Citation:
Shantao Zhang, TianAo Hou, Yandong Wang, Zhimin Fang, Yu Wu, Haolin Wang, Tao Chen, Shuang Chen, Wenhua Zhang, Shengzhong (Frank) Liu, Shangfeng Yang. π-Conjugation-extended dinaphthocarbazole phosphonic acid as a hole-selective layer for inverted perovskite solar cells[J]. Acta Physico-Chimica Sinica,
;2026, 42(3): 100194.
doi:
10.1016/j.actphy.2025.100194
-
In the rapidly evolving field of photovoltaic technology, self-assembled monolayers (SAMs) have become essential hole-selective layers (HSLs) for inverted perovskite solar cells (PSCs). SAMs not only determine interfacial hole extraction but also significantly influence the film quality of the atop perovskite layers, consequently affecting the efficiency and stability of perovskite solar cells. Among various SAMs, carbazole-based SAMs, exemplified by 4PACZ, have emerged as prominent due to their electron-rich characteristics, making them some of the most prevalent HSLs in modern inverted PSCs. Nevertheless, 4PACZ exhibits significant limitations: one major issue is its limited molecular dipole, which leads to insufficient energy level alignment between the treated substrate and the perovskite, causing substantial interfacial energy loss. Another critical challenge is the flat structure of the carbazole unit, which often promotes molecular stacking, resulting in incomplete substrate coverage and non-uniform film formation, thereby compromising both device performance and stability. In this study, we designed a novel SAM based on a polycyclic aromatic hydrocarbon derivative, (4-(8H-dinaphtho[2,3-c:2',3'-g]carbazol-8-yl)butyl)phosphonic acid (4PADNC), with the aim of optimizing hole transport in inverted PSCs. This SAM incorporates the structurally extended dinaphtho[2,3-c:2',3'-g]carbazole (DNC) as the functional terminal group, replacing the single carbazole unit in the traditional material 4PACZ. The key structural difference is that the DNC group provides a significantly expanded π-conjugated skeleton and enhanced electron-rich characteristics. These features not only greatly enhance hole extraction and transport at the interface but also induce a significant increase in the molecular dipole moment, which is crucial for effectively adjusting the work function of ITO, ensuring proper alignment with the perovskite layer. Additionally, there is an intramolecular dihedral angle of approximately 34.62° in the DNC unit at the core of 4PADNC. This non-planar configuration contrasts sharply with the planar carbazole structure. The larger dihedral angle effectively suppresses excessive π-π stacking between molecules, which not only aids in forming a denser and more ordered molecular layer on the ITO surface but also provides a more favorable and defect-free substrate for the growth of the upper perovskite. With these upgrades, the inverted PSCs based on 4PADNC achieved a PCE as high as 24.32%, compared to 22.89% for the control devices based on 4PACZ. Furthermore, the 4PADNC-based devices also exhibited superior thermal stability and operational stability.
-
-
-
[1]
Y. Liang, Y. Deng, S. Yu, J. Cheng, J. Song, J. Yao, Y. Yang, W. Zhang, W. Zhou, X. Zhang, et al., Acta Phys. Chim. Sin. 41(2025) 100098, https://doi.org/10.1016/j.actphy.2025.100098.
-
[2]
M. Qi, L. Jin, H. Yao, Z. Xu, T. Cheng, Q. Chen, C. Zhu, Y. Bai, Acta Phys. Chim. Sin. 41(2025) 100088, https://doi.org/10.1016/j.actphy.2025.100088.
-
[3]
S. Hu, J. A. Smith, H. J. Snaith, A. Wakamiya, Precis. Chem. 1(2023) 69, https://doi.org/10.1021/prechem.3c00018.
-
[4]
Z. Fang, T. Nie, N. Yan, J. Zhang, X. Ren, X. Guo, Y. Duan, J. Feng, S. F. Liu, Sci. China Mater. 66(2023) 2107, https://doi.org/10.1007/s40843-022-2437-9
-
[5]
X. Li, Y. Shang, X. Wang, Z. Fang, T. Hou, D. Li, S. Gao, T. Chen, X. Pan, Z. Xiao, S. Yang, Nano Research Energy 4(2025) e9120166, https://doi.org/10.26599/NRE.2025.9120166.
-
[6]
Z. Li, B. Li, X. Wu, S. A. Sheppard, S. Zhang, D. Gao, N. J. Long, Z. Zhu, Science 376(2022) 416, https://doi.org/10.1126/science.abm8566.
-
[7]
Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu, J. Zhang, H. Zhang, Z. Wang, D.-H. Kang, J. Zeng, et al., Nature 624(2023) 557, https://doi.org/10.1038/s41586-023-06784-0.
-
[8]
P. Chen, Y. Xiao, S. Li, X. Jia, D. Luo, W. Zhang, H. J. Snaith, Q. Gong, R. Zhu, Chem. Rev. 124(2024) 10623, https://doi.org/10.1021/acs.chemrev.4c00073.
-
[9]
F. H. Isikgor, S. T. Zhumagali, L. V. Merino, M. D. Bastiani, I. McCulloch, S. D. Wolf, Nat. Rev. Mater. 8(2022) 89, https://doi.org/10.1038/s41578-022-00503-3.
-
[10]
X. Wei, Y. Sun, Y. Zhang, B. Yu, H. Yu, Nano Energy, 133(2025) 110513, https://doi.org/10.1016/j.nanoen.2024.110513
-
[11]
S. G. Kim, K. Zhu, Adv. Energy Mater. 13(2023) 2300603, https://doi.org/10.1002/aenm.202300603.
-
[12]
P. Dong, Y. Jiang, Z. Yang, L. Liu, G. Li, X. Wen, Z. Wang, X. Shi, G. Zhou, J. -M. Liu, J. Gao, Acta Phys. Chim. Sin. 41(2025) 100029, https://doi.org/10.3866/PKU.WHXB202407025.
-
[13]
S. Y. Kim, S. J. Cho, S. E. Byeon, X. He, H. J. Yoon, Adv. Energy Mater. 10(2020) 2002606, https://doi.org/10.1002/aenm.202002606.
-
[14]
M. Li, M. Liu, F. Qi, F. R. Lin, A. K. Y. Jen, Chem. Rev. 124(2024) 2138, https://doi.org/10.1021/acs.chemrev.3c00396.
-
[15]
Q. Chen, C. Wang, Y. Li, L. Chen, J. Am. Chem. Soc. 142(2020) 18281, https://doi.org/10.1021/jacs.0c07439.
-
[16]
A. Asyuda, M. Gärtner, X. Wan, I. Burkhart, T. Saßmannshausen, A. Terfort, M. Zharnikov, J. Phys. Chem. C 124(2020) 8775, https://doi.org/10.1021/acs.jpcc.0c00482.
-
[17]
B. Yu, K. Wang, Y. Sun, H. Yu, Adv. Mater. 37(2025) 2500708, https://doi.org/10.1002/adma.202500708
-
[18]
H. Zhou, W. Wang, Y. Duan, R. Sun, Y. Li, Z. Xie, D. Xu, M. Wu, Y. Wang, H. Li, et al., Angew. Chem. Int. Ed. 63(2024) e202403068, https://doi.org/10.1002/anie.202403068.
-
[19]
S. Zhang, X. Wang, Y. Wu, X. Li, T. Hou, D. Li, W. Chen, J. Li, R. Lv, Y. Zhang, et al., Angew. Chem. Int. Ed. 64(2025) e202508782, https://doi.org/10.1002/anie.202508782.
-
[20]
G. Qu, S. Cai, Y. Qiao, D. Wang, S. Gong, D. Khan, Y. Wang, K. Jiang, Q. Chen, L. Zhang, et al., Joule 8(2024) 2123, https://doi.org/10.1016/j.joule.2024.05.005.
-
[21]
P. Han, Y. Zhang, Adv. Mater. 36(2024) 2405630, https://doi.org/10.1002/adma.202405630.
-
[22]
S. Ameen, D. Lee, A. B. Faheem, J. G. Son, Y. Lee, H. Yoo, S. Park, Y. S. Shin, J. Lee, J. Seo, et al., Angew. Chem. Int. Ed. 64(2025) e202423206, https://doi.org/10.1002/anie.202423206.
-
[23]
R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, et al., Nature 618(2023) 80, https://doi.org/10.1038/s41586-023-05992-y.
-
[24]
J. Du, J. Chen, B. Ouyang, A. Sun, C. Tian, R. Zhuang, C. Chen, S. Liu, Q. Chen, Z. Li, et al., Energy Environ. Sci. 18(2025) 3196-3210, https://doi.org/10.1039/d4ee05849f.
-
[25]
W. Jiang, D. Wang, W. Shang, Y. Li, J. Zeng, P. Zhu, B. Zhang, L. Mei, X.-K. Chen, Z.-X. Xu, et al., Angew. Chem. Int. Ed. 63(2024) e202411730, https://doi.org/10.1002/anie.202411730.
-
[26]
S. Zhang, X. Jiang, X. Wang, Y. Gao, T. Hou, X. Teng, H. Wang, W. Chen, S. Gao, X. Li, et al., J. Energy Chem. 104(2025) 136, https://doi.org/10.1016/j.jechem.2024.12.040.
-
[27]
Z. Yi, W. Wang, R. He, J. Zhu, W. Jiao, Y. Luo, Y. Xu, Y. Wang, Z. Zeng, K. Wei, et al., Energy Environ. Sci. 17(2024) 202, https://doi.org/10.1039/D3EE02839A.
-
[28]
A. Sun, C. Tian, R. Zhuang, C. Chen, Y. Zheng, X. Wu, C. Tang, Y. Liu, Z. Li, B. Ouyang, et al., Adv. Energy Mater. 14(2024) 2303941, https://doi.org/10.1002/aenm.202303941.
-
[29]
W. Jiang, F. Li, M. Li, F. Qi, F. R. Lin, A. K.-Y. Jen, Angew. Chem. Int. Ed. 61(2022) e202213560. https://doi.org/10.1002/anie.202213560.
-
[30]
W. Peng, Y. Zhang, X. Zhou, J. Wu, D. Wang, G. Qu, J. Zeng, Y. Xu, B. Jiang, P. Zhu, et al., Energy Environ. Sci. 18(2025) 874, https://doi.org/10.1039/d4ee03208j.
-
[31]
X. Yu, X. Sun, Z. Zhu, Z.'a. Li, Angew. Chem. Int. Ed. 64(2025) e202419608, https://doi.org/10.1002/anie.202419608.
-
[32]
K. Matsumoto, K. Dougomori, S. Tachikawa, T. Ishii, M. Shindo, Org. Lett. 16(2014) 4754, https://doi.org/10.1021/ol502197p.
-
[33]
Q. Tan, H. Wang, S. Tang, Q. Cai, G. Ma, L. Li, J. Guo, G. Xing, C. Chen, M. Cheng, Z. He, Adv. Funct. Mater. (2025) 2501147, https://doi.org/10.1002/adfm.202501147.
-
[34]
X. Tong, L. Xie, J. Li, Z. Pu, S. Du, M. Yang, Y. Gao, M. He, S. Wu, Y. Mai, Z. Ge, Adv. Mater. 36(2024) 2407032, https://doi.org/10.1002/adma.202407032.
-
[35]
W. Wang, Z. Lin, S. Gao, W. Zhu, X. Song, W. Tang, Adv. Funct. Mater. 33(2023) 2303653, https://doi.org/10.1002/adfm.202303653.
-
[36]
S. Qu, F. Yang, H. Huang, Y. Li, C. Sun, Q. Zhang, S. Du, L. Yan, Z. Lan, Z. Wang, T. Jiang, P. Cui, X. Ai, M. Li, Energy Environ. Sci. 18(2025) 3186, https://doi.org/10.1039/d4ee05319b.
-
[37]
A. R. Pininti, A. S. Subbiah, C. Deger, I. Yavuz, A. Prasetio, P. Dally, V. Hnapovskyi, A. A. Said, L. V. Torres Merino, S. Mannar, et al., Adv. Energy Mater. 15(2024) 2403530, https://doi.org/10.1002/aenm.202403530.
-
[38]
M. G. Helander, Z. B. Wang, J. Qiu, Z. H. Lu, Appl. Phys. Lett. 93(2008) 193310, https://doi.org/10.1063/1.3030979.
-
[39]
J. Wu, P. Yan, D. Yang, H. Guan, S. Yang, X. Cao, X. Liao, P. Ding, H. Sun, Z. Ge, Adv. Mater. 36(2024) 2401537, https://doi.org/10.1002/adma.202401537.
-
[40]
L. V. Torres Merino, C. E. Petoukhoff, O. Matiash, A. S. Subbiah, C. V. Franco, P. Dally, B. Vishal, S. Kosar, D. Rosas Villalva, V. Hnapovskyi, et al., Joule 8(2024) 2585, https://doi.org/10.1016/j.joule.2024.06.017.
-
[41]
W. Chen, Y. C. Zhou, L. J. Wang, Y. H. Wu, B. Tu, B. B. Yu, F. Z. Liu, H.-W. Tam, G. Wang, A. B. Djurišić, L. Huang, Z. B. He, Adv. Mater. 30(2018) 1800515, https://doi.org/10.1002/adma.201800515.
-
[42]
M. Stolterfoht, P. Caprioglio, C. M. Wolff, J. A. Márquez, J. Nordmann, S. Zhang, D. Rothhardt, U. Hörmann, Y. Amir, A. Redinger, et al., Energy Environ. Sci. 12(2019) 2778, https://doi.org/10.1039/c9ee02020a.
-
[43]
J. Zhou, Y. Luo, R. Li, L. Tian, K. Zhao, J. Shen, D. Jin, Z. Peng, L. Yao, L. Zhang, et al., Nat. Chem. 17(2025) 564, https://doi.org/10.1038/s41557-025-01732-z.
-
[44]
C. Li, Z. Zhang, H. Zhang, W. Yan, Y. Li, L. Liang, W. Yu, X. Yu, Y. Wang, Y. Yang, M. K. Nazeeruddin, P. Gao, Angew. Chem. Int. Ed. 63(2024) e202315281, https://doi.org/10.1002/anie.202315281.
-
[45]
S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, et al., Science 380(2023) 404, https://doi.org/10.1126/science.adg3755.
-
[46]
Z. Li, Q. Tan, G. Chen, H. Gao, J. Wang, X. Zhang, J. Xiu, W. Chen, Z. He, Nanoscale 15(2023) 1676, https://doi.org/10.1039/d2nr05677a.
-
[47]
X. Jiang, B. Liu, X. Wu, S. Zhang, D. Zhang, X. Wang, S. Gao, Z. Huang, H. Wang, B. Li, Z. Xiao, T. Chen, A. K.-Y. Jen, S. Xiao, S. Yang, Z. Zhu, Adv. Mater. 36(2024) 2313524, https://doi.org/10.1002/adma.202313524.
-
[48]
F. Zhang, Y. Mei, Y. Jiang, S. Zheng, K. Zheng, Y. Zhou, Acta Phys. Chim. Sin. 41(2025) 100118, https://doi.org/10.1016/j.actphy.2025.100118.
-
[49]
J. Liu, C. Ai, C. Hu, B. Cheng, J. Zhang, Acta Phys. Chim. Sin. 40(2024) 2402006, https://doi.org/10.3866/PKU.WHXB202402006.
-
[50]
C. Shen, Y. Wu, H. Zhang, E. Li, W. Zhang, X. Xu, W. Wu, H. Tian, W.-H. Zhu, Angew. Chem. Int. Ed. 58(2019) 3784, https://doi.org/10.1002/anie.201811593.
-
[51]
H. Guo, H. Zhang, C. Shen, D. Zhang, S. Liu, Y. Wu, W.-H. Zhu, Angew. Chem. Int. Ed. 60(2021) 2674, https://doi.org/10.1002/anie.202013128.
-
[52]
H. Bi, Y. Fujiwara, G. Kapil, D. Tavgeniene, Z. Zhang, L. Wang, C. Ding, S. R. Sahamir, A. K. Baranwal, Y. Sanehira, et al., Adv. Funct. Mater. 33(2023) 2300089, https://doi.org/10.1002/adfm.202300089.
-
[53]
G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, S. I. Seok, Science 370(2020) 108, https://doi.org/10.1126/science.abc4417.
-
[54]
I. L. Braly, H. W. Hillhouse, J. Phys. Chem. C 120(2016) 893, https://doi.org/10.1021/acs.jpcc.5b10728.
-
[55]
P. Caprioglio, M. Stolterfoht, C. M. Wolff, T. Unold, B. Rech, S. Albrecht, D. Neher, Adv. Energy Mater. 9(2019) 1901631, https://doi.org/10.1002/aenm.201901631.
-
[56]
X. Li, S. Gao, X. Wu, Q. Liu, L. Zhu, C. Wang, Y. Wang, Z. Liu, W. Chen, X. Li, et al., Joule 8(2024) 3169, https://doi.org/10.1016/j.joule.2024.07.009.
-
[57]
W. Zhou, L. Jia, M. Chen, X. Li, Z. Su, Y. Shang, X. Jiang, X. Gao, T. Chen, M. Wang, et al., Adv. Funct. Mater. 32(2022) 2201374, https://doi.org/10.1002/adfm.202201374.
-
[58]
X. He, Q. Wang, S. Zhang, Y. Li, X. Weng, I. Ismail, C.-Q. Ma, S. Yang, Y. Cui, J. Energy Chem. 109(2025) 177, https://doi.org/10.1016/j.jechem.2025.05.025.
-
[59]
G. Wang, J. Zheng, W. Duan, J. Yang, M. A. Mahmud, Q. Lian, S. Tang, C. Liao, J. Bing, J. Yi, et al., Joule 7(2023) 2583, https://doi.org/10.1016/j.joule.2023.09.007.
-
[60]
Y. Shang, X. Li, W. Lian, X. Jiang, X. Wang, T. Chen, Z. Xiao, M. Wang, Y. Lu, S. Yang, Chem. Eng. J. 457(2023) 141246, https://doi.org/10.1016/j.cej.2022.141246.
-
[1]
-
-
-
[1]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[2]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025
-
[3]
Binbin Liu , Yang Chen , Tianci Jia , Chen Chen , Zhanghao Wu , Yuhui Liu , Yuhang Zhai , Tianshu Ma , Changlei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128
-
[4]
Zhen FAN , Jiayan WANG , Wenhao ZHU , Xiuchun ZHANG , Yang WANG , Hao LI , Zeyuan WANG , Songzhi ZHENG , Weihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191
-
[5]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[6]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[7]
Zongsheng LI , Yichao WANG , Yujie WANG , Wenhao ZHU , Xiaoyao YIN , Wudan YANG , Songzhi ZHENG , Weihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066
-
[8]
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
-
[9]
Zhenhuan Wang , Weifei Wei , Ruijie Ma , Dou Luo , Zhanxiang Chen , Jun Zhang , Liyang Yu , Gang Li , Zhenghui Luo . 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182
-
[10]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[11]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[12]
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
-
[13]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[14]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
-
[15]
Renjie Xue , Chao Ma , Jing He , Xuechao Li , Yanning Tang , Lifeng Chi , Haiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011
-
[16]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[17]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007
-
[18]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[19]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[20]
Chuan′an DING , Weibo YAN , Shaoying WANG , Hao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(50)
- HTML views(5)
Login In
DownLoad: