Citation: Wenjun Zhu,  Chenbin Ai,  Kaiqiang Xu,  Yatai Zhou,  Xidong Zhang,  Yong Zhang. WO3@TP inorganic@organic S-scheme photocatalyst for boosting H2O2 production[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100184. doi: 10.1016/j.actphy.2025.100184 shu

WO3@TP inorganic@organic S-scheme photocatalyst for boosting H2O2 production

  • Corresponding author: Kaiqiang Xu,  Yong Zhang, 
  • Received Date: 3 August 2025
    Revised Date: 6 September 2025
    Accepted Date: 8 September 2025

  • Photocatalysis of H2O2 production using O2 and water is a cost-effective and environmental process, but developing high-performance photocatalysts is still a challenge. Herein, a WO3@polymer S-scheme photocatalyst was synthesized by in situ growing the Schiff-base polymer, tris-(4-aminophenyl)amine (TAPA)-terephthaldicarboxaldehyde (PDA) (labeled as TP) on the surface of WO3 nanofibers (WO3@TP) at room temperature. The obtained WO3@TP S-scheme heterojunction exhibited rapid carrier separation ability and short photogenerated carriers transfer distance. The optimal WO3@TP composite (WT-10) realized the H2O2evolution rate of 3242 μmol g-1 h-1, which was 137.3 and 4.6-fold higher than bare WO3 and TP, respectively. The combination of advanced characterizations regarding in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS), theoretical calculation, and femtosecond transient absorption spectroscopy (fs-TAS) validates the charge transfer mechanism within the WO3@TP S-scheme heterojunction. The occurrence of a dual-channel pathway (O2 reduction reaction (ORR) and water oxidation reaction (WOR) within the reaction system has been confirmed via electron paramagnetic resonance (EPR) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), thereby contributing to the highly efficient H2O2 evolution. This study not only gives an in-depth understanding of the ultrafast charge migration behavior in S-scheme heterojunction but also offers the rational design of inorganic@organic photocatalysts applied to solar-driven H2O2 production.
  • 加载中
    1. [1]

      M. Sayed, K. Qi, X Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54(2025) 4874, https://doi.org/10.1039/D4CS01091D.

    2. [2]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11(2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.

    3. [3]

      M. Sayed, H. Li, C. Bie, Acta Phys. -Chim. Sin. 41(2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117.

    4. [4]

      X. Li, Z. Wang, Acta Phys. -Chim. Sin. 41(2025) 100080, https://doi.org/10.1016/j.actphy.2025.100080.

    5. [5]

      E. Ghalehsefid, Z. Jahani, A. Aliabadi, M. Ghodrati, A. Khamesan, A. Parsaei-Khomami, M. Mousavi, M. Hosseini, J. Ghasemi, X. Li, J. Environ. Chem. Eng. 11(2023) 110160, https://doi.org/10.1016/j.jece.2023.110160.

    6. [6]

      X. Li, P. Li, Y. Li, H. Liu, Z. Yang, Y. Chen, X. Liao, J. Environ. Chem. Eng. 11(2023) 110594, https://doi.org/10.1016/j.jece.2023.110594.

    7. [7]

      Y. Yamada, M. Yoneda, S. Fukuzumi, Energy Environ. Sci. 8(2015) 1698, https://doi.org/10.1039/C5EE00748H.

    8. [8]

      R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138(2023) 256, https://doi.org/10.1016/j.jmst.2022.09.002.

    9. [9]

      S. Siahrostami, S. Villegas, A. Mostaghimi, S. Back, A. Farimani, H. Wang, A. Persson, J. Montoya, ACS Catal. 10(2020) 7495, https://doi.org/10.1021/acscatal.0c01641.

    10. [10]

      Y. Wang, G. Waterhouse, L. Shang, T. Zhang, Adv. Energy Mater. 11(2021) 2003323, https://doi.org/10.1002/aenm.202003323.

    11. [11]

      Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21(2025) 2409079, https://doi.org/10.1002/smll.202409079.

    12. [12]

      M. Qi, M. Conte, M. Anpo, Z. Tang, Y. Xu, Chem. Rev. 121(2021) 13051, https://doi.org/10.1021/acs.chemrev.1c00197.

    13. [13]

      Y. Liu, B. Wygant, K. Kawashima, O. Mabayoje, T. Hong, S. Lee, J. Lin, J. Kim, K. Yubuta, W. Li, J. Li, C. Mullins, Appl. Catal. B: Environ. 245(2019) 227, https://doi.org/10.1016/j.apcatb.2018.12.058.

    14. [14]

      H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan, S. Wang, Appl. Catal. B: Environ. 242(2019) 76, https://doi.org/10.1016/j.apcatb.2018.09.090.

    15. [15]

      L. Zhang, H. Zhang, B. Wang, X. Huang, Y. Ye, R. Lei, W. Feng, P. Liu, Appl. Catal. B: Environ. 244(2019) 529, https://doi.org/10.1016/j.apcatb.2018.11.055.

    16. [16]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15(2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.

    17. [17]

      F. Puga, J. Navio, M. Hidalgo, J. Alloy. Compd. 867(2021) 159191, https://doi.org/10.1016/j.jallcom.2021.159191.

    18. [18]

      Z. Yuan, H. Huang, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, J. Hazard. Mater. 409(2021) 125027, https://doi.org/10.1016/j.jhazmat.2020.125027.

    19. [19]

      J. Lei, H. Yang, B. Weng, Y. Zheng, S. Chen, P. Menezes, S. Meng, Adv. Energy Mater. 15(2025) 2500950, https://doi.org/10.1002/aenm.202500950.

    20. [20]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36(2024) 2400288, https://doi.org/10.1002/adma.202400288.

    21. [21]

      J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal., B: Environ. 243(2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011.

    22. [22]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9(2025) 328, https://doi.org/10.1038/s41570-025-00698-3.

    23. [23]

      Y. Che, B. Weng, K. Li, Z. He, S. Chen, S. Meng, Appl. Catal. B: Environ. 361(2025) 124656, https://doi.org/10.1016/j.apcatb.2024.124656.

    24. [24]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36(2024) 2406460, https://doi.org/10.1002/adma.202406460.

    25. [25]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64(2025) e202425456, https://doi.org/10.1002/anie.202505456.

    26. [26]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82(2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.

    27. [27]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11(2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975.

    28. [28]

      D. Xu, R. He, Z. Jiang, J. Mater. Sci. Technol. 236(2025) 280, https://doi.org/10.1016/j.jmst.2025.02.040.

    29. [29]

      Y. Che, K. Wang, C. Wang, B. Weng, S. Chen, S. Meng, J. Mater. Sci. Technol. 243(2026) 228, https://doi.org/10.1016/j.jmst.2025.04.030.

    30. [30]

      X. Zheng, J. Wu, H. Shi. Chin. J. Catal. 76(2025) 50, https://doi.org/10.1016/S1872-2067(25)64754-1.

    31. [31]

      M. Lv, S. Wang, H. Shi, J. Mater. Sci. Technol. 201(2024) 21, https://doi.org/10.1016/j.jmst.2024.02.073.

    32. [32]

      J. Wu, Q. Xie, C. Zhang, H. Shi, Acta Phys. -Chim. Sin. 41(2025) 100050, https://doi.org/10.1016/j.actphy.2025.100050.

    33. [33]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40(2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.

    34. [34]

      C. Aitchison, S. Gonzalez-Carrero, S. Yao, M. Benkert, Z. Ding, N. Young, B. Willner, F. Moruzzi, Y. Lin, J. Tian, P. Nellist, J. Durrant, I. McCulloch, Adv. Mater. 36(2024) 2300037, https://doi.org/10.1002/adma.202300037.

    35. [35]

      C. Cheng, B. Zhu, B. Cheng, W. Macyk, L. Wang, J. Yu, ACS Catal. 13(2023) 459, https://doi.org/10.1021/acscatal.2c05001.

    36. [36]

      L. Zhang, Q. Shen, F. Huang, L. Jiang, J. Liu, J. Sheng, Y. Li, H. Yang, Appl. Surf. Sci. 608(2023) 155064, https://doi.org/10.1016/j.apsusc.2022.155064.

    37. [37]

      C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62(2023) e202218688, https://doi.org/10.1002/anie.202218688.

    38. [38]

      M. Gu, J. Zhang, I. Kurganskii, A. Poryvaev, M. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37(2025) 2414803, https://doi.org/10.1002/adma.202414803.

    39. [39]

      W. Song, R. Zhang, X. Bai, Q. Jia, H. Ji, J. Mater. Sci. -Mater. El. 31(2020) 610, https://doi.org/10.1007/s10854-019-02565-6.

    40. [40]

      C. Li, M. Gao, X. Sun, H. Tang, H. Dong, F. Zhang, Appl. Catal. B: Environ. 266(2020) 118586, https://doi.org/10.1016/j.apcatb.2020.118586.

    41. [41]

      L. Wang, H. Cheng, Z. Zhang, Y. Zhang, J. Huang, H. She, C. Liu, Q. Wang, Chem. Eng. J. 456(2023) 140990, https://doi.org/10.1016/j.cej.2022.140990.

    42. [42]

      F. Qaraah, S. Mahyoub, A. Hezam, A. Qaraah, Q. Drmosh, G. Xiu, Chin. J. Catal. 43(2022) 2637, https://doi.org/10.1016/S1872-2067(21)64038-X.

    43. [43]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197(2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.

    44. [44]

      M. Bélières, V. Sartor, P. Fabre, R. Poteau, G. Bordeau, N. Chouini-Lalanne, Dyes Pigm. 153(2018) 275, https://doi.org/10.1016/j.dyepig.2018.02.022.

    45. [45]

      F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 152(2020) 224108, https://doi.org/10.1063/5.0004608.

    46. [46]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11(2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.

    47. [47]

      S. Yao, T. Tang, Y. Shen, F. Yang, C. An, Sci. China Mater. 66(2023) 672, https://doi.org/10.1007/s40843-022-2185-1.

    48. [48]

      B. Zhang, L. Chen, Z. Zhang, Q. Li, P. Khangale, D. Hildebrandt, X. Liu, Q. Feng, S. Qiao, Adv. Sci. 9(2022) 2105912, https://doi.org/10.1002/advs.202105912.

    49. [49]

      B. Zhang, B. Sun, F. Liu, T. Gao, G. Zhou, 67(2024) 424, https://doi.org/10.1007/s40843-023-2754-8.

    50. [50]

      V. Nguyen, P. Singh, A. Sudhaik, P. Raizada, Q. Le, E. Helmy, Mater. Lett. 313(2022) 131781, https://doi.org/10.1016/j.matlet.2022.131781.

    51. [51]

      Q. Xu, S. Wageh, A. Al-Ghamdi, X. Li, J. Mater. Sci. Technol. 124(2022) 171, https://doi.org/10.1016/j.jmst.2022.02.016.

    52. [52]

      T. Han, H. Shi, Y. Chen, J. Mater. Sci. Technol. 174(2024) 30, https://doi.org/10.1016/j.jmst.2023.03.053.

    53. [53]

      Z. Long, Q. Li, C. Zhang, H. Shi, Acta Phys. -Chim. Sin. 41(2025) 100122, https://doi.org/10.1016/j.actphy.2025.100122.

    54. [54]

      K. Das, S. Mansingh, D. Sahoo, R. Mohanty, K. Parida, New J. Chem. 46(2022) 5785, https://doi.org/10.1039/D2NJ00067A.

    55. [55]

      X. Wang, K. Qi, K. Xu, Chin. J. Catal. 70(2025) 1, https://doi.org/10.1016/S1872-2067(24)60246-9.

    56. [56]

      Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang, J. Mater. Sci. Technol. 167(2023) 1, https://doi.org/10.1016/j.jmst.2023.03.045.

    57. [57]

      H. Chen, S. Gao, G. Huang, Q. Chen, Y. Gao, J. Bi, Appl. Catal. B: Environ. 343(2024) 123545, https://doi.org/10.1016/j.apcatb.2023.123545.

    58. [58]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64(2025) e202414672, https://doi.org/10.1002/anie.202414672.

    59. [59]

      K. Meng, J. Zhang, B. Zhu, C Jiang, H. García, J. Yu, Adv. Mater. 37(2025) 2505088, https://doi.org/10.1002/adma.202505088.

    60. [60]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11(2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.

    61. [61]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41(2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.

    62. [62]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. -Chim. Sin. 41(2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121.

    63. [63]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40(2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.

    64. [64]

      W. Yu, C. Bie, Acta Phys. -Chim. Sin. 40(2024) 2307022, https://doi.org/10.3866/PKU.WHXB202307022.

    65. [65]

      J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59(2024) 4, https://doi.org/10.1016/S1872-2067(24)60011-2.

    66. [66]

      W. Yu, Chin. J. Catal. 73(2025) 73, 8, https://doi.org/10.1016/S1872-2067(25)60706-1.

    67. [67]

      C. Jiang, C. Yuan, K. Xu, X. Zhou, C. Bie, J. Mater. Sci. Technol. 231(2025) 36, https://doi.org/10.1016/j.jmst.2024.12.071.

    68. [68]

      Y. Zhao, Y. Zhang, L. Wang, C. Ai, J. Zhang, J. Mater. Sci. Technol. 229(2025) 213, https://doi.org/10.1016/j.jmst.2024.12.040.

    69. [69]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233(2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005.

    70. [70]

      X. Zhou, S. Yang, X. Wang, Z. Wu, Y. Huo, J. Zhang, J. Mater. Sci. Technol. 234(2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027.

    71. [71]

      L. Wang, J. Zhao, J. Mater. Sci. Technol. 241(2026) 18, https://doi.org/10.1016/j.jmst.2025.04.009.

    72. [72]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59(2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.

    73. [73]

      W. Chi, Y. Dong, B. Liu, C. Pan, J. Zhang, H. Zhao, Y. Zhu, Z. Liu, Nat. Commun. 15(2024) 5316, https://doi.org/10.1038/s41467-024-49663-6.

    74. [74]

      Y. Zhang, J. Qiu, B. Zhu, M. Fedin, B. Cheng, J. Yu, L. Zhang, Chem. Eng. J. 444(2022) 136584, https://doi.org/10.1016/j.cej.2022.136584.

    75. [75]

      A. Hayat, Z. Ajmal, A. Alzahrani, S. Moussa, M. Khered, N. Almuqati, A. Alshammari, Y. Al-Hadeethi, H. Ali, Y. Orooji, Coord. Chem. Rev. 522(2025) 216218, https://doi.org/10.1016/j.ccr.2024.216218.

    76. [76]

      H. Ling, H. Sun, L. Lu, J. Zhang, L. Liao, J. Wang, X. Zhang, Y. Lan, R. Li, W. Lu, et al., Nat. Commun. 15(2024) 9505, https://doi.org/10.1038/s41467-024-53896-w.

    77. [77]

      Y. Wang, D. Meng, X. Zhao, Appl. Catal. B: Environ. 273(2020) 119064, https://doi.org/10.1016/j.apcatb.2020.119064.

    78. [78]

      X. Zhao, Y. You, S. Huang, Y. Wu, Y. Ma, G. Zhang, Z. Zhang, Appl. Catal. B: Environ. 278(2020) 119251, https://doi.org/10.1016/j.apcatb.2020.119251.

    79. [79]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64(2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.

    80. [80]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57(2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.

    81. [81]

      L. Wang, T. Yang, L. Peng, Q. Zhang, X. She, H. Tang, Q. Liu, Chin. J. Catal. 43(2022) 2720, https://doi.org/10.1016/S1872-2067(22)64133-0.

    82. [82]

      Z. Jiang, Y. Zhang, L. Zhang, B. Cheng, L. Wang, Chin. J. Catal. 43(2022) 226, https://doi.org/10.1016/S1872-2067(21)63832-9.

    83. [83]

      J. Zhao, M. Ji, H. Chen, Y. Weng, J. Zhong, Y. Li, S. Wang, Z. Chen, J. Xia, H. Li, Appl. Catal. B: Environ. 307(2022) 121162, https://doi.org/10.1016/j.apcatb.2022.121162.

    84. [84]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53(2023) 123, https://doi.org/10.1016/S1872-2067(23)64514-0.

  • 加载中
    1. [1]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    3. [3]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    4. [4]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    5. [5]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    6. [6]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    8. [8]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    9. [9]

      Ze Luo Yukun Zhu Yadan Luo Guangmin Ren Yonghong Wang Hua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-. doi: 10.1016/j.actphy.2025.100166

    10. [10]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    13. [13]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    15. [15]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    17. [17]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    18. [18]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    20. [20]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

Metrics
  • PDF Downloads(0)
  • Abstract views(55)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return