Citation:
Yan Long, Wenbo Zhao, Qing Cao, Xiangyu Li, Fukui Li, Yanwei Hu, Shiyu Song, Kaikai Liu. Phosphorescent carbon nanodot inks for scalable and high-resolution invisible printing[J]. Acta Physico-Chimica Sinica,
;2026, 42(3): 100198.
doi:
10.1016/j.actphy.2025.100198
-
Phosphorescent inks based on carbon nanodots (CNDs) offer an environmentally friendly and low-cost alternative for persistent visibility and time-delayed information retrieval. However, current matrix-dependent phosphorescent CNDs suffer from poor processability and limited substrate compatibility, hindering their application in scalable, high-resolution invisible printing. Here, we report water-soluble phosphorescent CND inks that enable high-resolution, environmentally stable, and invisible printing. The triplet excitons in CNDs are stabilized by spatial confinement during printing, resulting in bright and long-lived phosphorescence. The phosphorescent CND inks enable invisible yet high-fidelity printing of complex textual patterns with micrometer resolution (2480 × 3508 dpi, ~100 μm feature size), supporting font sizes down to 5 pt and line widths as thin as 0.05 pt across five types of paper substrates. The printed patterns exhibit over 98.7% accuracy across approximately 8.7 million pixels, demonstrating excellent fidelity. Based on these excellent invisible printing properties, a 200-page wordless book using phosphorescent CND inks was demonstrated. This work presents a scalable, low-cost, and high-resolution platform for phosphorescent ink printing, marking a significant advance in invisible printing technology.
-
-
-
[1]
L.E. MacKenzie, R. Pal, Nat. Rev. Chem. 5(2021) 109, https://doi.org/10.1038/s41570-020-00235-4.
-
[2]
J.J. Wang, C. Chen, W.G. Chen, J.S. Yao, J.N. Yang, K.H. Wang, Y.C. Yin, M.M. Yao, L.Z. Feng, C. Ma, et al., J. Am. Chem. Soc. 142(1) (2020) 3686, https://doi.org/10.1021/jacs.9b12908.
-
[3]
R. Khalilzadeh, M. Babazadeh-Mamaqani, M. Mohammadi-Jorjafki, H. Roghani-Mamaqani, R. Hoogenboom, Prog. Mater. Sci. 153(2025) 101487, https://doi.org/10.1016/j.pmatsci.2025.101487.
-
[4]
L. Ding, X.D. Wang, J. Am. Chem. Soc. 142(31) (2020) 13558, https://doi.org/10.1021/jacs.0c05506.
-
[5]
H. Alidaei-Sharif, M. Babazadeh-Mamaqani, H. Roghani-Mamaqani, M. Salami Kalajahi, Eur. Polym. J. 197(2023) 112339, https://doi.org/10.1016/j.eurpolymj.2023.112339.
-
[6]
Q. Mei, Z. Zhang, Angew. Chem. Int. Ed. 51(23) (2012) 5602, https://doi.org/10.1002/anie.201201389.
-
[7]
J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan, H. Zeng, Adv. Mater. 30(30) (2018) 1800764, https://doi.org/10.1002/adma.201800764.
-
[8]
S. Ronneberger, J. Zhang, Y. Liu, F.F. Loeffler, Adv. Funct. Mater. 33(17) (2023) 2210116, https://doi.org/10.1002/adfm.202210116.
-
[9]
H. Peng, G. Xie, Y. Cao, L. Zhang, X. Yan, X. Zhang, S. Miao, Y. Tao, H. Li, C. Zheng, et al., Sci. Adv. 8(15) (2022) eabk2925, https://doi.org/10.1126/sciadv.abk2925.
-
[10]
L. Shi, L. Ding, Y. Zhang, S. Lu, Nano Today 55(2024) 102200, https://doi.org/10.1016/j.nantod.2024.102200.
-
[11]
X. Wang, H. Qi, Y. Shao, M. Zhao, H. Chen, Y. Chen, Y. Ying, Y. Wang, Adv. Sci. 11(25) (2024) 2400207, https://doi.org/10.1002/advs.202400207.
-
[12]
G. Tongyu, Z. Yongxi, Q. Zhao, W. Chenger, D. Mobin, Z. Xia, C. Xiaoxia, L. Yuanhong, L. Ronghui, J. Alloys Compd. 1037(2025) 182399, https://doi.org/10.1016/j.jallcom.2025.182399.
-
[13]
T. Shen, H. Zheng, R. Liao, B. Li, J. Wu, Z. Jiang, X. Meng, C. Cao, Nano Res. 18(5) (2025) 94907380, https://doi.org/10.26599/NR.2025.94907380.
-
[14]
L. Ethordevic, F. Arcudi, M. Cacioppo, M. Prato, Nat. Nanotechnol. 17(2022) 112, https://doi.org/10.1038/s41565-021-01051-7.
-
[15]
P. Miao, K. Han, Y. Tang, B. Wang, T. Lin, W. Cheng, Nanoscale 7(5) (2015) 1586, https://doi.org/10.1039/C4NR05712K.
-
[16]
S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, Angew. Chem. Int. Ed. 51(49) (2012) 12215, https://doi.org/10.1002/anie.201206791.
-
[17]
J. Li, X. Zhao, X. Gong, Small 20(31) (2024) 2400107, https://doi.org/10.1002/smll.202400107.
-
[18]
P. Dhumal, S. Chakraborty, B. Ibrahim, M. Kaur, E. Valsami-Jones, J. Cleaner Prod. 480(2024) 144115, https://doi.org/10.1016/j.jclepro.2024.144115.
-
[19]
R. Li, F. Liang, X. Hu, H. Bian, C. Deng, F. Seidi, B. Zhang, H. Xiao, Y. Liu, Carbohydr. Polym. 298(2022) 120073, https://doi.org/10.1016/j.carbpol.2022.120073.
-
[20]
W.T. Huang, Y. Meesala, H.P. Hsueh, M. H. Fang, Z. Bao, J.W. Chiou, R.S. Liu, Chem. Eng. J. 430(2022) 132789, https://doi.org/10.1016/j.cej.2021.132789.
-
[21]
J.M. Kim, K. Cheong, J. Jiang, S.O. Jeon, W.P. Hong, J.Y. Lee, Trends Chem. 5(4) (2023) 267, https://doi.org/10.1016/j.trechm.2023.01.004.
-
[22]
P. Li, J. Zeng, B. Wang, Z. Cheng, J. Xu, W. Gao, K. Chen, Carbohydr. Polym. 247(2020) 116721, https://doi.org/10.1016/j.carbpol.2020.116721.
-
[23]
J. Du, L. Sheng, Y. Xu, Q. Chen, C. Gu, M. Li, S.X.A. Zhang, Adv. Mater. 33(20) (2021) 2008055, https://doi.org/10.1002/adma.202008055.
-
[24]
D. Wang, Z. Wang, Q. Zhan, Y. Pu, J.X. Wang, N.R. Foster, L. Dai, Engineering 3(3) (2017) 402, https://doi.org/10.1016/J.ENG.2017.03.014.
-
[25]
S. Zhang, C. Shen, J. Li, J. Liao, P. Miao, X. Zhao, X. Gong, Chem. Sci. 16(2025) 14098, https://doi.org/10.1039/D5SC02963E.
-
[26]
S.Y. Song, K.K. Liu, Q. Cao, X. Mao, W.B. Zhao, Y. Wang, Y.C. Liang, J.H. Zang, Q. Lou, L. Dong, et al., Light: Sci. Appl. 11(2022) 146, https://doi.org/10.1038/s41377-022-00837-1.
-
[27]
X. He, W. Huang, Y. Zheng, X. Xu, H. Wei, P. Liang, X. Yang, C. Hu, X. Zhang, B. Lei, et al., Angew. Chem. Int. Ed. 64(16) (2025) e202423388, https://doi.org/10.1002/anie.202423388.
-
[28]
S.Y. Song, K.K. Liu, X. Mao, Q. Cao, N. Li, W.B. Zhao, Y. Wang, Y.C. Liang, J.H. Zang, X. Li, et al., Adv. Mater. 35(21) (2023) 2212286, https://doi.org/10.1002/adma.202212286.
-
[29]
J. Li, H. Zhou, S. Jin, B. Xu, Q. Teng, C. Li, J. Li, Q. Li, Z. Gao, C. Zhu, et al., Adv. Mater. 36(24) (2024) 2401493, https://doi.org/10.1002/adma.202401493.
-
[30]
D. Chen, X. Guo, X. Sun, X. Feng, K. Chen, J. Zhang, Z. Zhu, X. Zhang, X. Liu, M. Liu, et al., Exploration 4(6) (2024) 20230166, https://doi.org/10.1002/EXP.20230166.
-
[31]
Y.C. Liang, S.F. Zhang, Q. Cao, L.Y. Jiang, Y.F. Jiao, Y. Wang, H.L. Zhang, H.Y. Wang, C.X. Shan, L.M. Kuang, et al., Nano Lett. 25(21) (2025) 8713, https://doi.org/10.1021/acs.nanolett.5c01655.
-
[32]
W. Zhao, Z. He, B.Z. Tang, Nat. Rev. Mater. 5(2020) 869, https://doi.org/10.1038/s41578-020-0223-z.
-
[33]
M. Yu, P. Li, J. Li, X. Chen, Z. Hu, Y. Wang, J. Zeng, F. Han, X. Gong, B. Li, et al., Adv. Healthcare Mater. 14(2) (2024) 2403201, https://doi.org/10.1002/adhm.202403201.
-
[34]
X. Chen, J. Li, W. Zou, X. Gong, Small 20(50) (2024) 2404407, https://doi.org/10.1002/smll.202404407.
-
[35]
K. Wang, L. Qu, C. Yang, Small 19(31) (2023) 2206429, https://doi.org/10.1002/smll.202206429.
-
[36]
Q. Cao, K.K. Liu, Y.C. Liang, S.Y. Song, Y. Deng, X. Mao, W.B. Zhao, Q. Lou, C.X. Shan, Nano Lett. 22(10) (2022) 4097, https://doi.org/10.1021/acs.nanolett.2c00788.
-
[37]
Q. Lou, N. Chen, J. Zhu, K. Liu, C. Li, Y. Zhu, W. Xu, X. Chen, Z. Song, C. Liang, et al., Adv. Mater. 35(20) (2023) 2211858, https://doi.org/10.1002/adma.202211858.
-
[38]
Y.C. Liang, H.C. Shao, K.K. Liu, Q. Cao, L.Y. Jiang, C.X. Shan, L.M. Kuang, H. Jing, Small 20(36) (2024) 2312218, https://doi.org/10.1002/smll.202312218.
-
[39]
F. Liu, Z. Li, Y. Li, Y. Feng, W. Feng, Carbon 181(2021) 9, https://doi.org/10.1016/j.carbon.2021.05.023.
-
[1]
-
-
-
[1]
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
-
[2]
Changjie Yin , Boyu Wang , Dantong Qiao , Huimin Li . Polymer Comprehensive Experimental Design: Preparation and Properties of Repeatable Processing Styrene Butadiene Rubber Materials under the “Dual Carbon” Strategy. University Chemistry, 2025, 40(11): 221-232. doi: 10.12461/PKU.DXHX202412046
-
[3]
Chunyang Bao , Ruoxuan Miao , Yuhan Ding , Qingfu Ban , Yusheng Qin , Jie Liu , Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087
-
[4]
Chunyuan Kang , Xiaoyu Li , Fan Yang , Bai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156
-
[5]
Yuecheng ZHANG , Fan YANG , Shiyu ZHANG , Chengjun MA , Rui TIAN , Xuehua SUN , Haoyu LI , Lingbo SUN , Hongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415
-
[6]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046
-
[7]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[8]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[9]
Lingqi Zhang , Hairong Huang , Jialin Li , Li Ji , Yufan Pan , Meiling Ye , Cuixue Chen , Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138
-
[10]
Yu Liu , Pengfei Li , Yize Liu , Zaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167
-
[11]
Renyi Shao , Khurram Abbas , Vladimir Yu. Osipov , Haimei Zhu , Yuan Li , Usama , Hong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134
-
[12]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[13]
Xinyi Fan , Wancai Shi , Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060
-
[14]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[15]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[16]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[17]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[18]
Shuting Zhuang , Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010
-
[19]
Zihan Cheng , Kai Jiang , Jun Jiang , Henggang Wang , Hengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169
-
[20]
Xue Xiao , Jiachun Li , Xiangtong Meng , Jieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(43)
- HTML views(6)
Login In
DownLoad: