Citation: Shantao Zhang,  TianAo Hou,  Yandong Wang,  Zhimin Fang,  Yu Wu,  Haolin Wang,  Tao Chen,  Shuang Chen,  Wenhua Zhang,  Shengzhong (Frank) Liu,  Shangfeng Yang. π-Conjugation-extended dinaphthocarbazole phosphonic acid as a hole-selective layer for inverted perovskite solar cells[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100194. doi: 10.1016/j.actphy.2025.100194 shu

π-Conjugation-extended dinaphthocarbazole phosphonic acid as a hole-selective layer for inverted perovskite solar cells

  • Corresponding author: Zhimin Fang,  Shengzhong (Frank) Liu,  Shangfeng Yang, 
  • Received Date: 17 July 2025
    Revised Date: 13 September 2025
    Accepted Date: 23 September 2025

  • In the rapidly evolving field of photovoltaic technology, self-assembled monolayers (SAMs) have become essential hole-selective layers (HSLs) for inverted perovskite solar cells (PSCs). SAMs not only determine interfacial hole extraction but also significantly influence the film quality of the atop perovskite layers, consequently affecting the efficiency and stability of perovskite solar cells. Among various SAMs, carbazole-based SAMs, exemplified by 4PACZ, have emerged as prominent due to their electron-rich characteristics, making them some of the most prevalent HSLs in modern inverted PSCs. Nevertheless, 4PACZ exhibits significant limitations: one major issue is its limited molecular dipole, which leads to insufficient energy level alignment between the treated substrate and the perovskite, causing substantial interfacial energy loss. Another critical challenge is the flat structure of the carbazole unit, which often promotes molecular stacking, resulting in incomplete substrate coverage and non-uniform film formation, thereby compromising both device performance and stability. In this study, we designed a novel SAM based on a polycyclic aromatic hydrocarbon derivative, (4-(8H-dinaphtho[2,3-c:2',3'-g]carbazol-8-yl)butyl)phosphonic acid (4PADNC), with the aim of optimizing hole transport in inverted PSCs. This SAM incorporates the structurally extended dinaphtho[2,3-c:2',3'-g]carbazole (DNC) as the functional terminal group, replacing the single carbazole unit in the traditional material 4PACZ. The key structural difference is that the DNC group provides a significantly expanded π-conjugated skeleton and enhanced electron-rich characteristics. These features not only greatly enhance hole extraction and transport at the interface but also induce a significant increase in the molecular dipole moment, which is crucial for effectively adjusting the work function of ITO, ensuring proper alignment with the perovskite layer. Additionally, there is an intramolecular dihedral angle of approximately 34.62° in the DNC unit at the core of 4PADNC. This non-planar configuration contrasts sharply with the planar carbazole structure. The larger dihedral angle effectively suppresses excessive π-π stacking between molecules, which not only aids in forming a denser and more ordered molecular layer on the ITO surface but also provides a more favorable and defect-free substrate for the growth of the upper perovskite. With these upgrades, the inverted PSCs based on 4PADNC achieved a PCE as high as 24.32%, compared to 22.89% for the control devices based on 4PACZ. Furthermore, the 4PADNC-based devices also exhibited superior thermal stability and operational stability.
  • 加载中
    1. [1]

      Y. Liang, Y. Deng, S. Yu, J. Cheng, J. Song, J. Yao, Y. Yang, W. Zhang, W. Zhou, X. Zhang, et al., Acta Phys. Chim. Sin. 41(2025) 100098, https://doi.org/10.1016/j.actphy.2025.100098.

    2. [2]

      M. Qi, L. Jin, H. Yao, Z. Xu, T. Cheng, Q. Chen, C. Zhu, Y. Bai, Acta Phys. Chim. Sin. 41(2025) 100088, https://doi.org/10.1016/j.actphy.2025.100088.

    3. [3]

      S. Hu, J. A. Smith, H. J. Snaith, A. Wakamiya, Precis. Chem. 1(2023) 69, https://doi.org/10.1021/prechem.3c00018.

    4. [4]

      Z. Fang, T. Nie, N. Yan, J. Zhang, X. Ren, X. Guo, Y. Duan, J. Feng, S. F. Liu, Sci. China Mater. 66(2023) 2107, https://doi.org/10.1007/s40843-022-2437-9

    5. [5]

      X. Li, Y. Shang, X. Wang, Z. Fang, T. Hou, D. Li, S. Gao, T. Chen, X. Pan, Z. Xiao, S. Yang, Nano Research Energy 4(2025) e9120166, https://doi.org/10.26599/NRE.2025.9120166.

    6. [6]

      Z. Li, B. Li, X. Wu, S. A. Sheppard, S. Zhang, D. Gao, N. J. Long, Z. Zhu, Science 376(2022) 416, https://doi.org/10.1126/science.abm8566.

    7. [7]

      Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu, J. Zhang, H. Zhang, Z. Wang, D.-H. Kang, J. Zeng, et al., Nature 624(2023) 557, https://doi.org/10.1038/s41586-023-06784-0.

    8. [8]

      P. Chen, Y. Xiao, S. Li, X. Jia, D. Luo, W. Zhang, H. J. Snaith, Q. Gong, R. Zhu, Chem. Rev. 124(2024) 10623, https://doi.org/10.1021/acs.chemrev.4c00073.

    9. [9]

      F. H. Isikgor, S. T. Zhumagali, L. V. Merino, M. D. Bastiani, I. McCulloch, S. D. Wolf, Nat. Rev. Mater. 8(2022) 89, https://doi.org/10.1038/s41578-022-00503-3.

    10. [10]

      X. Wei, Y. Sun, Y. Zhang, B. Yu, H. Yu, Nano Energy, 133(2025) 110513, https://doi.org/10.1016/j.nanoen.2024.110513

    11. [11]

      S. G. Kim, K. Zhu, Adv. Energy Mater. 13(2023) 2300603, https://doi.org/10.1002/aenm.202300603.

    12. [12]

      P. Dong, Y. Jiang, Z. Yang, L. Liu, G. Li, X. Wen, Z. Wang, X. Shi, G. Zhou, J. -M. Liu, J. Gao, Acta Phys. Chim. Sin. 41(2025) 100029, https://doi.org/10.3866/PKU.WHXB202407025.

    13. [13]

      S. Y. Kim, S. J. Cho, S. E. Byeon, X. He, H. J. Yoon, Adv. Energy Mater. 10(2020) 2002606, https://doi.org/10.1002/aenm.202002606.

    14. [14]

      M. Li, M. Liu, F. Qi, F. R. Lin, A. K. Y. Jen, Chem. Rev. 124(2024) 2138, https://doi.org/10.1021/acs.chemrev.3c00396.

    15. [15]

      Q. Chen, C. Wang, Y. Li, L. Chen, J. Am. Chem. Soc. 142(2020) 18281, https://doi.org/10.1021/jacs.0c07439.

    16. [16]

      A. Asyuda, M. Gärtner, X. Wan, I. Burkhart, T. Saßmannshausen, A. Terfort, M. Zharnikov, J. Phys. Chem. C 124(2020) 8775, https://doi.org/10.1021/acs.jpcc.0c00482.

    17. [17]

      B. Yu, K. Wang, Y. Sun, H. Yu, Adv. Mater. 37(2025) 2500708, https://doi.org/10.1002/adma.202500708

    18. [18]

      H. Zhou, W. Wang, Y. Duan, R. Sun, Y. Li, Z. Xie, D. Xu, M. Wu, Y. Wang, H. Li, et al., Angew. Chem. Int. Ed. 63(2024) e202403068, https://doi.org/10.1002/anie.202403068.

    19. [19]

      S. Zhang, X. Wang, Y. Wu, X. Li, T. Hou, D. Li, W. Chen, J. Li, R. Lv, Y. Zhang, et al., Angew. Chem. Int. Ed. 64(2025) e202508782, https://doi.org/10.1002/anie.202508782.

    20. [20]

      G. Qu, S. Cai, Y. Qiao, D. Wang, S. Gong, D. Khan, Y. Wang, K. Jiang, Q. Chen, L. Zhang, et al., Joule 8(2024) 2123, https://doi.org/10.1016/j.joule.2024.05.005.

    21. [21]

      P. Han, Y. Zhang, Adv. Mater. 36(2024) 2405630, https://doi.org/10.1002/adma.202405630.

    22. [22]

      S. Ameen, D. Lee, A. B. Faheem, J. G. Son, Y. Lee, H. Yoo, S. Park, Y. S. Shin, J. Lee, J. Seo, et al., Angew. Chem. Int. Ed. 64(2025) e202423206, https://doi.org/10.1002/anie.202423206.

    23. [23]

      R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, et al., Nature 618(2023) 80, https://doi.org/10.1038/s41586-023-05992-y.

    24. [24]

      J. Du, J. Chen, B. Ouyang, A. Sun, C. Tian, R. Zhuang, C. Chen, S. Liu, Q. Chen, Z. Li, et al., Energy Environ. Sci. 18(2025) 3196-3210, https://doi.org/10.1039/d4ee05849f.

    25. [25]

      W. Jiang, D. Wang, W. Shang, Y. Li, J. Zeng, P. Zhu, B. Zhang, L. Mei, X.-K. Chen, Z.-X. Xu, et al., Angew. Chem. Int. Ed. 63(2024) e202411730, https://doi.org/10.1002/anie.202411730.

    26. [26]

      S. Zhang, X. Jiang, X. Wang, Y. Gao, T. Hou, X. Teng, H. Wang, W. Chen, S. Gao, X. Li, et al., J. Energy Chem. 104(2025) 136, https://doi.org/10.1016/j.jechem.2024.12.040.

    27. [27]

      Z. Yi, W. Wang, R. He, J. Zhu, W. Jiao, Y. Luo, Y. Xu, Y. Wang, Z. Zeng, K. Wei, et al., Energy Environ. Sci. 17(2024) 202, https://doi.org/10.1039/D3EE02839A.

    28. [28]

      A. Sun, C. Tian, R. Zhuang, C. Chen, Y. Zheng, X. Wu, C. Tang, Y. Liu, Z. Li, B. Ouyang, et al., Adv. Energy Mater. 14(2024) 2303941, https://doi.org/10.1002/aenm.202303941.

    29. [29]

      W. Jiang, F. Li, M. Li, F. Qi, F. R. Lin, A. K.-Y. Jen, Angew. Chem. Int. Ed. 61(2022) e202213560. https://doi.org/10.1002/anie.202213560.

    30. [30]

      W. Peng, Y. Zhang, X. Zhou, J. Wu, D. Wang, G. Qu, J. Zeng, Y. Xu, B. Jiang, P. Zhu, et al., Energy Environ. Sci. 18(2025) 874, https://doi.org/10.1039/d4ee03208j.

    31. [31]

      X. Yu, X. Sun, Z. Zhu, Z.'a. Li, Angew. Chem. Int. Ed. 64(2025) e202419608, https://doi.org/10.1002/anie.202419608.

    32. [32]

      K. Matsumoto, K. Dougomori, S. Tachikawa, T. Ishii, M. Shindo, Org. Lett. 16(2014) 4754, https://doi.org/10.1021/ol502197p.

    33. [33]

      Q. Tan, H. Wang, S. Tang, Q. Cai, G. Ma, L. Li, J. Guo, G. Xing, C. Chen, M. Cheng, Z. He, Adv. Funct. Mater. (2025) 2501147, https://doi.org/10.1002/adfm.202501147.

    34. [34]

      X. Tong, L. Xie, J. Li, Z. Pu, S. Du, M. Yang, Y. Gao, M. He, S. Wu, Y. Mai, Z. Ge, Adv. Mater. 36(2024) 2407032, https://doi.org/10.1002/adma.202407032.

    35. [35]

      W. Wang, Z. Lin, S. Gao, W. Zhu, X. Song, W. Tang, Adv. Funct. Mater. 33(2023) 2303653, https://doi.org/10.1002/adfm.202303653.

    36. [36]

      S. Qu, F. Yang, H. Huang, Y. Li, C. Sun, Q. Zhang, S. Du, L. Yan, Z. Lan, Z. Wang, T. Jiang, P. Cui, X. Ai, M. Li, Energy Environ. Sci. 18(2025) 3186, https://doi.org/10.1039/d4ee05319b.

    37. [37]

      A. R. Pininti, A. S. Subbiah, C. Deger, I. Yavuz, A. Prasetio, P. Dally, V. Hnapovskyi, A. A. Said, L. V. Torres Merino, S. Mannar, et al., Adv. Energy Mater. 15(2024) 2403530, https://doi.org/10.1002/aenm.202403530.

    38. [38]

      M. G. Helander, Z. B. Wang, J. Qiu, Z. H. Lu, Appl. Phys. Lett. 93(2008) 193310, https://doi.org/10.1063/1.3030979.

    39. [39]

      J. Wu, P. Yan, D. Yang, H. Guan, S. Yang, X. Cao, X. Liao, P. Ding, H. Sun, Z. Ge, Adv. Mater. 36(2024) 2401537, https://doi.org/10.1002/adma.202401537.

    40. [40]

      L. V. Torres Merino, C. E. Petoukhoff, O. Matiash, A. S. Subbiah, C. V. Franco, P. Dally, B. Vishal, S. Kosar, D. Rosas Villalva, V. Hnapovskyi, et al., Joule 8(2024) 2585, https://doi.org/10.1016/j.joule.2024.06.017.

    41. [41]

      W. Chen, Y. C. Zhou, L. J. Wang, Y. H. Wu, B. Tu, B. B. Yu, F. Z. Liu, H.-W. Tam, G. Wang, A. B. Djurišić, L. Huang, Z. B. He, Adv. Mater. 30(2018) 1800515, https://doi.org/10.1002/adma.201800515.

    42. [42]

      M. Stolterfoht, P. Caprioglio, C. M. Wolff, J. A. Márquez, J. Nordmann, S. Zhang, D. Rothhardt, U. Hörmann, Y. Amir, A. Redinger, et al., Energy Environ. Sci. 12(2019) 2778, https://doi.org/10.1039/c9ee02020a.

    43. [43]

      J. Zhou, Y. Luo, R. Li, L. Tian, K. Zhao, J. Shen, D. Jin, Z. Peng, L. Yao, L. Zhang, et al., Nat. Chem. 17(2025) 564, https://doi.org/10.1038/s41557-025-01732-z.

    44. [44]

      C. Li, Z. Zhang, H. Zhang, W. Yan, Y. Li, L. Liang, W. Yu, X. Yu, Y. Wang, Y. Yang, M. K. Nazeeruddin, P. Gao, Angew. Chem. Int. Ed. 63(2024) e202315281, https://doi.org/10.1002/anie.202315281.

    45. [45]

      S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, et al., Science 380(2023) 404, https://doi.org/10.1126/science.adg3755.

    46. [46]

      Z. Li, Q. Tan, G. Chen, H. Gao, J. Wang, X. Zhang, J. Xiu, W. Chen, Z. He, Nanoscale 15(2023) 1676, https://doi.org/10.1039/d2nr05677a.

    47. [47]

      X. Jiang, B. Liu, X. Wu, S. Zhang, D. Zhang, X. Wang, S. Gao, Z. Huang, H. Wang, B. Li, Z. Xiao, T. Chen, A. K.-Y. Jen, S. Xiao, S. Yang, Z. Zhu, Adv. Mater. 36(2024) 2313524, https://doi.org/10.1002/adma.202313524.

    48. [48]

      F. Zhang, Y. Mei, Y. Jiang, S. Zheng, K. Zheng, Y. Zhou, Acta Phys. Chim. Sin. 41(2025) 100118, https://doi.org/10.1016/j.actphy.2025.100118.

    49. [49]

      J. Liu, C. Ai, C. Hu, B. Cheng, J. Zhang, Acta Phys. Chim. Sin. 40(2024) 2402006, https://doi.org/10.3866/PKU.WHXB202402006.

    50. [50]

      C. Shen, Y. Wu, H. Zhang, E. Li, W. Zhang, X. Xu, W. Wu, H. Tian, W.-H. Zhu, Angew. Chem. Int. Ed. 58(2019) 3784, https://doi.org/10.1002/anie.201811593.

    51. [51]

      H. Guo, H. Zhang, C. Shen, D. Zhang, S. Liu, Y. Wu, W.-H. Zhu, Angew. Chem. Int. Ed. 60(2021) 2674, https://doi.org/10.1002/anie.202013128.

    52. [52]

      H. Bi, Y. Fujiwara, G. Kapil, D. Tavgeniene, Z. Zhang, L. Wang, C. Ding, S. R. Sahamir, A. K. Baranwal, Y. Sanehira, et al., Adv. Funct. Mater. 33(2023) 2300089, https://doi.org/10.1002/adfm.202300089.

    53. [53]

      G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, S. I. Seok, Science 370(2020) 108, https://doi.org/10.1126/science.abc4417.

    54. [54]

      I. L. Braly, H. W. Hillhouse, J. Phys. Chem. C 120(2016) 893, https://doi.org/10.1021/acs.jpcc.5b10728.

    55. [55]

      P. Caprioglio, M. Stolterfoht, C. M. Wolff, T. Unold, B. Rech, S. Albrecht, D. Neher, Adv. Energy Mater. 9(2019) 1901631, https://doi.org/10.1002/aenm.201901631.

    56. [56]

      X. Li, S. Gao, X. Wu, Q. Liu, L. Zhu, C. Wang, Y. Wang, Z. Liu, W. Chen, X. Li, et al., Joule 8(2024) 3169, https://doi.org/10.1016/j.joule.2024.07.009.

    57. [57]

      W. Zhou, L. Jia, M. Chen, X. Li, Z. Su, Y. Shang, X. Jiang, X. Gao, T. Chen, M. Wang, et al., Adv. Funct. Mater. 32(2022) 2201374, https://doi.org/10.1002/adfm.202201374.

    58. [58]

      X. He, Q. Wang, S. Zhang, Y. Li, X. Weng, I. Ismail, C.-Q. Ma, S. Yang, Y. Cui, J. Energy Chem. 109(2025) 177, https://doi.org/10.1016/j.jechem.2025.05.025.

    59. [59]

      G. Wang, J. Zheng, W. Duan, J. Yang, M. A. Mahmud, Q. Lian, S. Tang, C. Liao, J. Bing, J. Yi, et al., Joule 7(2023) 2583, https://doi.org/10.1016/j.joule.2023.09.007.

    60. [60]

      Y. Shang, X. Li, W. Lian, X. Jiang, X. Wang, T. Chen, Z. Xiao, M. Wang, Y. Lu, S. Yang, Chem. Eng. J. 457(2023) 141246, https://doi.org/10.1016/j.cej.2022.141246.

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025

    3. [3]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    4. [4]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    7. [7]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    8. [8]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    9. [9]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    12. [12]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    13. [13]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    14. [14]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

Metrics
  • PDF Downloads(0)
  • Abstract views(49)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return