Citation: Shuai Bi,  Xixi Wang,  Wei Zhai,  Zhenyu Shi,  Zijian Li,  Li Zhai,  An Zhang,  Yuhui Tian,  Ting Cheng,  Yao Yao,  Zhiying Wu,  Jiawei Liu,  Hua Zhang. Phase engineering of nanomaterials: from fundamentals to application frontiers[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100188. doi: 10.1016/j.actphy.2025.100188 shu

Phase engineering of nanomaterials: from fundamentals to application frontiers

  • Corresponding author: Hua Zhang, hua.zhang@cityu.edu.hk
  • Received Date: 23 March 2025
    Revised Date: 15 September 2025
    Accepted Date: 16 September 2025

  • Phase, which refers to the long-range ordered atomic arrangement, is one of the key parameters to determine the physicochemical properties and functions of nanomaterials. Recently, phase engineering of nanomaterials (PEN) has emerged as a promising research direction in materials science, since precise control over atomic arrangements enables the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable counterparts, resulting in unique physicochemical properties. Therefore, PEN provides a new strategy for developing novel functional nanomaterials to enhance their performance in various applications. This review focuses on PEN strategies for preparing novel noble metals and transition metal dichalcogenides (TMDs) with unconventional phases. It provides a comprehensive summary of crucial synthetic methods, such as direct synthesis and phase transformation, demonstrates their phase-dependent properties and catalytic performance, and highlights the significant impact of phase on the functions and applications of nanomaterials. Finally, we discuss the challenges and future directions for PEN, including in-depth studies on synthetic mechanisms, effective strategies to improve the stability of unconventional-phase nanomaterials, and innovative AI-aided structural design. These efforts aim to provide theoretical and technical guidance on both fundamental research and practical applications in the field of PEN.
  • 加载中
    1. [1]

      D. Gentili, M. Gazzano, M. Melucci, D. Jones, M. Cavallini, Chem. Soc. Rev. 48(2019) 2502, https://doi.org/10.1039/C8CS00283E.

    2. [2]

      V. Georgakilas, J. A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115(2015) 4744, https://doi.org/10.1021/cr500304f.

    3. [3]

      Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He, C. Tan, H. Zhang, Nat. Rev. Chem. 4(2020) 243, https://doi.org/10.1038/s41570-020-0173-4.

    4. [4]

      Q. Yun, Y. Ge, Z. Shi, J. Liu, X. Wang, A. Zhang, B. Huang, Y. Yao, Q. Luo, L. Zhai, et al., Chem. Rev. 123(2023) 13489, https://doi.org/10.1021/acs.chemrev.3c00459.

    5. [5]

      W. Zhai, Z. Li, Y. Wang, L. Zhai, Y. Yao, S. Li, L. Wang, H. Yang, B. Chi, J. Liang, et al., Chem. Rev. 124(2024) 4479, https://doi.org/10.1021/acs.chemrev.3c00931.

    6. [6]

      B. Chen, Q. Yun, Y. Ge, L. Li, H. Zhang, Acc. Mater. Res. 4(2023) 359, https://doi.org/10.1021/accountsmr.2c00238.

    7. [7]

      Y. Ge, B. Huang, L. Li, Q. Yun, Z. Shi, B. Chen, H. Zhang, ACS Nano 17(2023) 12935, https://doi.org/10.1021/acsnano.3c01922.

    8. [8]

      Y. Ge, Z. Shi, C. Tan, Y. Chen, H. Cheng, Q. He, H. Zhang, Chem 6(2020) 1237, https://doi.org/10.1016/j.chempr.2020.04.004.

    9. [9]

      C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen, F. Ding, C. Fan, H. J. Fan, Z. Fan, C. Gong, et al., Acta Phys. -Chim. Sin. 37(2021) 2108017, https://doi.org/10.3866/PKU.WHXB202108017.

    10. [10]

      Y. Wang, W. Zhai, Y. Ren, Q. Zhang, Y. Yao, S. Li, Q. Yang, X. Zhou, Z. Li, B. Chi, et al., Adv. Mater. 36(2024) 2307269, https://doi.org/10.1002/adma.202307269.

    11. [11]

      Y. Chen, J. Liu, Q. Yun, H. Cheng, X. Cui, Z. Fan, L. Fu, C. Gao, J. Ge, Y. Ge, et al. Chem. Res. Chin. Univ. 41(2025) 370, https://doi.org/10.1007/s40242-025-5055-3.

    12. [12]

      X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Nat. Commun. 4(2013) 1444, https://doi.org/10.1038/ncomms2472.

    13. [13]

      X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, H. Zhang, Nat. Commun. 2(2011) 292, https://doi.org/10.1038/ncomms1291.

    14. [14]

      X. Huang, S. Li, S. Wu, Y. Huang, F. Boey, C. L. Gan, H. Zhang, Adv. Mater. 24(2012) 979, https://doi.org/10.1002/adma.201104153.

    15. [15]

      C. Tan, H. Zhang, Nat. Commun. 6(2015) 7873, https://doi.org/10.1038/ncomms8873.

    16. [16]

      Z. Li, L. Zhai, Y. Ge, Z. Huang, Z. Shi, J. Liu, W. Zhai, J. Liang, H. Zhang, Natl. Sci. Rev. 9(2022) nwab142, https://doi.org/10.1093/nsr/nwab142.

    17. [17]

      Q. Yun, Y. Ge, B. Huang, Q. Wa, H. Zhang, Acc. Chem. Res. 56(2023) 1780, https://doi.org/10.1021/acs.accounts.3c00121.

    18. [18]

      A. Janssen, Q. N. Nguyen,Y. Xia, Angew. Chem. Int. Ed. 60(2021) 12192, https://doi.org/10.1002/anie.202017076.

    19. [19]

      G. Wang, C. Ma, L. Zheng,Y. Chen, J. Mater. Chem. A 9(2021) 19534, https://doi.org/10.1039/D1TA03666A.

    20. [20]

      Z. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu, K. Ong, Y. Akimov, L. Wu, B. Li, J. Wu, et al., Nat. Commun. 6(2015) 7684, https://doi.org/10.1038/ncomms8684.

    21. [21]

      Y. Chen, Z. Fan, Z. Luo, X. Liu, Z. Lai, B. Li, Y. Zong, L. Gu, H. Zhang, Adv. Mater. 29(2017) 1701331, https://doi.org/10.1002/adma.201701331.

    22. [22]

      J. Liu, W. Niu, G. Liu, B. Chen, J. Huang, H. Cheng, D. Hu, J. Wang, Q. Liu, J. Ge, et al., J. Am. Chem. Soc. 143(2021) 4387, https://doi.org/10.1021/jacs.1c00612.

    23. [23]

      Z. Fan, M. Bosman, Z. Huang, Y. Chen, C. Ling, L. Wu, Y. A. Akimov, R. Laskowski, B. Chen, P. Ercius, et al., Nat. Commun. 11(2020) 3293, https://doi.org/10.1038/s41467-020-17068-w.

    24. [24]

      Z. Zhang, G. Liu, X. Cui, Y. Gong, D. Yi, Q. Zhang, C. Zhu, F. Saleem, B. Chen, Z. Lai, et al. Sci. Adv. 7(2021) eabd6647, https://doi.org/10.1126/sciadv.abd6647.

    25. [25]

      C. -H. Lu, F. -C. Chang, ACS Catal. 1(2011) 481, https://doi.org/10.1021/cs200106s.

    26. [26]

      Y. Ge, Z. Huang, C. Ling, B. Chen, G. Liu, M. Zhou, J. Liu, X. Zhang, H. Cheng, G. Liu, et al., J. Am. Chem. Soc. 142(2020) 18971, https://doi.org/10.1021/jacs.0c09461.

    27. [27]

      Y. Ge, J. Ge, B. Huang, X. Wang, G. Liu, X.-H. Shan, L. Ma, B. Chen, G. Liu, S. Du, et al., Nano Res. 16(2023) 4650, https://doi.org/10.1007/s12274-022-5101-0.

    28. [28]

      N. Yang, H. Cheng, X. Liu, Q. Yun, Y. Chen, B. Li, B. Chen, Z. Zhang, X. Chen, Q. Lu, et al., Adv. Mater. 30(2018) 1803234, https://doi.org/10.1002/adma.201803234.

    29. [29]

      H. Cheng, N. Yang, X. Liu, Q. Yun, M. Goh, B. Chen, X. Qi, Q. Lu, X. Chen, W. Liu, et al., Natl. Sci. Rev. 6(2019) 955, https://doi.org/10.1093/nsr/nwz078.

    30. [30]

      J. Ge, P. Yin, Y. Chen, H. Cheng, J. Liu, B. Chen, C. Tan, P. F. Yin, H. X. Zheng, Q. Q. Li, et al., Adv. Mater. 33(2021) 2006711, https://doi.org/10.1002/adma.202006711.

    31. [31]

      Q. Yun, Q. Lu, C. Li, B. Chen, Q. Zhang, Q. He, Z. Hu, Z. Zhang, Y. Ge, N. Yang, et al., ACS Nano 13(2019) 14329, https://doi.org/10.1021/acsnano.9b07775.

    32. [32]

      C. Tan, J. Chen, X. J. Wu, H. Zhang, Nat. Rev. Mater. 3(2018) 17089, https://doi.org/10.1038/natrevmats.2017.89.

    33. [33]

      Y. Xia, K. D. Gilroy, H. C. Peng, X. Xia, Angew. Chem. Int. Ed. 56(2017) 60, https://doi.org/10.1002/anie.201604731.

    34. [34]

      Z. Fan, X. Huang, Y. Han, M. Bosman, Q. Wang, Y. Zhu, Q. Liu, B. Li, Z. Zeng, J. Wu, et al., Nat. Commun. 6(2015) 6571, https://doi.org/10.1038/ncomms7571.

    35. [35]

      Z. Fan, Z. Luo, X. Huang, B. Li, Y. Chen, J. Wang, Y. Hu, H. Zhang, J. Am. Chem. Soc. 138(2016) 1414, https://doi.org/10.1021/jacs.5b12715.

    36. [36]

      Z. Fan, Y. Chen, Y. Zhu, J. Wang, B. Li, Y. Zong, Y. Han, H. Zhang, Chem. Sci. 8(2017) 795, https://doi.org/10.1039/C6SC02953A.

    37. [37]

      Y. Chen, Z. Fan, J. Wang, C. Ling, W. Niu, Z. Huang, G. Liu, B. Chen, Z. Lai, X. Liu, et al., J. Am. Chem. Soc. 142(2020) 12760, https://doi.org/10.1021/jacs.0c04981.

    38. [38]

      X. Zhou, Y. Ma, Y. Ge, S. Zhu, Y. Cui, B. Chen, L. Liao, Q. Yun, Z. He, H. Long, et al., J. Am. Chem. Soc. 144(2022) 547, https://doi.org/10.1021/jacs.1c11313.

    39. [39]

      W. Niu, J. Liu, J. Huang, B. Chen, Q. He, A. L. Wang, Q. Lu, Y. Chen, Q. Yun, J. Wang, et al., Nat. Commun. 10(2019) 2881, https://doi.org/10.1038/s41467-019-10764-2.

    40. [40]

      Q. Lu, A.L. Wang, Y. Gong, W. Hao, H. Cheng, J. Chen, B. Li, N. Yang, W. Niu, J. Wang, et al., Nat. Chem. 10(2018) 456, https://doi.org/10.1038/s41557-018-0012-0.

    41. [41]

      Y. Ge, X. Wang, B. Chen, Z. Huang, Z. Shi, B. Huang, J. Liu, G. Wang, Y. Chen, L. Li, et al., Adv. Mater. 34(2022) 2107399, https://doi.org/10.1002/adma.202107399.s

    42. [42]

      X. Wang, Y. Ge, Q. Zhang, T. Lin, B. Chen, L. Li, Z. Huang, Q. Yun, X. Zhou, Z. Shi, et al., Nat. Sci. 2(2022) e20220026, https://doi.org/10.1002/ntls.20220026.

    43. [43]

      X. Wang, Y. Ge, M. Sun, Z. Xu, B. Huang, L. Li, X. Zhou, S. Zhang, G. Liu, Z. Shi, et al., J. Am. Chem. Soc. 146(2024) 24141, https://doi.org/10.1021/jacs.4c08905.

    44. [44]

      Y. Ge, X. Wang, B. Huang, Z. Huang, B. Chen, C. Ling, J. Liu, G. Liu, J. Zhang, G. Wang, et al., J. Am. Chem. Soc. 143(2021) 17292, https://doi.org/HTTPS://DOI.ORG/10.1021/jacs.1c08973.

    45. [45]

      H. Cheng, C. Wang, D. Qin, Y. Xia, Acc. Chem. Res. 56(2023) 900, https://doi.org/10.1021/acs.accounts.3c00067.

    46. [46]

      F. Saleem, G. Liu, G. Liu, B. Chen, Q. Yun, Y. Ge, A. Zhang, X. Wang, X. Zhou, G. Wang, et al., Small Methods 8(2024) 2400430, https://doi.org/10.1002/smtd.202400430.

    47. [47]

      Q. Lu, A. L. Wang, H. Cheng, Y. Gong, Q. Yun, N. Yang, B. Li, B. Chen, Q. Zhang, Y. Zong, et al., Small 14(2018) 1801090, https://doi.org/10.1002/smll.201801090.

    48. [48]

      B. H. Kim, M. J. Hackett, J. Park, T. Hyeon, Chem. Mater. 26(2014) 59, https://doi.org/10.1021/cm402225z.

    49. [49]

      J. Huang, Z. Li, H. Duan, Z. Cheng, Y. Li, J.F. Zhu, R. Yu, J. Am. Chem. Soc. 139(2017) 575, https://doi.org/10.1021/jacs.6b09730.

    50. [50]

      H. Cheng, N. Yang, G. Liu, Y. Ge, J. Huang, Q. Yun, Y. Du, C. J. Sun, B. Chen, J. Liu, et al. Adv. Mater. 32(2020) 1902964, https://doi.org/10.1002/adma.201902964.

    51. [51]

      P. Li, Y. Han, X. Zhou, Z. Fan, S. Xu, K. Cao, F. Meng, L. Gao, J. Song, H. Zhang, Matter 2(2020) 658, https://doi.org/10.1016/j.matt.2019.10.003.

    52. [52]

      F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan, Chem. Rev. 119(2019) 7673, https://doi.org/10.1021/acs.chemrev.9b00023.

    53. [53]

      Q. Li, W. Niu, X. Liu, Y. Chen, X. Wu, X. Wen, Z. Wang, H. Zhang, Z. Quan, J. Am. Chem. Soc. 140(2018) 15783, https://doi.org/10.1021/jacs.8b08647.

    54. [54]

      C. Xie, W. Niu, P. Li, Y. Ge, J. Liu, Z. Fan, X. Liu, Y. Chen, M. Zhou, Z. Li, et al. Nano Res. 15(2022) 6678, https://doi.org/10.1007/s12274-022-4226-5.

    55. [55]

      Q. Li, H. Cheng, C. Xing, S. Guo, X. Wu, L. Zhang, D. Zhang, X. Liu, X. Wen, X. Lu, et al., Small 18(2022) 2106396, https://doi.org/10.1002/smll.202106396.

    56. [56]

      X. Huang, H. Li, S. Li, S. Wu, F. Boey, J. Ma, H. Zhang, Angew. Chem. Int. Ed. 50(2011) 12245, https://doi.org/10.1002/anie.201105850.

    57. [57]

      Z. Fan, Y. Zhu, X. Huang, Y. Han, Q. Wang, Q. Liu, Y. Huang, C. L. Gan, H. Zhang, Angew. Chem. Int. Ed. 54(2015) 5672, https://doi.org/10.1002/anie.201500993.

    58. [58]

      F. Saleem, X. Cui, Z. Zhang, Z. Liu, J. Dong, B. Chen, Y. Chen, H. Cheng, X. Zhang, F. Ding, et al., Small 15(2019) 1903253, https://doi.org/10.1002/smll.201903253.

    59. [59]

      X. Han, G. Wu, Y. Ge, S. Yang, D. Rao, Z. Guo, Y. Zhang, M. Yan, H. Zhang, L. Gu, et al., Adv. Mater. 34(2022) 2206994, https://doi.org/10.1002/adma.202206994.

    60. [60]

      A. Kismarahardja, Z. Wang, D. Li, L. Wang, L. Fu, Y. Chen, Z. Fan, Y. Chen, X. Han, H. Zhang, X. Liao, ACS Nano 16(2022) 3272, https://doi.org/10.1021/acsnano.1c11166.

    61. [61]

      H. Benaissa, M. Ferhat, Superlattices Microstruct. 109(2017) 170, https://doi.org/10.1016/j.spmi.2017.04.049.

    62. [62]

      Z. Shi, Y. Ge, Q. Yun, H. Zhang, Acc. Chem. Res. 55(2022) 3581, https://doi.org/10.1021/acs.accounts.2c00579.

    63. [63]

      C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, et al., Chem. Rev. 117(2017) 6225, https://doi.org/10.1021/acs.chemrev.6b00558.

    64. [64]

      X. Zhang, Z. Lai, Q. Ma, H. Zhang, Chem. Soc. Rev. 47(2018) 3301, https://doi.org/10.1039/C8CS00094H.

    65. [65]

      M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem. 5(2013) 263, https://doi.org/10.1038/nchem.1589.

    66. [66]

      S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, Nat. Rev. Mater. 2(2017) 17033, https://doi.org/10.1038/natrevmats.2017.33.

    67. [67]

      J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, et al., Nature 556(2018) 355, https://doi.org/10.1038/s41586-018-0008-3.

    68. [68]

      T. Li, W. Guo, L. Ma, W. Li, Z. Yu, Z. Han, S. Gao, L. Liu, D. Fan, Z. Wang, et al., Nat. Nanotechnol. 16(2021) 1201, https://doi.org/10.1038/s41565-021-00963-8.

    69. [69]

      R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, M. Chhowalla, Nat. Mater. 13(2014) 1128, https://doi.org/10.1038/nmat4080.

    70. [70]

      M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10(2015) 313, https://doi.org/10.1038/nnano.2015.40.

    71. [71]

      G. H. Nam, Q. He, X. Wang, Y. Yu, J. Chen, K. Zhang, Z. Yang, D. Hu, Z. Lai, B. Li, et al., Adv. Mater. 31(2019) 1807764, https://doi.org/10.1002/adma.201807764.

    72. [72]

      X. Yin, C. S. Tang, Y. Zheng, J. Gao, J. Wu, H. Zhang, M. Chhowalla, W. Chen, A.T.S. Wee, et al., Chem. Soc. Rev. 50(2021) 10087, https://doi.org/10.1039/D1CS00236H.

    73. [73]

      W. Zhai, J. Qi, C. Xu, B. Chen, Z. Li, Y. Wang, L. Zhai, Y. Yao, S. Li, Q. Zhang, et al., J. Am. Chem. Soc. 145(2023) 13444, https://doi.org/10.1021/jacs.3c03776.

    74. [74]

      Y. Yu, G. H. Nam, Q. He, X. J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, et al., Nat. Chem. 10(2018) 638, https://doi.org/10.1038/s41557-018-0035-6.

    75. [75]

      Z. Lai, Q. He, T. H. Tran, D. V. M. Repaka, D. D. Zhou, Y. Sun, S. Xi, Y. Li, A. Chaturvedi, C. Tan, et al., Nat. Mater. 20(2021) 1113, https://doi.org/10.1038/s41563-021-00971-y.

    76. [76]

      Y. Sun, M. Terrones, R. E. Schaak, Acc. Chem. Res. 54(2021) 1517, https://doi.org/10.1021/acs.accounts.1c00006.

    77. [77]

      M. S. Sokolikova, C. Mattevi, Chem. Soc. Rev. 49(2020) 3952, https://doi.org/10.1039/D0CS00143K.

    78. [78]

      B. Mahler, V. Hoepfner, K. Liao,G. A. Ozin, J. Am. Chem. Soc. 136(2014) 14121, https://doi.org/10.1021/ja506261t.

    79. [79]

      M. S. Sokolikova, P. C. Sherrell, P. Palczynski, V. L. Bemmer, C. Mattevi, Nat. Commun. 10(2019) 712, https://doi.org/10.1038/s41467-019-08594-3.

    80. [80]

      Z. Liu, K. Nie, X. Qu, X. Li, B. Li, Y. Yuan, S. Chong, P. Liu, Y. Li, Z. Yin, et al., J. Am. Chem. Soc. 144(2022) 4863, https://doi.org/10.1021/jacs.1c12379.

    81. [81]

      X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T. P. Chen, Nat. Commun. 7(2016) 10672, https://doi.org/10.1038/ncomms10672.

    82. [82]

      Z. Li, L. Zhai, Q. Zhang, W. Zhai, P. Li, B. Chen, C. Chen, Y. Yao, Y. Ge, H. Yang, et al., Nat. Mater. 23(2024) 1355, https://doi.org/10.1038/s41563-024-01860-w.

    83. [83]

      F. Wypych, R. Schöllhorn, J. Chem. Soc., Chem. Commun. 24(1992) 1386, https://doi.org/10.1039/C39920001386.

    84. [84]

      J. Peng, Y. Liu, X. Luo, J. Wu, Y. Lin, Y. Guo, J. Zhao, X. Wu, C. Wu, Y. Xie, Adv. Mater. 31(2019) e1900568, https://doi.org/10.1002/adma.201900568.

    85. [85]

      Z. Lai, Y. Yao, S. Li, L. Ma, Q. Zhang, Y. Ge, W. Zhai, B. Chi, B. Chen, L. Li, et al., Adv. Mater. 34(2022) e2201194, https://doi.org/10.1002/adma.202201194.

    86. [86]

      F. Liu, Y. Zou, X. Tang, L. Mao, D. Du, H. Wang, M. Zhang, Z. Wang, N. Yao, W. Zhao, et al., Adv. Funct. Mater. 32(2022) 2204601, https://doi.org/10.1002/adfm.202204601.

    87. [87]

      T. Cheng, L. Sun, Z. Liu, F. Ding, Z. Liu, Acta Phys. -Chim. Sin. 38(2022) 2012006, https://doi.org/10.3866/PKU.WHXB202012006.

    88. [88]

      L. Liu, J. Wu, L. Wu, M. Ye, X. Liu, Q. Wang, S. Hou, P. Lu, L. Sun, J. Zheng, et al., Nat. Mater. 17(2018) 1108, https://doi.org/10.1038/s41563-018-0187-1.

    89. [89]

      M. Okada, J. Pu, Y. C. Lin, T. Endo, N. Okada, W. H. Chang, A. K. A. Lu, T. Nakanishi, T. Shimizu, T. Kubo, et al., ACS Nano 16(2022) 13069, https://doi.org/10.1021/acsnano.2c05699.

    90. [90]

      G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, ACS Nano 6(2012) 7311, https://doi.org/10.1021/nn302422x.

    91. [91]

      Z. Wang, R. Li, C. Su, K. P. Loh, SmartMat 1(2020) e1013, https://doi.org/10.1002/smm2.1013.

    92. [92]

      C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du, Y. Gong, Y. Huang, Z. Lai, X. Zhang, L. Zheng, et al., Adv. Mater. 30(2018) 1705509, https://doi.org/10.1002/adma.201705509.

    93. [93]

      D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 13(2013) 6222, https://doi.org/10.1021/nl403661s.

    94. [94]

      S. J. Tan, I. Abdelwahab, Z. Ding, X. Zhao, T. Yang, G. Z. Loke, H. Lin, I. Verzhbitskiy, S. M. Poh, H. Xu, et al., J. Am. Chem. Soc. 139(2017) 2504, https://doi.org/10.1021/jacs.6b13238.

    95. [95]

      Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed. 50(2011) 11093, https://doi.org/10.1002/anie.201106004.

    96. [96]

      Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng, H. Zhang, Angew. Chem. Int. Ed. 51(2012) 9052, https://doi.org/10.1002/anie.201204208.

    97. [97]

      G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11(2011) 5111, https://doi.org/10.1021/nl201874w.

    98. [98]

      Y. C. Lin, D. O. Dumcenco, Y. S. Huang, K. Suenaga, Nat. Nanotechnol. 9(2014) 391, https://doi.org/10.1038/nnano.2014.64.

    99. [99]

      D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, et al., Nat. Photonics 11(2015) 482, https://doi.org/10.1038/nphys3314.

    100. [100]

      X. Yin, Q. Wang, L. Cao, C. S. Tang, X. Luo, Y. Zheng, L. M. Wong, S. J. Wang, S. Y. Quek, W. Zhang, et al., Nat. Commun. 8(2017) 486, https://doi.org/10.1038/s41467-017-00640-2.

    101. [101]

      S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D. H. Choe, K. J. Chang, K. Suenaga, et al., Science 349(2015) 625, https://doi.org/10.1126/science.aab3175.

    102. [102]

      J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, et al., J. Am. Chem. Soc. 139(2017) 10216, https://doi.org/10.1021/jacs.7b05765.

    103. [103]

      Y. Qi, Q. Xu, Y. Wang, B. Yan, Y. Ren, Z. Chen, ACS Nano 10(2016) 2903, https://doi.org/10.1021/acsnano.6b00001.

    104. [104]

      K. A. Duerloo, Y. Li, E. J. Reed, Nat. Commun. 5(2014) 4214, https://doi.org/10.1038/ncomms5214.

    105. [105]

      S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, Y. H. Lee, Nano Lett. 16(2016) 188, https://doi.org/10.1021/acs.nanolett.5b03481.

    106. [106]

      S. Kuppan, Y. Xu, Y. Liu,G. Chen, Nat. Commun. 8(2017) 14309, https://doi.org/10.1038/ncomms14309.

    107. [107]

      Z. Liu, X. Kong, F. Ding, Adv. Funct. Mater. 34(2024) 2409382, https://doi.org/10.1002/adfm.202409382.

    108. [108]

      C. Mu, Z. Liu, Q. Yao, Q. He, J. Xie, SmartMat 6(2025) e1317, https://doi.org/10.1002/smm2.1317.

    109. [109]

      X. Zhang, Z. Luo, P. Yu, Y. Cai, Y. Du, D. Wu, S. Gao, C. Tan, Z. Li, M. Ren, et al., Nat. Catal. 1(2018) 460, https://doi.org/10.1038/s41929-018-0072-y.

    110. [110]

      Z. Shi, X. Zhang, X. Lin, G. Liu, C. Ling, S. Xi, B. Chen, Y. Ge, C. Tan, Z. Lai, et al., Nature 621(2023) 300, https://doi.org/10.1038/s41586-023-06339-3.

    111. [111]

      P. Rao, D. Wu, T.-J. Wang, J. Li, P. Deng, Q. Chen, Y. Shen, Y. Chen, X. Tian, eScience 2(2022) 399, https://doi.org/10.1016/j.esci.2022.05.004.

    112. [112]

      H. Yang, Y. Liu, X. Liu, X. Wang, H. Tian, G. I. N. Waterhouse, P. E. Kruger, S. G. Telfer, S. Ma, eScience 2(2022) 227, https://doi.org/10.1016/j.esci.2022.02.005.

    113. [113]

      X. Zhou, H. Liu, B. Y. Xia, K. Ostrikov, Y. Zheng, S.-Z. Qiao, SmartMat 3(2022) 111, https://doi.org/10.1002/smm2.1109.

    114. [114]

      J. Su, Y. Liu, Y. Song, L. Huang, W. Guo, X. Cao, Y. Dou, L. Cheng, G. Li, Q. Hu, et al., SmartMat 3(2022) 35, https://doi.org/10.1002/smm2.1106.

    115. [115]

      Y. Wang, C. Li, Z. Fan, Y. Chen, X. Li, L. Cao, C. Wang, L. Wang, D. Su, H. Zhang, T. Mueller, C. Wang, Nano Lett. 20(2020) 8074, https://doi.org/10.1021/acs.nanolett.0c03073.

    116. [116]

      P. F. Yin, J. Fu, Q. Yun, B. Chen, G. Liu, L. Li, Z. Huang, Y. Ge, H. Zhang, Adv. Mater. 34(2022) 2201114, https://doi.org/10.1002/adma.202201114.

    117. [117]

      J. Wang, J. Zhang, G. Liu, C. Ling, B. Chen, J. Huang, X. Liu, B. Li, A.L. Wang, Z. Hu, et al., Nano Res. 13(2020) 1970, https://doi.org/10.1007/s12274-020-2849-y.

    118. [118]

      J. Wang, G. Liu, Q. Yun, X. Zhou, X. Liu, Y. Chen, H. Cheng, Y. Ge, J. Huang, Z. Hu, et al., Acta Phys. -Chim. Sin. 39(2023) 2305034, https://doi.org/10.3866/PKU.WHXB202305034.

    119. [119]

      J. Wang, A. Zhang, W. Niu, G. Liu, X. Zhou, L. Wang, X. Liu, L. Li, Z. Li, L. Zhai, et al., Adv. Funct. Mater. 35(2025) 2405073, https://doi.org/10.1002/adfm.202405073.

    120. [120]

      P. F. Yin, M. Zhou, J. Chen, C. Tan, G. Liu, Q. Ma, Q. Yun, X. Zhang, H. Cheng, Q. Lu, et al., Adv. Mater. 32(2020) 2000482, https://doi.org/10.1002/adma.202000482.

    121. [121]

      M. Zhao, Z. D. Hood, M. Vara, K. D. Gilroy, M. Chi, Y. Xia, ACS Nano 13(2019) 7241, https://doi.org/10.1021/acsnano.9b02890.

    122. [122]

      J. Liu, J. Huang, W. Niu, C. Tan, H. Zhang, Chem. Rev. 121(2021) 5830, https://doi.org/10.1021/acs.chemrev.0c01047.

    123. [123]

      Z. Shi, Y. Wu, X. Ruan, W. Zhai, Z. Li, L. Zhai, A. Zhang, H. Zhang, Natl. Sci. Rev. 11(2024) nwae289, https://doi.org/10.1093/nsr/nwae289.

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    4. [4]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    5. [5]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    6. [6]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    7. [7]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    8. [8]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    11. [11]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    14. [14]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    15. [15]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    16. [16]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    17. [17]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(0)
  • Abstract views(37)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return