Citation:
Wenjun Zhu, Chenbin Ai, Kaiqiang Xu, Yatai Zhou, Xidong Zhang, Yong Zhang. WO3@TP inorganic@organic S-scheme photocatalyst for boosting H2O2 production[J]. Acta Physico-Chimica Sinica,
;2026, 42(3): 100184.
doi:
10.1016/j.actphy.2025.100184
-
Photocatalysis of H2O2 production using O2 and water is a cost-effective and environmental process, but developing high-performance photocatalysts is still a challenge. Herein, a WO3@polymer S-scheme photocatalyst was synthesized by in situ growing the Schiff-base polymer, tris-(4-aminophenyl)amine (TAPA)-terephthaldicarboxaldehyde (PDA) (labeled as TP) on the surface of WO3 nanofibers (WO3@TP) at room temperature. The obtained WO3@TP S-scheme heterojunction exhibited rapid carrier separation ability and short photogenerated carriers transfer distance. The optimal WO3@TP composite (WT-10) realized the H2O2evolution rate of 3242 μmol g-1 h-1, which was 137.3 and 4.6-fold higher than bare WO3 and TP, respectively. The combination of advanced characterizations regarding in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS), theoretical calculation, and femtosecond transient absorption spectroscopy (fs-TAS) validates the charge transfer mechanism within the WO3@TP S-scheme heterojunction. The occurrence of a dual-channel pathway (O2 reduction reaction (ORR) and water oxidation reaction (WOR) within the reaction system has been confirmed via electron paramagnetic resonance (EPR) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), thereby contributing to the highly efficient H2O2 evolution. This study not only gives an in-depth understanding of the ultrafast charge migration behavior in S-scheme heterojunction but also offers the rational design of inorganic@organic photocatalysts applied to solar-driven H2O2 production.
-
-
-
[1]
M. Sayed, K. Qi, X Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54(2025) 4874, https://doi.org/10.1039/D4CS01091D.
-
[2]
Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11(2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.
-
[3]
M. Sayed, H. Li, C. Bie, Acta Phys. -Chim. Sin. 41(2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117.
-
[4]
X. Li, Z. Wang, Acta Phys. -Chim. Sin. 41(2025) 100080, https://doi.org/10.1016/j.actphy.2025.100080.
-
[5]
E. Ghalehsefid, Z. Jahani, A. Aliabadi, M. Ghodrati, A. Khamesan, A. Parsaei-Khomami, M. Mousavi, M. Hosseini, J. Ghasemi, X. Li, J. Environ. Chem. Eng. 11(2023) 110160, https://doi.org/10.1016/j.jece.2023.110160.
-
[6]
X. Li, P. Li, Y. Li, H. Liu, Z. Yang, Y. Chen, X. Liao, J. Environ. Chem. Eng. 11(2023) 110594, https://doi.org/10.1016/j.jece.2023.110594.
-
[7]
Y. Yamada, M. Yoneda, S. Fukuzumi, Energy Environ. Sci. 8(2015) 1698, https://doi.org/10.1039/C5EE00748H.
-
[8]
R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138(2023) 256, https://doi.org/10.1016/j.jmst.2022.09.002.
-
[9]
S. Siahrostami, S. Villegas, A. Mostaghimi, S. Back, A. Farimani, H. Wang, A. Persson, J. Montoya, ACS Catal. 10(2020) 7495, https://doi.org/10.1021/acscatal.0c01641.
-
[10]
Y. Wang, G. Waterhouse, L. Shang, T. Zhang, Adv. Energy Mater. 11(2021) 2003323, https://doi.org/10.1002/aenm.202003323.
-
[11]
Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21(2025) 2409079, https://doi.org/10.1002/smll.202409079.
-
[12]
M. Qi, M. Conte, M. Anpo, Z. Tang, Y. Xu, Chem. Rev. 121(2021) 13051, https://doi.org/10.1021/acs.chemrev.1c00197.
-
[13]
Y. Liu, B. Wygant, K. Kawashima, O. Mabayoje, T. Hong, S. Lee, J. Lin, J. Kim, K. Yubuta, W. Li, J. Li, C. Mullins, Appl. Catal. B: Environ. 245(2019) 227, https://doi.org/10.1016/j.apcatb.2018.12.058.
-
[14]
H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan, S. Wang, Appl. Catal. B: Environ. 242(2019) 76, https://doi.org/10.1016/j.apcatb.2018.09.090.
-
[15]
L. Zhang, H. Zhang, B. Wang, X. Huang, Y. Ye, R. Lei, W. Feng, P. Liu, Appl. Catal. B: Environ. 244(2019) 529, https://doi.org/10.1016/j.apcatb.2018.11.055.
-
[16]
X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15(2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.
-
[17]
F. Puga, J. Navio, M. Hidalgo, J. Alloy. Compd. 867(2021) 159191, https://doi.org/10.1016/j.jallcom.2021.159191.
-
[18]
Z. Yuan, H. Huang, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, J. Hazard. Mater. 409(2021) 125027, https://doi.org/10.1016/j.jhazmat.2020.125027.
-
[19]
J. Lei, H. Yang, B. Weng, Y. Zheng, S. Chen, P. Menezes, S. Meng, Adv. Energy Mater. 15(2025) 2500950, https://doi.org/10.1002/aenm.202500950.
-
[20]
J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36(2024) 2400288, https://doi.org/10.1002/adma.202400288.
-
[21]
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal., B: Environ. 243(2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011.
-
[22]
L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9(2025) 328, https://doi.org/10.1038/s41570-025-00698-3.
-
[23]
Y. Che, B. Weng, K. Li, Z. He, S. Chen, S. Meng, Appl. Catal. B: Environ. 361(2025) 124656, https://doi.org/10.1016/j.apcatb.2024.124656.
-
[24]
K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36(2024) 2406460, https://doi.org/10.1002/adma.202406460.
-
[25]
Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64(2025) e202425456, https://doi.org/10.1002/anie.202505456.
-
[26]
B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82(2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.
-
[27]
J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11(2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975.
-
[28]
D. Xu, R. He, Z. Jiang, J. Mater. Sci. Technol. 236(2025) 280, https://doi.org/10.1016/j.jmst.2025.02.040.
-
[29]
Y. Che, K. Wang, C. Wang, B. Weng, S. Chen, S. Meng, J. Mater. Sci. Technol. 243(2026) 228, https://doi.org/10.1016/j.jmst.2025.04.030.
-
[30]
X. Zheng, J. Wu, H. Shi. Chin. J. Catal. 76(2025) 50, https://doi.org/10.1016/S1872-2067(25)64754-1.
-
[31]
M. Lv, S. Wang, H. Shi, J. Mater. Sci. Technol. 201(2024) 21, https://doi.org/10.1016/j.jmst.2024.02.073.
-
[32]
J. Wu, Q. Xie, C. Zhang, H. Shi, Acta Phys. -Chim. Sin. 41(2025) 100050, https://doi.org/10.1016/j.actphy.2025.100050.
-
[33]
Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40(2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.
-
[34]
C. Aitchison, S. Gonzalez-Carrero, S. Yao, M. Benkert, Z. Ding, N. Young, B. Willner, F. Moruzzi, Y. Lin, J. Tian, P. Nellist, J. Durrant, I. McCulloch, Adv. Mater. 36(2024) 2300037, https://doi.org/10.1002/adma.202300037.
-
[35]
C. Cheng, B. Zhu, B. Cheng, W. Macyk, L. Wang, J. Yu, ACS Catal. 13(2023) 459, https://doi.org/10.1021/acscatal.2c05001.
-
[36]
L. Zhang, Q. Shen, F. Huang, L. Jiang, J. Liu, J. Sheng, Y. Li, H. Yang, Appl. Surf. Sci. 608(2023) 155064, https://doi.org/10.1016/j.apsusc.2022.155064.
-
[37]
C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62(2023) e202218688, https://doi.org/10.1002/anie.202218688.
-
[38]
M. Gu, J. Zhang, I. Kurganskii, A. Poryvaev, M. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37(2025) 2414803, https://doi.org/10.1002/adma.202414803.
-
[39]
W. Song, R. Zhang, X. Bai, Q. Jia, H. Ji, J. Mater. Sci. -Mater. El. 31(2020) 610, https://doi.org/10.1007/s10854-019-02565-6.
-
[40]
C. Li, M. Gao, X. Sun, H. Tang, H. Dong, F. Zhang, Appl. Catal. B: Environ. 266(2020) 118586, https://doi.org/10.1016/j.apcatb.2020.118586.
-
[41]
L. Wang, H. Cheng, Z. Zhang, Y. Zhang, J. Huang, H. She, C. Liu, Q. Wang, Chem. Eng. J. 456(2023) 140990, https://doi.org/10.1016/j.cej.2022.140990.
-
[42]
F. Qaraah, S. Mahyoub, A. Hezam, A. Qaraah, Q. Drmosh, G. Xiu, Chin. J. Catal. 43(2022) 2637, https://doi.org/10.1016/S1872-2067(21)64038-X.
-
[43]
J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197(2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.
-
[44]
M. Bélières, V. Sartor, P. Fabre, R. Poteau, G. Bordeau, N. Chouini-Lalanne, Dyes Pigm. 153(2018) 275, https://doi.org/10.1016/j.dyepig.2018.02.022.
-
[45]
F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 152(2020) 224108, https://doi.org/10.1063/5.0004608.
-
[46]
Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11(2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.
-
[47]
S. Yao, T. Tang, Y. Shen, F. Yang, C. An, Sci. China Mater. 66(2023) 672, https://doi.org/10.1007/s40843-022-2185-1.
-
[48]
B. Zhang, L. Chen, Z. Zhang, Q. Li, P. Khangale, D. Hildebrandt, X. Liu, Q. Feng, S. Qiao, Adv. Sci. 9(2022) 2105912, https://doi.org/10.1002/advs.202105912.
-
[49]
B. Zhang, B. Sun, F. Liu, T. Gao, G. Zhou, 67(2024) 424, https://doi.org/10.1007/s40843-023-2754-8.
-
[50]
V. Nguyen, P. Singh, A. Sudhaik, P. Raizada, Q. Le, E. Helmy, Mater. Lett. 313(2022) 131781, https://doi.org/10.1016/j.matlet.2022.131781.
-
[51]
Q. Xu, S. Wageh, A. Al-Ghamdi, X. Li, J. Mater. Sci. Technol. 124(2022) 171, https://doi.org/10.1016/j.jmst.2022.02.016.
-
[52]
T. Han, H. Shi, Y. Chen, J. Mater. Sci. Technol. 174(2024) 30, https://doi.org/10.1016/j.jmst.2023.03.053.
-
[53]
Z. Long, Q. Li, C. Zhang, H. Shi, Acta Phys. -Chim. Sin. 41(2025) 100122, https://doi.org/10.1016/j.actphy.2025.100122.
-
[54]
K. Das, S. Mansingh, D. Sahoo, R. Mohanty, K. Parida, New J. Chem. 46(2022) 5785, https://doi.org/10.1039/D2NJ00067A.
-
[55]
X. Wang, K. Qi, K. Xu, Chin. J. Catal. 70(2025) 1, https://doi.org/10.1016/S1872-2067(24)60246-9.
-
[56]
Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang, J. Mater. Sci. Technol. 167(2023) 1, https://doi.org/10.1016/j.jmst.2023.03.045.
-
[57]
H. Chen, S. Gao, G. Huang, Q. Chen, Y. Gao, J. Bi, Appl. Catal. B: Environ. 343(2024) 123545, https://doi.org/10.1016/j.apcatb.2023.123545.
-
[58]
F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64(2025) e202414672, https://doi.org/10.1002/anie.202414672.
-
[59]
K. Meng, J. Zhang, B. Zhu, C Jiang, H. García, J. Yu, Adv. Mater. 37(2025) 2505088, https://doi.org/10.1002/adma.202505088.
-
[60]
X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11(2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.
-
[61]
Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41(2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.
-
[62]
B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. -Chim. Sin. 41(2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121.
-
[63]
J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40(2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.
-
[64]
W. Yu, C. Bie, Acta Phys. -Chim. Sin. 40(2024) 2307022, https://doi.org/10.3866/PKU.WHXB202307022.
-
[65]
J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59(2024) 4, https://doi.org/10.1016/S1872-2067(24)60011-2.
-
[66]
W. Yu, Chin. J. Catal. 73(2025) 73, 8, https://doi.org/10.1016/S1872-2067(25)60706-1.
-
[67]
C. Jiang, C. Yuan, K. Xu, X. Zhou, C. Bie, J. Mater. Sci. Technol. 231(2025) 36, https://doi.org/10.1016/j.jmst.2024.12.071.
-
[68]
Y. Zhao, Y. Zhang, L. Wang, C. Ai, J. Zhang, J. Mater. Sci. Technol. 229(2025) 213, https://doi.org/10.1016/j.jmst.2024.12.040.
-
[69]
Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233(2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005.
-
[70]
X. Zhou, S. Yang, X. Wang, Z. Wu, Y. Huo, J. Zhang, J. Mater. Sci. Technol. 234(2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027.
-
[71]
L. Wang, J. Zhao, J. Mater. Sci. Technol. 241(2026) 18, https://doi.org/10.1016/j.jmst.2025.04.009.
-
[72]
M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59(2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.
-
[73]
W. Chi, Y. Dong, B. Liu, C. Pan, J. Zhang, H. Zhao, Y. Zhu, Z. Liu, Nat. Commun. 15(2024) 5316, https://doi.org/10.1038/s41467-024-49663-6.
-
[74]
Y. Zhang, J. Qiu, B. Zhu, M. Fedin, B. Cheng, J. Yu, L. Zhang, Chem. Eng. J. 444(2022) 136584, https://doi.org/10.1016/j.cej.2022.136584.
-
[75]
A. Hayat, Z. Ajmal, A. Alzahrani, S. Moussa, M. Khered, N. Almuqati, A. Alshammari, Y. Al-Hadeethi, H. Ali, Y. Orooji, Coord. Chem. Rev. 522(2025) 216218, https://doi.org/10.1016/j.ccr.2024.216218.
-
[76]
H. Ling, H. Sun, L. Lu, J. Zhang, L. Liao, J. Wang, X. Zhang, Y. Lan, R. Li, W. Lu, et al., Nat. Commun. 15(2024) 9505, https://doi.org/10.1038/s41467-024-53896-w.
-
[77]
Y. Wang, D. Meng, X. Zhao, Appl. Catal. B: Environ. 273(2020) 119064, https://doi.org/10.1016/j.apcatb.2020.119064.
-
[78]
X. Zhao, Y. You, S. Huang, Y. Wu, Y. Ma, G. Zhang, Z. Zhang, Appl. Catal. B: Environ. 278(2020) 119251, https://doi.org/10.1016/j.apcatb.2020.119251.
-
[79]
S. Mao, R. He, S. Song, Chin. J. Catal. 64(2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.
-
[80]
Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57(2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.
-
[81]
L. Wang, T. Yang, L. Peng, Q. Zhang, X. She, H. Tang, Q. Liu, Chin. J. Catal. 43(2022) 2720, https://doi.org/10.1016/S1872-2067(22)64133-0.
-
[82]
Z. Jiang, Y. Zhang, L. Zhang, B. Cheng, L. Wang, Chin. J. Catal. 43(2022) 226, https://doi.org/10.1016/S1872-2067(21)63832-9.
-
[83]
J. Zhao, M. Ji, H. Chen, Y. Weng, J. Zhong, Y. Li, S. Wang, Z. Chen, J. Xia, H. Li, Appl. Catal. B: Environ. 307(2022) 121162, https://doi.org/10.1016/j.apcatb.2022.121162.
-
[84]
Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53(2023) 123, https://doi.org/10.1016/S1872-2067(23)64514-0.
-
[1]
-
-
-
[1]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
-
[2]
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
-
[3]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
-
[4]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[5]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[6]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021
-
[7]
Ziyang Long , Quanzheng Li , Chengliang Zhang , Haifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122
-
[8]
Qishen Wang , Changzhao Chen , Mengqing Li , Lingmin Wu , Kai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147
-
[9]
Ze Luo , Yukun Zhu , Yadan Luo , Guangmin Ren , Yonghong Wang , Hua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-. doi: 10.1016/j.actphy.2025.100166
-
[10]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
-
[11]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[12]
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105
-
[13]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[14]
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
-
[15]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
-
[16]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
-
[17]
Fan Fan , Hao Xiu , Yuting Wang , Yongpeng Cui , Yajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143
-
[18]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
-
[19]
Shumin Zhang , Yaqi Wang , Zelin Wang , Libo Wang , Changsheng An , Difa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136
-
[20]
Shiyi Chen , Jialong Fu , Jianping Qiu , Guoju Chang , Shiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(56)
- HTML views(5)
Login In
DownLoad: