Citation: Yan Long,  Wenbo Zhao,  Qing Cao,  Xiangyu Li,  Fukui Li,  Yanwei Hu,  Shiyu Song,  Kaikai Liu. Phosphorescent carbon nanodot inks for scalable and high-resolution invisible printing[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100198. doi: 10.1016/j.actphy.2025.100198 shu

Phosphorescent carbon nanodot inks for scalable and high-resolution invisible printing

  • Corresponding author: Wenbo Zhao,  Shiyu Song,  Kaikai Liu, 
  • Received Date: 3 August 2025
    Revised Date: 24 September 2025
    Accepted Date: 28 September 2025

  • Phosphorescent inks based on carbon nanodots (CNDs) offer an environmentally friendly and low-cost alternative for persistent visibility and time-delayed information retrieval. However, current matrix-dependent phosphorescent CNDs suffer from poor processability and limited substrate compatibility, hindering their application in scalable, high-resolution invisible printing. Here, we report water-soluble phosphorescent CND inks that enable high-resolution, environmentally stable, and invisible printing. The triplet excitons in CNDs are stabilized by spatial confinement during printing, resulting in bright and long-lived phosphorescence. The phosphorescent CND inks enable invisible yet high-fidelity printing of complex textual patterns with micrometer resolution (2480 × 3508 dpi, ~100 μm feature size), supporting font sizes down to 5 pt and line widths as thin as 0.05 pt across five types of paper substrates. The printed patterns exhibit over 98.7% accuracy across approximately 8.7 million pixels, demonstrating excellent fidelity. Based on these excellent invisible printing properties, a 200-page wordless book using phosphorescent CND inks was demonstrated. This work presents a scalable, low-cost, and high-resolution platform for phosphorescent ink printing, marking a significant advance in invisible printing technology.
  • 加载中
    1. [1]

      L.E. MacKenzie, R. Pal, Nat. Rev. Chem. 5(2021) 109, https://doi.org/10.1038/s41570-020-00235-4.

    2. [2]

      J.J. Wang, C. Chen, W.G. Chen, J.S. Yao, J.N. Yang, K.H. Wang, Y.C. Yin, M.M. Yao, L.Z. Feng, C. Ma, et al., J. Am. Chem. Soc. 142(1) (2020) 3686, https://doi.org/10.1021/jacs.9b12908.

    3. [3]

      R. Khalilzadeh, M. Babazadeh-Mamaqani, M. Mohammadi-Jorjafki, H. Roghani-Mamaqani, R. Hoogenboom, Prog. Mater. Sci. 153(2025) 101487, https://doi.org/10.1016/j.pmatsci.2025.101487.

    4. [4]

      L. Ding, X.D. Wang, J. Am. Chem. Soc. 142(31) (2020) 13558, https://doi.org/10.1021/jacs.0c05506.

    5. [5]

      H. Alidaei-Sharif, M. Babazadeh-Mamaqani, H. Roghani-Mamaqani, M. Salami Kalajahi, Eur. Polym. J. 197(2023) 112339, https://doi.org/10.1016/j.eurpolymj.2023.112339.

    6. [6]

      Q. Mei, Z. Zhang, Angew. Chem. Int. Ed. 51(23) (2012) 5602, https://doi.org/10.1002/anie.201201389.

    7. [7]

      J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan, H. Zeng, Adv. Mater. 30(30) (2018) 1800764, https://doi.org/10.1002/adma.201800764.

    8. [8]

      S. Ronneberger, J. Zhang, Y. Liu, F.F. Loeffler, Adv. Funct. Mater. 33(17) (2023) 2210116, https://doi.org/10.1002/adfm.202210116.

    9. [9]

      H. Peng, G. Xie, Y. Cao, L. Zhang, X. Yan, X. Zhang, S. Miao, Y. Tao, H. Li, C. Zheng, et al., Sci. Adv. 8(15) (2022) eabk2925, https://doi.org/10.1126/sciadv.abk2925.

    10. [10]

      L. Shi, L. Ding, Y. Zhang, S. Lu, Nano Today 55(2024) 102200, https://doi.org/10.1016/j.nantod.2024.102200.

    11. [11]

      X. Wang, H. Qi, Y. Shao, M. Zhao, H. Chen, Y. Chen, Y. Ying, Y. Wang, Adv. Sci. 11(25) (2024) 2400207, https://doi.org/10.1002/advs.202400207.

    12. [12]

      G. Tongyu, Z. Yongxi, Q. Zhao, W. Chenger, D. Mobin, Z. Xia, C. Xiaoxia, L. Yuanhong, L. Ronghui, J. Alloys Compd. 1037(2025) 182399, https://doi.org/10.1016/j.jallcom.2025.182399.

    13. [13]

      T. Shen, H. Zheng, R. Liao, B. Li, J. Wu, Z. Jiang, X. Meng, C. Cao, Nano Res. 18(5) (2025) 94907380, https://doi.org/10.26599/NR.2025.94907380.

    14. [14]

      L. Ethordevic, F. Arcudi, M. Cacioppo, M. Prato, Nat. Nanotechnol. 17(2022) 112, https://doi.org/10.1038/s41565-021-01051-7.

    15. [15]

      P. Miao, K. Han, Y. Tang, B. Wang, T. Lin, W. Cheng, Nanoscale 7(5) (2015) 1586, https://doi.org/10.1039/C4NR05712K.

    16. [16]

      S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, Angew. Chem. Int. Ed. 51(49) (2012) 12215, https://doi.org/10.1002/anie.201206791.

    17. [17]

      J. Li, X. Zhao, X. Gong, Small 20(31) (2024) 2400107, https://doi.org/10.1002/smll.202400107.

    18. [18]

      P. Dhumal, S. Chakraborty, B. Ibrahim, M. Kaur, E. Valsami-Jones, J. Cleaner Prod. 480(2024) 144115, https://doi.org/10.1016/j.jclepro.2024.144115.

    19. [19]

      R. Li, F. Liang, X. Hu, H. Bian, C. Deng, F. Seidi, B. Zhang, H. Xiao, Y. Liu, Carbohydr. Polym. 298(2022) 120073, https://doi.org/10.1016/j.carbpol.2022.120073.

    20. [20]

      W.T. Huang, Y. Meesala, H.P. Hsueh, M. H. Fang, Z. Bao, J.W. Chiou, R.S. Liu, Chem. Eng. J. 430(2022) 132789, https://doi.org/10.1016/j.cej.2021.132789.

    21. [21]

      J.M. Kim, K. Cheong, J. Jiang, S.O. Jeon, W.P. Hong, J.Y. Lee, Trends Chem. 5(4) (2023) 267, https://doi.org/10.1016/j.trechm.2023.01.004.

    22. [22]

      P. Li, J. Zeng, B. Wang, Z. Cheng, J. Xu, W. Gao, K. Chen, Carbohydr. Polym. 247(2020) 116721, https://doi.org/10.1016/j.carbpol.2020.116721.

    23. [23]

      J. Du, L. Sheng, Y. Xu, Q. Chen, C. Gu, M. Li, S.X.A. Zhang, Adv. Mater. 33(20) (2021) 2008055, https://doi.org/10.1002/adma.202008055.

    24. [24]

      D. Wang, Z. Wang, Q. Zhan, Y. Pu, J.X. Wang, N.R. Foster, L. Dai, Engineering 3(3) (2017) 402, https://doi.org/10.1016/J.ENG.2017.03.014.

    25. [25]

      S. Zhang, C. Shen, J. Li, J. Liao, P. Miao, X. Zhao, X. Gong, Chem. Sci. 16(2025) 14098, https://doi.org/10.1039/D5SC02963E.

    26. [26]

      S.Y. Song, K.K. Liu, Q. Cao, X. Mao, W.B. Zhao, Y. Wang, Y.C. Liang, J.H. Zang, Q. Lou, L. Dong, et al., Light: Sci. Appl. 11(2022) 146, https://doi.org/10.1038/s41377-022-00837-1.

    27. [27]

      X. He, W. Huang, Y. Zheng, X. Xu, H. Wei, P. Liang, X. Yang, C. Hu, X. Zhang, B. Lei, et al., Angew. Chem. Int. Ed. 64(16) (2025) e202423388, https://doi.org/10.1002/anie.202423388.

    28. [28]

      S.Y. Song, K.K. Liu, X. Mao, Q. Cao, N. Li, W.B. Zhao, Y. Wang, Y.C. Liang, J.H. Zang, X. Li, et al., Adv. Mater. 35(21) (2023) 2212286, https://doi.org/10.1002/adma.202212286.

    29. [29]

      J. Li, H. Zhou, S. Jin, B. Xu, Q. Teng, C. Li, J. Li, Q. Li, Z. Gao, C. Zhu, et al., Adv. Mater. 36(24) (2024) 2401493, https://doi.org/10.1002/adma.202401493.

    30. [30]

      D. Chen, X. Guo, X. Sun, X. Feng, K. Chen, J. Zhang, Z. Zhu, X. Zhang, X. Liu, M. Liu, et al., Exploration 4(6) (2024) 20230166, https://doi.org/10.1002/EXP.20230166.

    31. [31]

      Y.C. Liang, S.F. Zhang, Q. Cao, L.Y. Jiang, Y.F. Jiao, Y. Wang, H.L. Zhang, H.Y. Wang, C.X. Shan, L.M. Kuang, et al., Nano Lett. 25(21) (2025) 8713, https://doi.org/10.1021/acs.nanolett.5c01655.

    32. [32]

      W. Zhao, Z. He, B.Z. Tang, Nat. Rev. Mater. 5(2020) 869, https://doi.org/10.1038/s41578-020-0223-z.

    33. [33]

      M. Yu, P. Li, J. Li, X. Chen, Z. Hu, Y. Wang, J. Zeng, F. Han, X. Gong, B. Li, et al., Adv. Healthcare Mater. 14(2) (2024) 2403201, https://doi.org/10.1002/adhm.202403201.

    34. [34]

      X. Chen, J. Li, W. Zou, X. Gong, Small 20(50) (2024) 2404407, https://doi.org/10.1002/smll.202404407.

    35. [35]

      K. Wang, L. Qu, C. Yang, Small 19(31) (2023) 2206429, https://doi.org/10.1002/smll.202206429.

    36. [36]

      Q. Cao, K.K. Liu, Y.C. Liang, S.Y. Song, Y. Deng, X. Mao, W.B. Zhao, Q. Lou, C.X. Shan, Nano Lett. 22(10) (2022) 4097, https://doi.org/10.1021/acs.nanolett.2c00788.

    37. [37]

      Q. Lou, N. Chen, J. Zhu, K. Liu, C. Li, Y. Zhu, W. Xu, X. Chen, Z. Song, C. Liang, et al., Adv. Mater. 35(20) (2023) 2211858, https://doi.org/10.1002/adma.202211858.

    38. [38]

      Y.C. Liang, H.C. Shao, K.K. Liu, Q. Cao, L.Y. Jiang, C.X. Shan, L.M. Kuang, H. Jing, Small 20(36) (2024) 2312218, https://doi.org/10.1002/smll.202312218.

    39. [39]

      F. Liu, Z. Li, Y. Li, Y. Feng, W. Feng, Carbon 181(2021) 9, https://doi.org/10.1016/j.carbon.2021.05.023.

  • 加载中
    1. [1]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    2. [2]

      Changjie Yin Boyu Wang Dantong Qiao Huimin Li . Polymer Comprehensive Experimental Design: Preparation and Properties of Repeatable Processing Styrene Butadiene Rubber Materials under the “Dual Carbon” Strategy. University Chemistry, 2025, 40(11): 221-232. doi: 10.12461/PKU.DXHX202412046

    3. [3]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    4. [4]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    5. [5]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    6. [6]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    9. [9]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    10. [10]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    11. [11]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    12. [12]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    13. [13]

      Xinyi Fan Wancai Shi Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060

    14. [14]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    15. [15]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    16. [16]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    17. [17]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    18. [18]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    19. [19]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    20. [20]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

Metrics
  • PDF Downloads(0)
  • Abstract views(43)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return