.202504810

    52. [52]

      Y. Zhao, J. Zheng, Y. Zhao, K. Zhang, W. Fu, G. Wang, H. Wang, Y. Hao, Z. Lin, X. Cao, et al., J. Colloid Interface Sci. 668 (2024) 202, https://doi.org/10.1016/j.jcis.2024.04.148.  doi: 10.1016/j.jcis.2024.04.148

    53. [53]

      C. Sun, F. Gao, J. Wu, Y. Yang, Q. Sun, Carbon 232 (2025) 119771, https://doi.org/10.1016/j.carbon.2024.119771.  doi: 10.1016/j.carbon.2024.119771

    54. [54]

      L. Yang, M. Hu, H. Zhang, W. Yang, R. Lv, J. Colloid Interface Sci. 566 (2020) 257, https://doi.org/10.1016/j.jcis.2020.01.085.  doi: 10.1016/j.jcis.2020.01.085

    55. [55]

      K. Xiao, P. Wang, J. Bai, Y. Liu, S. Wang, S. Qiu, X. Wang, X. Zhu, B. Zhao, Y. Sun, J. Colloid Interface Sci. 686 (2025) 267, https://doi.org/10.1016/j.jcis.2025.01.220.  doi: 10.1016/j.jcis.2025.01.220

    56. [56]

      Q. He, H. Chen, X. Chen, J. Zheng, L. Que, F. Yu, J. Zhao, Y. Xie, M. Huang, C. Lu, et al., Adv. Funct. Mater. 34 (2024) 2310226, https://doi.org/10.1002/adfm.202310226.  doi: 10.1002/adfm.202310226

    57. [57]

      M. Inaba, H. Yoshida, Z. Ogumi, J. Electrochem. Soc. 143 (1996) 2572, https://doi.org/10.1149/1.1837049.  doi: 10.1149/1.1837049

    58. [58]

      D. Bin, Y. Li, Y. Sun, S. Duan, Y. Lu, J. Ma, A. Cao, Y. Hu, L. Wan, Adv. Energy. Mater. 8 (2018) 1800855, https://doi.org/10.1002/aenm.201800855.  doi: 10.1002/aenm.201800855

    59. [59]

      M. Anji Reddy, M. Helen, A. Groß, M. Fichtner, H. Euchner, ACS Energy Lett. 3 (2018) 2851, https://doi.org/10.1021/acsenergylett.8b01761.  doi: 10.1021/acsenergylett.8b01761

    60. [60]

      Y. Wang, Z. Yi, S. Zhang, Y. Mao, L. Li, H. Liu, Z. Liu, L. Xie, F. Su, Small 21 (2025) e06923, https://doi.org/10.1002/smll.202506923.  doi: 10.1002/smll.202506923

    61. [61]

      W. Weppner, R. A. Huggins, J. Electrochem. Soc. 124 (1977) 1569, https://doi.org/10.1149/1.2133112.  doi: 10.1149/1.2133112

    62. [62]

      Y. Ji, S. Li, T. Yuan, Q. Shi, X. Hu, Q. Shao, W. Feng, Y. Zhao, J. Colloid Interface Sci. 677 (2025) 719, https://doi.org/10.1016/j.jcis.2024.08.051.  doi: 10.1016/j.jcis.2024.08.051

    63. [63]

      C. An, T. Liu, Acta Phys. Chim. Sin. 41 (2025) 100101, https://doi.org/10.1016/j.actphy.2025.100101.  doi: 10.1016/j.actphy.2025.100101

    64. [64]

      Z. Tang, H. Wang, P. Wu, S. Zhou, Y. Huang, R. Zhang, D. Sun, Y. Tang, H. Wang, Angew. Chem. Int. Ed. 61 (2022) e202200475, https://doi.org/10.1002/anie.202200475.  doi: 10.1002/anie.202200475

    65. [65]

      M. Gabrijelčič, B. Tratnik, G. Kapun, E. Tchernychova, N. Zabukovec Logar, A. Krajnc, R. Dominko, A. Vizintin, J. Mater. Chem. A 13 (2025) 1042, https://doi.org/10.1039/D4TA07135B.  doi: 10.1039/D4TA07135B

    66. [66]

      W. Yu, Z. Yu, Y. Cui, Z. Bao, ACS Energy Lett. 7 (2022) 3270, https://doi.org/10.1021/acsenergylett.2c01587.  doi: 10.1021/acsenergylett.2c01587

  • 加载中
    1. [1]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    6. [6]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    7. [7]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    8. [8]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    9. [9]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    12. [12]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    15. [15]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    16. [16]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    17. [17]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    18. [18]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    19. [19]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    20. [20]

      Xiwen Xing Muyi Guo Zhuoran Hu Shunchun Yao Yao Sun . Context-Driven Teaching with Cue-Guided Reasoning: Taking X-Ray Teaching Practice as an Example. University Chemistry, 2025, 40(7): 141-147. doi: 10.12461/PKU.DXHX202409097

Metrics
  • PDF Downloads(0)
  • Abstract views(212)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return