Citation: Vanita Vanita,  Roland Schoch,  Pascal Puphal,  Hasan Yilmaz,  Matthias Bauer,  Oliver Clemens. Structural and electrochemical behaviour of bilayer manganite LaSr2Mn2O6.96 cathode for all-solid-state fluoride ion batteries[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100181. doi: 10.1016/j.actphy.2025.100181 shu

Structural and electrochemical behaviour of bilayer manganite LaSr2Mn2O6.96 cathode for all-solid-state fluoride ion batteries

  • In this study, we explore the potential of the Ruddlesden-Popper (RP)-type bilayer manganite LaSr2Mn2O6.96 as an intercalation-based cathode material for all-solid-state fluoride ion batteries (FIBs). Structural changes of LaSr2Mn2O6.96 during fluoride intercalation and de-intercalation were analyzed via ex situ X-ray diffraction, revealing that F- insertion induces the formation of three distinct tetragonal phases. To understand the complex behavior of these phases, we examined the changes in the Mn oxidation state and coordination environment using X-ray absorption spectroscopy and magnetic measurements. Under stack pressure (20 kN), electrochemical cycling of LaSr2Mn2O6.96 in the potential range of 1 V to -1 V exhibited a continuous increase in specific capacity from capacity of ~30 mAh g-1 to ~68 mAh g-1 over 200 cycles, with ~99% coulombic efficiency and no signs of capacity fading. This makes the bilayer manganite LaSr2Mn2O6.96 a promising candidate for a cycling stable cathode for all-solid-state FIBs, especially under the application of stack pressure.
  • 加载中
    1. [1]

      D. Ahmed, K. M. Maraz, Mater. Eng. Res. 5(2023) 265, https://doi.org/10.25082/MER.2023.01.003

    2. [2]

      I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Renew. Sustain. Energy Rev. 13(2009) 1513, https://doi.org/10.1016/j.rser.2008.09.028

    3. [3]

      M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 30(2018) 1800561, https://doi.org/10.1002/adma.201800561

    4. [4]

      M. J. Lain, E. Kendrick, J. Power Sources 493(2021) 229690, https://doi.org/10.1016/j.jpowsour.2021.229690

    5. [5]

      C. Arbizzani, G. Gabrielli, M. Mastragostino, J. Power Sources 196(2011) 4801, https://doi.org/10.1016/j.jpowsour.2011.01.068

    6. [6]

      S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, J. Electrochem. Soc. 162(2015) A3084, https://doi.org/10.1149/2.0121502jes

    7. [7]

      H. Lee, N. Sitapure, S. Hwang, J. S.-I. Kwon, Comput. Chem. Eng. 153(2021) 107415, https://doi.org/10.1016/j.compchemeng.2021.107415

    8. [8]

      X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou, W. Tang, J. B. Goodenough, Joule 4(2020) 1864, https://doi.org/10.1016/j.joule.2020.06.016

    9. [9]

      H. Vikström, S. Davidsson, M. Höök, Appl. Energy 110(2013) 252, https://doi.org/10.1016/j.apenergy.2013.04.005

    10. [10]

      S. E. Kesler, P. W. Gruber, P. A. Medina, G. A. Keoleian, M. P. Everson, T. J. Wallington, Ore Geol. Rev. 48(2012) 55, https://doi.org/10.1016/j.oregeorev.2012.05.006

    11. [11]

      G. M. Mudd, S. M. Jowitt, Econ. Geol. 109(2014) 1813, https://doi.org/10.2113/econgeo.109.7.1813

    12. [12]

      X. Fu, D. N. Beatty, G. G. Gaustad, G. Ceder, R. Roth, R. E. Kirchain, M. Bustamante, C. Babbitt, E. A. Olivetti, Environ. Sci. Technol. 54(2020) 2985, https://doi.org/10.1021/acs.est.9b04975

    13. [13]

      F. Gschwind, G. Rodriguez-Garcia, D. Sandbeck, A. Gross, M. Weil, M. Fichtner, N. Hörmann, J. Fluorine Chem. 182(2016) 76, https://doi.org/10.1016/j.jfluchem.2015.12.002

    14. [14]

      M. Zhang, X. Cao, Y. Hao, H. Wang, J. Pu, B. Chi, Z. Shen, Energy Rev. 3(2024) 100083, https://doi.org/10.1016/j.enrev.2024.100083

    15. [15]

      M. A. Nowroozi, I. Mohammad, P. Molaiyan, K. Wissel, A. R. Munnangi, O. Clemens, J. Mater. Chem. A 9(2021) 5980, https://doi.org/10.1039/d0ta11656d

    16. [16]

      A. W. Xiao, G. Galatolo, M. Pasta, Joule 5(2021) 2823, https://doi.org/10.1016/j.joule.2021.09.016

    17. [17]

      H. Nakano, T. Matsunaga, T. Mori, K. Nakanishi, Y. Morita, K. Ide, K.-i. Okazaki, Y. Orikasa, T. Minato, K. Yamamoto, Chem. Mater. 33(2020) 459, https://doi.org/10.1021/acs.chemmater.0c04570

    18. [18]

      I. Mohammad, R. Witter, M. Fichtner, M. Anji Reddy, ACS Appl. Energy Mater. 1(2018) 4766, https://doi.org/10.1021/acsaem.8b00864

    19. [19]

      Y. Yu, M. Lei, D. Li, C. Li, Adv. Energy Mater. 13(2023) 2203168, https://doi.org/10.1002/aenm.202203168

    20. [20]

      Y. Yu, G. Li, C. Li, Adv. Funct. Mater. 35(2025) 2410891, https://doi.org/10.1002/adfm.202410891

    21. [21]

      G. Li, D. Li, M. Lei, C. Li, Adv. Energy Mater. 15(2025) 2404282, https://doi.org/10.1002/aenm.202404282

    22. [22]

      G. Li, Y. Yu, D. Li, C. Li, Adv. Funct. Mater. 34(2024) 2406421, https://doi.org/10.1002/adfm.202406421

    23. [23]

      D. T. Thieu, M. Hammad, H. Bhatia, T. Diemant, V. S. K. Chakravadhanula, R. J. Behm, C. Kubel, M. Fichtner, Adv. Funct. Mater. 27(2017) 1701051, https://doi.org/10.1002/adfm.201701051

    24. [24]

      I. Mohammad, R. Witter, Mater. Lett. 244(2019) 159, https://doi.org/10.1016/j.matlet.2019.02.052

    25. [25]

      M. A. Nowroozi, I. Mohammad, P. Molaiyan, K. Wissel, A. R. Munnangi, O. Clemens, J. Mater. Chem. A 9(2021) 5980, https://doi.org/10.1039/d0ta11656d

    26. [26]

      M. A. Nowroozi, K. Wissel, M. Donzelli, N. Hosseinpourkahvaz, S. Plana-Ruiz, U. Kolb, R. Schoch, M. Bauer, A. M. Malik, J. Rohrer, S. Ivlev, F. Kraus, O. Clemens, Commun. Mater. 1(2020) 27, https://doi.org/10.1038/s43246-020-0030-5

    27. [27]

      K. Wissel, A. M. Malik, S. Vasala, S. Plana-Ruiz, U. Kolb, P. R. Slater, I. da Silva, L. Alff, J. Rohrer, O. Clemens, Chem. Mater. 32(2020) 3160, https://doi.org/10.1021/acs.chemmater.0c00193

    28. [28]

      K. Wissel, R. Schoch, T. Vogel, M. Donzelli, G. Matveeva, U. Kolb, M. Bauer, P. R. Slater, O. Clemens, Chem. Mater. 33(2021) 499, https://doi.org/10.1021/acs.chemmater.0c01762

    29. [29]

      M. A. Nowroozi, S. Ivlev, J. Rohrer, O. Clemens, J. Mater. Chem. A 6(2018) 4658, https://doi.org/10.1039/c7ta09427b

    30. [30]

      M. A. Nowroozi, K. Wissel, J. Rohrer, A. R. Munnangi, O. Clemens, Chem. Mater. 29(2017) 3441, https://doi.org/10.1021/acs.chemmater.6b05075

    31. [31]

      Y. Wang, K. Yamamoto, Y. Tsujimoto, T. Matsunaga, D. Zhang, Z. Cao, K. Nakanishi, T. Uchiyama, T. Watanabe, T. Takami, H. Miki, H. Iba, K. Maeda, H. Kageyama, Y. Uchimoto, Chem. Mater. 34(2022) 609, https://doi.org/10.1021/acs.chemmater.1c03189

    32. [32]

      V. Vanita, G. Mezzadra., C. Tealdi, O. Clemens, ACS Appl. Energy Mater. 8(2025) 7562, https://doi.org/10.1021/acsaem.5c00875

    33. [33]

      S. Vasala, A. Jakob, K. Wissel, A. I. Waidha, L. Alff, O. Clemens, Adv. Electron Mater. 6(2020) 1900974, https://doi.org/10.1002/aelm.201900974

    34. [34]

      H. Miki, K. Yamamoto, C. Shuo, T. Matsunaga, M. Kumar, N. Thakur, Y. Sakaguchi, T. Watanabe, H. Iba, H. Kageyama, Y. Uchimoto, Solid State Ionics 406(2024) 116480, https://doi.org/10.1016/j.ssi.2024.116480

    35. [35]

      H. Miki, K. Yamamoto, H. Nakaki, T. Yoshinari, K. Nakanishi, S. Nakanishi, H. Iba, J. Miyawaki, Y. Harada, A. Kuwabara, Y. Wang, T. Watanabe, T. Matsunaga, K. Maeda, H. Kageyama, Y. Uchimoto, J. Am. Chem. Soc. 146(2024) 3844, https://doi.org/10.1021/jacs.3c10871

    36. [36]

      G. Galatolo, O. Alshangiti, C. Di Mino, G. Matthews, A. W. Xiao, G. J. Rees, M. Schart, Y. A. Chart, L. F. Olbrich, M. Pasta, ACS Energy Lett. 9(2023) 85, https://doi.org/10.1021/acsenergylett.3c02228

    37. [37]

      H. Chen, T. Aalto, V. Vanita, O. Clemens, Small Struct. 5(2024) 2300570, https://doi.org/10.1002/sstr.202300570

    38. [38]

      M. H. Ehsani, M. E. Ghazi, P. Kameli, F. S. Razavi, J. Alloy Compd. 586(2014) 261, https://doi.org/10.1016/j.jallcom.2013.10.002

    39. [39]

      V. Vanita, A. I. Waidha, S. Vasala, P. Puphal, R. Schoch, P. Glatzel, M. Bauer, O. Clemens, J. Mater. Chem. A 12(2024) 8769, https://doi.org/10.1039/d4ta00704b

    40. [40]

      L. Aikens, L. Gillie, R. Li, C. Greaves, J. Mater. Chem. A 12(2002) 264, https://doi.org/10.1039/B105550J

    41. [41]

      C. Greaves, J. L. Kissick, M. G. Francesconi, L. D. Aikens, L. J. Gillie, J. Mater. Chem. A 9(1999) 111, https://doi.org/10.1039/A804447C

    42. [42]

      R. S. Liu, L. Y. Jang, J. M. Chen, J. B. Wu, R. G. Liu, J. G. Lin, C. Y. Huang, Solid State Commun. 105(1998) 605, https://doi.org/10.1016/S0038-1098(98)80003-3

    43. [43]

      M. Abu-Samak, U. Kumar, A. M. Quraishi, R. Kumar, S. Kumar, S. Dalela, M. A. Ahmad, B. L. Choudhary, P. A. Alvi, Phys. B 628(2022) 413562, https://doi.org/41356210.1016/j.physb.2021.413562

    44. [44]

      T. Yamamoto, Int. Tables Crystallogr. 1(2024) 80, https://doi.org/10.1107/S157487072000751X

    45. [45]

      M. Kubota, H. Yoshizawa, H. Fujioka, K. Hirota, K. Ohoyama, Y. Endoh, Y. Moritomo, J. Phys. Soc. Jpn. 69(2000) 1606, https://doi.org/10.1143/JPSJ.69.1606

    46. [46]

      I. B. Sharma, D. Singh, Proc. Indian Acad. Sci. Chem. Sci. 107(1995) 189, https://doi.org/10.1007/BF02884435

    47. [47]

      A. S. Erchidi Elyacoubi, R. Masrour, A. Jabar, E. K. Hlil, J. Low Temp. Phys. 203(2021) 419, https://doi.org/10.1007/s10909-021-02592-w

    48. [48]

      Tommi Hendrik Aalto, T. Widder, Eberhard Goering, Peter Nagel, Kerstin Wissel, Oliver Clemens Preprint, https://doi.org/10.26434/chemrxiv-2025-qlbkp

    49. [49]

      T. H. Aalto, R. Talei, K. Küster, G. Schmitz, O. Clemens, Batteries Supercaps (2025) 2500195, https://doi.org/10.1002/batt.202500195

    50. [50]

      H. Chen, R. Schoch, J. N. Chotard, Y. M. Thiebes, K. Wissel, R. Niewa, M. Bauer, O. Clemens, Small Methods (2025) e2500374, https://doi.org/10.1002/smtd.202500374

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    10. [10]

      Keke Gao Haozhe Xu Xingkun Liu Chunwen Sun . Cr-doped lithium-rich manganese-based materials as a cathode for high-performance all-solid-state lithium batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100200-. doi: 10.1016/j.actphy.2025.100200

    11. [11]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    15. [15]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

Metrics
  • PDF Downloads(0)
  • Abstract views(44)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return