Citation: Yao Xie, Shuangjun Li, Chao Chen, Siyu Fan, Ying Tao, Qitao Zhang. Ionic polarization engineering of polymeric carbon nitride toward efficient H2O2 photosynthesis[J]. Acta Physico-Chimica Sinica, ;2026, 42(5): 100183. doi: 10.1016/j.actphy.2025.100183 shu

Ionic polarization engineering of polymeric carbon nitride toward efficient H2O2 photosynthesis

  • Molten salt polarization, leveraging ionic interactions in high-temperature molten salts, emerges as a powerful yet underexplored strategy for structural engineering. It enables precise structural engineering of polymeric carbon nitride (PCN), offering a promising strategy to boost photocatalytic H2O2 synthesis. Herein, we report a controlled modulation strategy by varying LiCl/KCl ratios in molten salts to tailor the framework structures of PCN, achieving two distinct crystalline phases: heptazine-dominated (LKCN-0.95) and heptazine-triazine donor-acceptor (D-A) junction (LKCN-0.2). By integrating experimental and theoretical analyses, we revealed that Li+-rich molten salts promote highly ordered heptazine frameworks, while K+-dominated systems enable triazine incorporation. The optimized heptazine-dominated and heptazine-triazine junction exhibited 27-fold and 42-fold enhancements in H2O2 photosynthesis (3.3 and 5.2 mmol L−1 h−1) compared to pristine PCN (0.12 mmol L−1 h−1), alongside exceptional stability over five cycles. Mechanistic studies demonstrated that structural modulation enhances charge separation and optimizes oxygen adsorption/activation for selective 2e oxygen reduction. This work not only advances the understanding of molten salt-driven structural evolution but also provides a scalable approach for designing efficient photocatalysts toward solar-driven H2O2 photosynthesis.
  • 加载中
    1. [1]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005.  doi: 10.1016/j.jmst.2025.03.005

    2. [2]

      K. Zhang, Y. Li, S. Yuan, L. Zhang, Q. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212010, https://doi.org/10.3866/PKU.WHXB202212010.  doi: 10.3866/PKU.WHXB202212010

    3. [3]

      S. Zhou, H. Hu, H. Hu, Q. Jiang, H. Xie, C. Li, S. Gao, Y. Kong, Y. Hu, Sci. China Mater. 66 (2023) 1837, https://doi.org/10.1007/s40843-022-2337-7.  doi: 10.1007/s40843-022-2337-7

    4. [4]

      X. Li, Z. Wang, Acta Phys. -Chim. Sin. 41 (2025) 100080, https://doi.org/10.1016/j.actphy.2025.100080.  doi: 10.1016/j.actphy.2025.100080

    5. [5]

      M. Sayed, H. Li, C. Bie, Acta Phys. -Chim. Sin. (2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117.  doi: 10.1016/j.actphy.2025.100117

    6. [6]

      Y. Xie, Y. Li, Z. Huang, J. Zhang, X. Jia, X.-S. Wang, J. Ye, Appl. Catal. B 265 (2020) 118581, https://doi.org/10.1016/j.apcatb.2019.118581.  doi: 10.1016/j.apcatb.2019.118581

    7. [7]

      M. Xu, Z. Li, R. Shen, X. Zhang, Z. Zhang, P. Zhang, X. Li, Chin. J. Catal. 70 (2025) 431, https://doi.org/10.1016/S1872-2067(24)60247-0.  doi: 10.1016/S1872-2067(24)60247-0

    8. [8]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

    9. [9]

      Y. Xie, Q. Zhang, H. Sun, Z. Teng, C. Su, Acta Phys. -Chim. Sin. 39 (2023) 2301001, https://doi.org/10.3866/PKU.WHXB202301001.  doi: 10.3866/PKU.WHXB202301001

    10. [10]

      K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. -Chim. Sin. 40 (2024) 2403009, https://doi.org/10.3866/PKU.WHXB202403009.  doi: 10.3866/PKU.WHXB202403009

    11. [11]

      B. Zhao, W. Zhong, F. Chen, P. Wang, C. Bie, H. Yu, Chin. J. Catal. 52 (2023) 127, https://doi.org/10.1016/S1872-2067(23)64491-2.  doi: 10.1016/S1872-2067(23)64491-2

    12. [12]

      Y. Zhao, Y. Zhang, L. Wang, C. Ai, J. Zhang, J. Mater. Sci. Technol. 229 (2025) 213, https://doi.org/10.1016/j.jmst.2024.12.040.  doi: 10.1016/j.jmst.2024.12.040

    13. [13]

      R. Shen, C. Huang, L. Hao, G. Liang, P. Zhang, Q. Yue, X. Li, Nat. Commun. 16 (2025) 2457, https://doi.org/10.1038/s41467-025-57662-4.  doi: 10.1038/s41467-025-57662-4

    14. [14]

      M. He, X. Peng, S. Wu, Inorg. Chem. Front. 12 (2025) 3237, https://doi.org/10.1039/D4QI03352C.  doi: 10.1039/D4QI03352C

    15. [15]

      X. Cai, Y. Li, Y. Zhang, W. Lin, ACS Catal. 13 (2023) 15877, https://doi.org/10.1021/acscatal.3c05079.  doi: 10.1021/acscatal.3c05079

    16. [16]

      H. Chen, L. Nie, K. Xu, Y. Yang, C. Fang, Acta Phys. -Chim. Sin. 40 (2024) 2406019, https://doi.org/10.3866/PKU.WHXB202406019.  doi: 10.3866/PKU.WHXB202406019

    17. [17]

      J. Wang, G. Pan, N. Wang, S. Wang, Y. Zhu, Y. Li, Acta Phys. -Chim. Sin. (2025) 100168, https://doi.org/10.1016/j.actphy.2025.100168.  doi: 10.1016/j.actphy.2025.100168

    18. [18]

      N.-Y. Huang, Y.-T. Zheng, D. Chen, Z.-Y. Chen, C.-Z. Huang, Q. Xu, Chem. Soc. Rev. 52 (2023) 7949, https://doi.org/10.1039/D2CS00289B.  doi: 10.1039/D2CS00289B

    19. [19]

      H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang, X. Wang, Adv. Mater. 29 (2017) 1700008, https://doi.org/10.1002/adma.201700008.  doi: 10.1002/adma.201700008

    20. [20]

      H. Li, B. Cheng, J. Xu, J. Yu, S. Cao, EES Catal. 2 (2024) 411, https://doi.org/10.1039/D3EY00302G.  doi: 10.1039/D3EY00302G

    21. [21]

      G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. 130 (2018) 9516, https://doi.org/10.1002/ange.201804702.  doi: 10.1002/ange.201804702

    22. [22]

      H. Che, X. Gao, J. Chen, J. Hou, Y. Ao, P. Wang, Angew. Chem. Int. Ed. 60 (2021) 25546, https://doi.org/10.1002/anie.202111769.  doi: 10.1002/anie.202111769

    23. [23]

      B. Zhai, J. Zeng, Y. Wang, P. Niu, S. Wang, L. Li, Appl. Catal. 359 (2024) 124496, https://doi.org/10.1016/j.apcatb.2024.124496.  doi: 10.1016/j.apcatb.2024.124496

    24. [24]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. -Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/PKU.WHXB202406005.  doi: 10.3866/PKU.WHXB202406005

    25. [25]

      W. Freyland, Coulombic Fluids (2011) 5, https://doi.org/10.1007/978-3-642-17779-8_2.  doi: 10.1007/978-3-642-17779-8_2

    26. [26]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2.  doi: 10.1007/s40843-023-2755-2

    27. [27]

      D. Hwang, C.W. Schlenker, Chem. Commun. 57 (2021) 9330, https://doi.org/10.1039/D1CC02745J.  doi: 10.1039/D1CC02745J

    28. [28]

      B. Li, N. Li, Z. Guo, C. Wang, X. Wang, Z. Zhu, X. Tang, P. Huo, Chem. Eng. J. 500 (2024) 156843, https://doi.org/10.1016/j.cej.2024.156843.  doi: 10.1016/j.cej.2024.156843

    29. [29]

      Y. Zhang, Q. Cao, A. Meng, X. Wu, Y. Xiao, C. Su, Q. Zhang, Adv. Mater. 35 (2023) 2306831, https://doi.org/10.1002/adma.202306831.  doi: 10.1002/adma.202306831

    30. [30]

      G. Zhang, G. Li, T. Heil, S. Zafeiratos, F. Lai, A. Savateev, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 58 (2019) 3433, https://doi.org/10.1002/anie.201811938.  doi: 10.1002/anie.201811938

    31. [31]

      P. Yang, H. Ou, Y. Fang, X. Wang, Angew. Chem. 129 (2017) 4050, https://doi.org/10.1002/ange.201700286.  doi: 10.1002/ange.201700286

    32. [32]

      Y. Li, F. Gong, Q. Zhou, X. Feng, J. Fan, Q. Xiang, Appl. Catal. B 268 (2020) 118381, https://doi.org/10.1016/j.apcatb.2019.118381.  doi: 10.1016/j.apcatb.2019.118381

    33. [33]

      Y. Ma, H. Sun, Q. Wang, L. Sun, Z. Liu, Y. Xie, Q. Zhang, C. Su, D. Fan, Appl. Catal. B 335 (2023) 122878, https://doi.org/10.1016/j.apcatb.2023.122878.  doi: 10.1016/j.apcatb.2023.122878

    34. [34]

      H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 29 (2017) 1605148, https://doi.org/10.1002/adma.201605148.  doi: 10.1002/adma.201605148

    35. [35]

      M. Yang, R. Lian, X. Zhang, C. Wang, J. Cheng, X. Wang, Nat. Commun. 13 (2022) 4900, https://doi.org/10.1038/s41467-022-32623-3.  doi: 10.1038/s41467-022-32623-3

    36. [36]

      Q. Zhang, H. Che, H. Yang, B. Liu, Y. Ao, Angew. Chem. Int. Ed. 63 (2024) e2024093283, https://doi.org/10.1002/anie.202409328.  doi: 10.1002/anie.202409328

    37. [37]

      W. Ruland, B. Smarsly, Appl. Crystallogr. 35 (2002) 624, https://doi.org/10.1107/S0021889802011007.  doi: 10.1107/S0021889802011007

    38. [38]

      M.J. Bojdys, J.O. Müller, M. Antonietti, A. Thomas, Chem. -Eur. J. 14 (2008) 8177, https://doi.org/10.1002/chem.200800190.  doi: 10.1002/chem.200800190

    39. [39]

      F. Lin, T. Wang, Z. Ren, X. Cai, Y. Wang, J. Chen, J. Wang, S. Zang, F. Mao, L. Lv, J. Colloid Interface Sci. 636 (2023) 223, https://doi.org/10.1016/j.jcis.2023.01.036.  doi: 10.1016/j.jcis.2023.01.036

    40. [40]

      P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee, J. Lee, J.W. Han, D.-P. Kim, W. Choi, Nat. Commun. 10 (2019) 940, https://doi.org/10.1038/s41467-019-08731-y.  doi: 10.1038/s41467-019-08731-y

    41. [41]

      Q. Li, Y. Jiao, Y. Tang, J. Zhou, B. Wu, B. Jiang, H. Fu, J. Am. Chem. Soc. 145 (2023) 20837, https://doi.org/10.1021/jacs.3c05234.  doi: 10.1021/jacs.3c05234

    42. [42]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, https://doi.org/10.1016/S1872-2067(24)60077-X.  doi: 10.1016/S1872-2067(24)60077-X

    43. [43]

      Z. Yu, D. Zhang, C. Ai, J. Zhang, Q. Xiang, Chin. J. Catal. 67 (2024) 71, https://doi.org/10.1016/S1872-2067(24)60159-2.  doi: 10.1016/S1872-2067(24)60159-2

    44. [44]

      J. Hou, K. Wang, X. Zhang, Y. Wang, H. Su, C. Yang, X. Zhou, W. Liu, H. Hu, J. Wang, ACS Catal. 14 (2024) 10893, https://doi.org/10.1021/acscatal.4c00334.  doi: 10.1021/acscatal.4c00334

    45. [45]

      T. Zhang, W. Schilling, S.U. Khan, H.V. Ching, C. Lu, J. Chen, A. Jaworski, G. Barcaro, S. Monti, K. De Wael, ACS Catal. 11 (2021) 14087, https://doi.org/10.1021/acscatal.1c03733.  doi: 10.1021/acscatal.1c03733

    46. [46]

      X. Liu, Y. Li, K. Lin, Y. Jiang, J. Colloid Interface Sci. 654 (2024) 1228, https://doi.org/10.1016/j.jcis.2023.10.122.  doi: 10.1016/j.jcis.2023.10.122

    47. [47]

      Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan, Y. Zhu, Energy Environ. Sci. 11 (2018) 2581, https://doi.org/10.1039/C8EE01316K.  doi: 10.1039/C8EE01316K

    48. [48]

      T. Zhou, X. Liu, L. Zhao, M. Qiao, W. Lei, Acta Phys. -Chim. Sin. 40 (2024) 2309020, https://doi.org/10.3866/PKU.WHXB202309020.  doi: 10.3866/PKU.WHXB202309020

    49. [49]

      W. Yu, Chin. J. Catal. 73 (2025) 8, https://doi.org/10.1016/S1872-2067(25)60706-1.  doi: 10.1016/S1872-2067(25)60706-1

    50. [50]

      F. Li, X. Yue, Y. Liao, L. Qiao, K. Lv, Q. Xiang, Nat. Commun. 14 (2023) 3901, https://doi.org/10.1038/s41467-023-39578-z.  doi: 10.1038/s41467-023-39578-z

    51. [51]

      F. Sun, Y. Luo, S. Kuang, M. Zhou, W.-K. Ho, H. Tang, J. Mater. Sci. Technol. 229 (2025) 287, https://doi.org/10.1016/j.jmst.2024.12.060.  doi: 10.1016/j.jmst.2024.12.060

    52. [52]

      L. Zhang, R.-H. Li, X.-X. Li, S. Wang, J. Liu, X.-X. Hong, L.-Z. Dong, S.-L. Li, Y.-Q. Lan, Nat. Commun. 15 (2024) 537, https://doi.org/10.1038/s41467-024-44833-y.  doi: 10.1038/s41467-024-44833-y

    53. [53]

      K. Huang, G. Liang, S. Sun, H. Hu, X. Peng, R. Shen, X. Li, J. Mater. Sci. Technol. 193 (2024) 98, https://doi.org/10.1016/j.jmst.2024.01.034.  doi: 10.1016/j.jmst.2024.01.034

    54. [54]

      C. Shao, Q. He, M. Zhang, L. Jia, Y. Ji, Y. Hu, Y. Li, W. Huang, Y. Li, Chin. J. Catal. 46 (2023) 28, https://doi.org/10.1016/S1872-2067(22)64205-0.  doi: 10.1016/S1872-2067(22)64205-0

    55. [55]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    56. [56]

      Q. Zhang, Y.-C. Chu, Z. Liu, M. Hong, W. Fang, X.-P. Wu, X.-Q. Gong, Z. Chen, Appl. Catal. B 331 (2023) 122688, https://doi.org/10.1016/j.apcatb.2023.122688.  doi: 10.1016/j.apcatb.2023.122688

    57. [57]

      B. Qi, R. Shen, Z. Ren, Y. Teng, H. Ding, X. Zhang, Y. Zhang, L. Hao, X. Li, J. Mater. Sci. Technol. 232 (2025) 65, https://doi.org/10.1016/j.jmst.2025.03.003.  doi: 10.1016/j.jmst.2025.03.003

    58. [58]

      Y. Ren, Y. Li, G. Pan, N. Wang, Y. Xing, Z. Zhang, J. Mater. Sci. Technol. 171 (2024) 162, https://doi.org/10.1016/j.jmst.2023.06.052.  doi: 10.1016/j.jmst.2023.06.052

    59. [59]

      G. Zeng, G. Li, W. Yuan, J. Liu, Y. Wu, M. Li, J. Deng, X. Hu, X. Tan, Sep. Purif. Technol. 353 (2025) 128484, https://doi.org/10.1016/j.seppur.2024.128484.  doi: 10.1016/j.seppur.2024.128484

    60. [60]

      P. Zhang, Y. Tong, Y. Liu, J.J.M. Vequizo, H. Sun, C. Yang, A. Yamakata, F. Fan, W. Lin, X. Wang, Angew. Chem. Int. Ed. 132 (2020) 16343, https://doi.org/10.1002/ange.202006747.  doi: 10.1002/ange.202006747

    61. [61]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.  doi: 10.1016/j.jmst.2024.02.012

    62. [62]

      Z. Yu, X. Yue, J. Fan, Q. Xiang, ACS Catal. 12 (2022) 6345, https://doi.org/10.1021/acscatal.2c01563.  doi: 10.1021/acscatal.2c01563

    63. [63]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    64. [64]

      K.L. Corp, C.W. Schlenker, J. Am. Chem. Soc. 139 (2017) 7904, https://doi.org/10.1021/jacs.7b02869.  doi: 10.1021/jacs.7b02869

    65. [65]

      J. Zhu, S. Wageh, A.A. Al-Ghamdi, Chin. J. Catal. (2023) 5, https://doi.org/10.1016/S1872-2067(23)64438-9.  doi: 10.1016/S1872-2067(23)64438-9

    66. [66]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    67. [67]

      A. Hayat, Z. Ajmal, A.Y.A. Alzahrani, S.B. Moussa, M. Khered, N. Almuqati, A. Alshammari, Y. Al-Hadeethi, H. Ali, Y. Orooji, Coord. Chem. Rev. 522 (2025) 216218, https://doi.org/10.1016/j.ccr.2024.216218.  doi: 10.1016/j.ccr.2024.216218

    68. [68]

      S. Nayak, I.J. McPherson, K.A. Vincent, Angew. Chem. 130 (2018) 13037, https://doi.org/10.1002/ange.201804978.  doi: 10.1002/ange.201804978

    69. [69]

      W. Zeng, Y. Dong, X. Ye, ACS Catal. 15 (2025) 6036, https://doi.org/10.1021/acscatal.5c01205.  doi: 10.1021/acscatal.5c01205

  • 加载中
    1. [1]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    8. [8]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    9. [9]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    10. [10]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    12. [12]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    18. [18]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    19. [19]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(0)
  • Abstract views(182)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return