Citation: Aoyun Meng, Zhenhua Li, Guoyuan Xiong, Zhen Li, Jinfeng Zhang. S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides[J]. Acta Physico-Chimica Sinica, ;2026, 42(5): 100186. doi: 10.1016/j.actphy.2025.100186 shu

S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides

  • Amidst growing concerns regarding pesticide contamination, particularly within the realms of food, grains, and meat products, the quest for highly efficient and stable photocatalysts for pollutant degradation has become an imperative area of research. In this study, a novel S-scheme heterojunction photocatalyst, Al6Si2O13/BiOBr (ASO/BO) nanocomposites, was successfully synthesized to enhance charge transfer and improve the photocatalytic degradation of Triazophos (TAP) and Dichlorvos (DDVP), prevalent agricultural pollutants. Performance evaluation revealed that the 60-ASO/BO nanocomposite (with 60% ASO loading ratio) achieved a remarkable degradation efficiency, reducing pesticide (TAP) concentration from 100% to 28.0% within 100 min, while retaining 94.7% of its initial activity after four cycles (400 min). In stark contrast, the degradation efficiencies of the individual ASO and BO were substantially lower, with ASO achieving 56.6% and BO merely 58.8%. For DDVP, the composite also exhibited excellent photocatalytic degradation activity, reducing its concentration from 100% to 32.3% within 100 min, far outperforming ASO (100% to 67.8%) and BO (100% to 47.9%). Enhanced charge migration within the S-scheme heterojunction accounts for the remarkable catalytic efficiency. The charge transfer pathway and mechanism were further validated using femtosecond transient absorption spectroscopy (fs-TAS), adsorption energy calculations, differential charge density analysis, Kelvin probe force microscopy (KPFM), and in situ X-ray photoelectron spectroscopy (XPS). The results emphasize that S-scheme charge migration is vital for enhancing photocatalytic performance. Consequently, the ASO/BO heterojunction based on the S-scheme provides a robust and reliable route for achieving durable and efficient photocatalytic removal of environmental contaminants, with broad application prospects in agriculture, food safety, and the preservation of grain and meat products.
  • 加载中
    1. [1]

      W. Li, A. Meng, Z. Li, J. Zhang, J. Fu, J. Cent. South Univ. 31 (2024) 4572, https://doi.org/10.1007/s11771-024-5838-6.  doi: 10.1007/s11771-024-5838-6

    2. [2]

      A. Meng, R. Yang, W. Li, Z. Li, J. Zhang, J. Materiomics 11 (2025) 100919, https://doi.org/10.1016/j.jmat.2024.06.010.  doi: 10.1016/j.jmat.2024.06.010

    3. [3]

      W. Li, A. Meng, C. Li, Y. Sun, J. Zhang, Z. Li, J. Colloid Interface Sci. 677 (2025) 704, https://doi.org/10.1016/j.jcis.2024.07.240.  doi: 10.1016/j.jcis.2024.07.240

    4. [4]

      G. Chen, Z. Zhou, B. Li, X. Lin, C. Yang, Y. Fang, W. Lin, Y. Hou, G. Zhang, S. Wang, J. Environ. Sci. 140 (2024) 103, https://doi.org/10.1016/j.jes.2023.05.028.  doi: 10.1016/j.jes.2023.05.028

    5. [5]

      S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3 (2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183.  doi: 10.1016/j.apmate.2024.100183

    6. [6]

      J. Cheng, B. Cheng, J. Xu, J. Yu, S. Cao, eScience 5 (2025) 100354, https://doi.org/10.1016/j.esci.2024.100354.  doi: 10.1016/j.esci.2024.100354

    7. [7]

      X. Wang, H. Zhang, Y. Huang, L. Gao, Y. Zhang, J. Meng, Y. Liao, B. Zong, W. -L. Dai, H. Li, Adv. Funct. Mater. 35 (2025) 2421847, https://doi.org/10.1002/adfm.202421847.  doi: 10.1002/adfm.202421847

    8. [8]

      H. Wen, W. Duan, L. Guo, Q. Wang, X. Fu, Y. Wang, R. Li, B. Jin, R. Du, C. Yang, et al., Appl. Catal. B: Environ 345 (2024) 123641, https://doi.org/10.1016/j.apcatb.2023.123641.  doi: 10.1016/j.apcatb.2023.123641

    9. [9]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    10. [10]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    11. [11]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600.  doi: 10.1002/adma.202310600

    12. [12]

      Y. Li, H. Wang, J. Liu, X. Liu, J. Guan, J. Fu, S. Li, Environ. Res. 263 (2024) 120212, https://doi.org/10.1016/j.envres.2024.120212.  doi: 10.1016/j.envres.2024.120212

    13. [13]

      W. Lyu, Y. Liu, D. Chen, F. Wang, Y. Li, Nat. Commun. 15 (2024) 10589, https://doi.org/10.1038/s41467-024-54988-3.  doi: 10.1038/s41467-024-54988-3

    14. [14]

      F. Li, G. Zhu, J. Jiang, L. Yang, F. Deng, Arramel, X. Li, J. Mater. Sci. Technol. 177 (2024) 142, https://doi.org/10.1016/j.jmst.2023.08.038.  doi: 10.1016/j.jmst.2023.08.038

    15. [15]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    16. [16]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/pku.whxb202307045.  doi: 10.3866/pku.whxb202307045

    17. [17]

      S. Farhan, A. Raza, L. Li, S. Yang, Y. Wu, J. Colloid Interface Sci. 681 (2025) 1, https://doi.org/10.1016/j.jcis.2024.11.124.  doi: 10.1016/j.jcis.2024.11.124

    18. [18]

      X. Miao, H. Yang, J. He, J. Wang, Z. Jin, Acta Phys. Chim. Sin. 41 (2025) 100051, https://doi.org/10.1016/j.actphy.2025.100051.  doi: 10.1016/j.actphy.2025.100051

    19. [19]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970.  doi: 10.1016/j.jmat.2024.100970

    20. [20]

      C. Yang, X. Li, M. Li, G. Liang, Z. Jin, Chin. J. Catal. 56 (2024) 88, https://doi.org/10.1016/S1872-2067(23)64563-2.  doi: 10.1016/S1872-2067(23)64563-2

    21. [21]

      X. Ruan, M. Xu, C. Ding, J. Leng, G. Fang, D. Meng, W. Zhang, Z. Jiang, S. Ravi, X. Cui, et al., Adv. Energy Mater. 15 (2025) 2405478, https://doi.org/10.1002/aenm.202405478.  doi: 10.1002/aenm.202405478

    22. [22]

      C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang, J. Mater. Sci. Technol. 169 (2024) 182, https://doi.org/10.1016/j.jmst.2023.06.011.  doi: 10.1016/j.jmst.2023.06.011

    23. [23]

      H. Liang, J. Zhao, A. Brouzgou, A. Wang, S. Jing, P. Kannan, F. Chen, P. Tsiakaras, J. Colloid Interface Sci. 677 (2025) 1120, https://doi.org/10.1016/j.jcis.2024.07.225.  doi: 10.1016/j.jcis.2024.07.225

    24. [24]

      J. Wu, Q. Xie, C. Zhang, H. Shi, Acta Phys. Chim. Sin. 41 (2025) 100050, https://doi.org/10.1016/j.actphy.2025.100050.  doi: 10.1016/j.actphy.2025.100050

    25. [25]

      Y. Zhao, C. Yang, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63 (2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0.  doi: 10.1016/S1872-2067(24)60069-0

    26. [26]

      E. Cui, Y. Lu, Z. Li, Z. Chen, C. Ge, J. Jiang, Chin. Chem. Lett. 36 (2025) 110288, https://doi.org/10.1016/j.cclet.2024.110288.  doi: 10.1016/j.cclet.2024.110288

    27. [27]

      W. Li, A. Meng, Z. Li, G. Xiong, Z. Li, J. Zhang, J. Mater. Sci. Technol. 242 (2026) 200, https://doi.org/10.1016/j.jmst.2025.02.056.  doi: 10.1016/j.jmst.2025.02.056

    28. [28]

      Y. Ma, Z. Feng, Y. Dong, Z. Yan, H. Wang, Y. Wu, Chin. Chem. Lett. 36 (2025) 110922, https://doi.org/10.1016/j.cclet.2025.110922.  doi: 10.1016/j.cclet.2025.110922

    29. [29]

      F. Yi, Y. Liu, Y. Chen, J. Zhu, Q. He, C. Yang, D. Ma, J. Liu, Chin. Chem. Lett. 36 (2025) 110544, https://doi.org/10.1016/j.cclet.2024.110544.  doi: 10.1016/j.cclet.2024.110544

    30. [30]

      H. Zhang, M. Cui, Y. Lv, Y. Rao, Y. Huang, Chin. Chem. Lett. 36 (2025) 110108, https://doi.org/10.1016/j.cclet.2024.110108.  doi: 10.1016/j.cclet.2024.110108

    31. [31]

      A. Meng, W. Li, Z. Li, G. Xiong, X. Pu, J. Zhang, Z. Li, Surf. Interfaces 68 (2025) 106697, https://doi.org/10.1016/j.surfin.2025.106697.  doi: 10.1016/j.surfin.2025.106697

    32. [32]

      Z. Wang, C. Bie, J. Mater. Sci. Technol. 243 (2026) 206, https://doi.org/10.1016/j.jmst.2025.04.028.  doi: 10.1016/j.jmst.2025.04.028

    33. [33]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    34. [34]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    35. [35]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

    36. [36]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975.  doi: 10.1016/j.jmat.2024.100975

    37. [37]

      X. Li, Z. Wang, Acta Phys. Chim. Sin. 41 (2025) 100080, https://doi.org/10.1016/j.actphy.2025.100080.  doi: 10.1016/j.actphy.2025.100080

    38. [38]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.  doi: 10.1016/j.jmat.2024.100974

    39. [39]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. Chim. Sin. 41 (2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121.  doi: 10.1016/j.actphy.2025.100121

    40. [40]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036.  doi: 10.1016/j.jmst.2025.01.036

    41. [41]

      M. Sayed, H. Li, C. Bie, Acta Phys. Chim. Sin. 41 (2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117.  doi: 10.1016/j.actphy.2025.100117

    42. [42]

      X. Zhou, S. Yang, X. Wang, Z. Wu, Y. Huo, J. Zhang, J. Mater. Sci. Technol. 234 (2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027.  doi: 10.1016/j.jmst.2025.02.027

    43. [43]

      X. Wang, K. Qi, K. Xu, Chin. J. Catal. 70 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60246-9.  doi: 10.1016/S1872-2067(24)60246-9

    44. [44]

      L. Wang, J. Zhao, J. Mater. Sci. Technol. 241 (2026) 18, https://doi.org/10.1016/j.jmst.2025.04.009.  doi: 10.1016/j.jmst.2025.04.009

    45. [45]

      Y. Zhang, S. Wang, Chin. J. Catal. 71 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60253-6.  doi: 10.1016/S1872-2067(24)60253-6

    46. [46]

      D. Xu, R. He, Z. Jiang, J. Mater. Sci. Technol. 236 (2025) 280, https://doi.org/10.1016/j.jmst.2025.02.040.  doi: 10.1016/j.jmst.2025.02.040

    47. [47]

      X. Liu, Z. Jiang, Chin. J. Catal. 70 (2025) 5, https://doi.org/10.1016/S1872-2067(24)60223-8.  doi: 10.1016/S1872-2067(24)60223-8

    48. [48]

      B. Zhang, B. Su, F. Liu, T. Gao, G. Zhou, Sci. China Mater. 67 (2024) 424, https://doi.org/10.1007/s40843-023-2754-8.  doi: 10.1007/s40843-023-2754-8

    49. [49]

      J. Zhu, X. Li, Chin. J. Catal. 72 (2025) 1, https://doi.org/10.1016/S1872-2067(25)64684-5.  doi: 10.1016/S1872-2067(25)64684-5

    50. [50]

      Y. Bian, H. He, G. Dawson, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, https://doi.org/10.1007/s40843-023-2725-y.  doi: 10.1007/s40843-023-2725-y

    51. [51]

      W. Yu, Chin. J. Catal. 73 (2025) 8, https://doi.org/10.1016/S1872-2067(25)60706-1.  doi: 10.1016/S1872-2067(25)60706-1

    52. [52]

      D. Chen, Z. Wang, J. Fu, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 541, https://doi.org/10.1007/s40843-023-2770-8.  doi: 10.1007/s40843-023-2770-8

    53. [53]

      J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59 (2024) 4, https://doi.org/10.1016/S1872-2067(24)60011-2.  doi: 10.1016/S1872-2067(24)60011-2

    54. [54]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    55. [55]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.  doi: 10.1016/S1872-2067(23)64580-2

    56. [56]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425456, https://doi.org/10.1002/anie.202505456.  doi: 10.1002/anie.202505456

    57. [57]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.  doi: 10.1016/S1872-2067(23)64610-8

    58. [58]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d.  doi: 10.1039/d4cs01091d

    59. [59]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    60. [60]

      F. Xu, W. Mei, P. Hu, L. Zheng, J. Zhang, H. Cao, H. García, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202513364, https://doi.org/10.1002/anie.202513364.  doi: 10.1002/anie.202513364

  • 加载中
    1. [1]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    2. [2]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    5. [5]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    6. [6]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    9. [9]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    10. [10]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    13. [13]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    18. [18]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    19. [19]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    20. [20]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

Metrics
  • PDF Downloads(1)
  • Abstract views(173)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return