Citation: Débora Ferreira dos Santos Morais, José Luis Tirado, Carlos Pérez-Vicente, Fabiana Villela da Motta, Pedro Lavela, Mauricio Bomio, Sergio Lavela. Unlocking the performance of sodium-ion batteries by coating Na3V2(PO4)3 with Nb2O5[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100180. doi: 10.1016/j.actphy.2025.100180 shu

Unlocking the performance of sodium-ion batteries by coating Na3V2(PO4)3 with Nb2O5

  • Corresponding author: José Luis Tirado, iq1ticoj@uco.es
  • Received Date: 24 June 2025
    Revised Date: 26 August 2025
    Accepted Date: 4 September 2025

  • Na3V2(PO4)3 (NVP) is a promising cathode material for sodium-ion batteries owing to its NASICON-type framework, which enables efficient reversible sodium insertion. However, its practical performance is limited by slow charge transfer at high cycling rates and cycling instability. Here, we report a facile impregnation method to deposit Nb2O5 on NVP particles, aiming to enhance high-rate capability and long-term cycling stability. Structural and spectroscopic analyses (XRD, electron microscopy, Raman, XPS, and X-ray fluorescence spectroscopy) confirm the crystallinity of NVP and the uniform presence of Nb2O5 on particle surfaces without compromising sodium reversibility. Electrochemical measurements reveal that Nb2O5-coated samples show the highest diffusion coefficients, ensuring superior high-rate performance and cycling stability. The 3% Nb2O5 coating delivers the highest diffusion coefficients, superior cycling stability, and sustained capacity retention at a 1C rate. Cyclic voltammetry and impedance spectroscopy indicate enhanced surface capacitance, facilitating rapid sodium storage. XPS shows the conversion of Nb2O5 into NbF5, resulting from HF scavenging, which improved interfacial stability. Extended cycling tests validate the long-term durability of the coated electrode. These results demonstrate that Nb2O5 surface modification is an effective strategy to overcome the intrinsic limitations of NVP, offering a viable route to high-performance sodium-ion batteries.
  • 加载中
    1. [1]

      C. McGlade, P. Ekins, Nature 517 (2015) 187, https://doi.org/10.1038/nature14016.  doi: 10.1038/nature14016

    2. [2]

      K. L. Swanson, G. Sugihara, A. A. Tsonis, Proc. Natl. Acad. Sci. 106 (2009) 16120, https://doi.org/10.1073/pnas.0908699106.  doi: 10.1073/pnas.0908699106

    3. [3]

      N. L. Panwar, S. C. Kaushik, S. Kothari, Renew. Sustain. Energy Rev. 15 (2011) 1513, https://doi.org/10.1016/j.rser.2010.11.037.  doi: 10.1016/j.rser.2010.11.037

    4. [4]

      S. Asiaban, N. Kayedpour, A. E. Samani, D. Bozalakov, J. D. M. De Kooning, G. Crevecoeur, L. Vandevelde, Energies 14 (2021) 2630, https://doi.org/10.3390/en14092630.  doi: 10.3390/en14092630

    5. [5]

      S. Koohi-Kamali, V. V. Tyagi, N. A. Rahim, N. L. Panwar, H. Mokhlis, Renew. Sustain. Energy Rev. 25 (2013) 135, https://doi.org/10.1016/j.rser.2013.03.056.  doi: 10.1016/j.rser.2013.03.056

    6. [6]

      Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang, L. Dai, P. Zhou, B. Lu, J. Zhou, Z. He, Nano-Micro Lett. 14 (2022) 218, https://doi.org/10.1016/10.1007/s40820-022-00960-z.  doi: 10.1016/10.1007/s40820-022-00960-z

    7. [7]

      C. Helbig, A. M. Bradshaw, L. Wietschel, A. Thorenz, A. Tuma, J. Clean. Prod. 172 (2018) 274, https://doi.org/10.1016/j.jclepro.2017.10.122.  doi: 10.1016/j.jclepro.2017.10.122

    8. [8]

      K. C. Bhowmik, Md. A. Rahman, Md. M. Billah, A. Paul, Chem. Rec. 24 (2024) e202400176, https://doi.org/10.1002/tcr.202400176.  doi: 10.1002/tcr.202400176

    9. [9]

      Y. Wu, W. Shuang, Y. Wang, F. Chen, S. Tang, X.-L. Wu, Z. Bai, L. Yang, J. Zhang, Energy Rev. 7 (2024) 17, https://doi.org/10.1007/s41918-024-00215-y.  doi: 10.1007/s41918-024-00215-y

    10. [10]

      M. Mamoor, Y. Li, L. Wang, Z. Jing, B. Wang, G. Qu, L. Kong, Y. Li, Z. Guo, L. Xu, Green Energy and Resources 1 (2023) 100033, https://doi.org/10.1016/j.gerr.2023.100033.  doi: 10.1016/j.gerr.2023.100033

    11. [11]

      N. Nagmani, D. Pahari, P. Verma, S. Puravankara, J. Energy Storage 56 (2022) 105961, https://doi.org/10.1016/j.est.2022.105961.  doi: 10.1016/j.est.2022.105961

    12. [12]

      L. Terborg, S. Weber, F. Blaske, S. Passerini, M. Winter, U. Karst, S. J. Power Sources 242 (2013) 832, https://doi.org/10.1016/j.jpowsour.2013.05.125.  doi: 10.1016/j.jpowsour.2013.05.125

    13. [13]

      S. F. Lux, J. Chevalier, I. T. Lucas, R. Kostecki, ECS Electrochem. Lett. 2 (2013) A121, https://doi.org/10.1149/2.005312eel.  doi: 10.1149/2.005312eel

    14. [14]

      Y.-k. Sun, K.-j. Hong, J. Prakash, K. Amine, Electrochem. Commun. 4 (2002) 344, https://doi.org/10.1016/s1388-2481(02)00277-1.  doi: 10.1016/s1388-2481(02)00277-1

    15. [15]

      S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood, Carbon 105 (2016) 52, https://doi.org/10.1016/j.carbon.2016.04.008.  doi: 10.1016/j.carbon.2016.04.008

    16. [16]

      M. Lu, H. Cheng, Y. Yang, Electrochim. Acta 53 (2007) 3539, https://doi.org/10.1016/j.electacta.2007.09.062.  doi: 10.1016/j.electacta.2007.09.062

    17. [17]

      Y. Zhang, J. Zhou, W. Xu, W. Zhang, X. Li, W. Zhou, N. Wang, M. Liu, J. Mao, K. Dai, J. Electron. Mater. 53 (2024) 7699, https://doi.org/10.1007/s11664-024-11438-6.  doi: 10.1007/s11664-024-11438-6

    18. [18]

      E. Dogan, R. Whba, E. Altin, I. Moeez, K. Y. Chung, R. Stoyanova, V. Koleva, A. Aktas, S. Altin, S. Sahinbay, J. Power Sources 632 (2025) 236327, https://doi.org/10.1016/j.jpowsour.2025.236327.  doi: 10.1016/j.jpowsour.2025.236327

    19. [19]

      S. Bao, S.-H. Luo, J.-L. Lu, Ceram. Int. 46 (2020) 16080, https://doi.org/10.1016/j.ceramint.2020.03.160.  doi: 10.1016/j.ceramint.2020.03.160

    20. [20]

      M. L. Kalapsazova, K. L. Kostov, R. R. Kukeva, E. N. Zhecheva, R. K. Stoyanova, J. Phys. Chem. Lett. 12 (2021) 7804, https://doi.org/10.1021/acs.jpclett.1c01982.  doi: 10.1021/acs.jpclett.1c01982

    21. [21]

      T.-F. Yi, H. M. K. Sari, X. Li, F. Wang, Y.-R. Zhu, J. Hu, J. Zhang, X. Li, Nano Energy 85 (2021) 105955, https://doi.org/10.1021/10.1016/j.nanoen.2021.105955.  doi: 10.1021/10.1016/j.nanoen.2021.105955

    22. [22]

      G. Xu, Q. Wang, Y. Su, M. Liu, Q. Li, Y. Zhang, Acta Phys.-Chim. Sin. 38 (2022) 2009073, https://doi.org/10.3866/PKU.WHXB202009073.  doi: 10.3866/PKU.WHXB202009073

    23. [23]

      J. Xu, F. Xie, L. Huang, N Li, S Peng, W. Ma, K. Zhang, Y. Wu, L. Shao, X. Shi, J. Chen, L. Tao, K. Zhang, Z. Zhang, Y. Wang, Z. Sun, Nature Commun. 16 (2025) 4977, https://doi.org/10.1038/s41467-025-60186-6.  doi: 10.1038/s41467-025-60186-6

    24. [24]

      Y. Jiang, X. Hu, Electron. 1 (2023) e15, https://doi.org/10.1002/elt2.15.  doi: 10.1002/elt2.15

    25. [25]

      H. Kim, E. Lim, C. Jo, G. Yoon, J. Hwang, S. Jeong, J. Lee, K. Kang, Nano Energy 16 (2015) 62, https://doi.org/10.1016/j.nanoen.2015.05.015.  doi: 10.1016/j.nanoen.2015.05.015

    26. [26]

      H. Yang, R Xu, Y Gong, Y Yao, L Gu, Y. Yua, Nano Energy 48 (2018) 448, https://doi.org/10.1016/j.nanoen.2018.04.006.  doi: 10.1016/j.nanoen.2018.04.006

    27. [27]

      L. N. Zhao, T. Zhang, H. L. Zhao, Y. L. Hou, Mater. Today Nano 10 (2020) 100072, https://doi.org/10.1016/j.mtnano.2020.100072.  doi: 10.1016/j.mtnano.2020.100072

    28. [28]

      N. Guo, Z. Peng, W. Huo, Y. Li, S. Liu, L. Kang, X. Wu, L. Dai, L. Wang, S. C. Jun, Z. He, Small 19 (2023) 2303963, https://doi.org/10.1002/smll.202303963.  doi: 10.1002/smll.202303963

    29. [29]

      R. S. Kate, H. S. Jadhav, U. P. Chothe, K. Bhattacharjee, M. V. Kulkarni, R. J. Deokate, B. B. Kale, R. S. Kalubarme, J. Mater. Chem. A 12 (2024) 7418, https://doi.org/10.1039/d3ta07545a.  doi: 10.1039/d3ta07545a

    30. [30]

      F. He, J. Kang, T. Liu, H. Deng, B. Zhong, Y. Sun, Z. Wu, X. Guo, Ind. Eng. Chem. Res. 62 (2023) 3444, https://doi.org/10.1021/acs.iecr.2c04054.  doi: 10.1021/acs.iecr.2c04054

    31. [31]

      Q. Huang, Z. Hu, K. Chen, Z. Zeng, Y. Sun, Q. Kong, W. Feng, K. Wang, Z. Li, Z. Wu, T. Chen, X. Guo, ACS Appl. Energy Mater. 6 (2023) 2657, https://doi.org/10.1021/acsaem.2c04083.  doi: 10.1021/acsaem.2c04083

    32. [32]

      J. Hu, X. Li, Q. Liang, L. Xu, C. Ding, Y. Liu, Y. Gao, Nano-Micro Lett. 17 (2024) 33, https://doi.org/10.1007/s40820-024-01526-x.  doi: 10.1007/s40820-024-01526-x

    33. [33]

      R. Klee, M. Wiatrowski, M. J. Aragón, P. Lavela, G. F. Ortiz, R. Alcántara, J. L. Tirado, ACS Appl. Mater. Interfaces 9 (2016) 1471, https://doi.org/10.1021/acsami.6b12688.  doi: 10.1021/acsami.6b12688

    34. [34]

      S. Lavela, C. Pérez-Vicente, P. Lavela, J. L. Tirado, J. Power Sources 625 (2024) 235703, https://doi.org/10.1016/j.jpowsour.2024.235703.  doi: 10.1016/j.jpowsour.2024.235703

    35. [35]

      S. Lavela, C. Pérez-Vicente, P. Lavela, J. L. Tirado, J. Energy Storage 118 (2025) 116295, https://doi.org/10.1016/j.est.2025.116295.  doi: 10.1016/j.est.2025.116295

    36. [36]

      I. V. Zatovsky, NASICON-type Na3V2(PO4)3, Acta Cryst. E: Struct. Rep. Online 66 (2010) i12, https://doi.org/10.1107/s1600536810002801.  doi: 10.1107/s1600536810002801

    37. [37]

      Z. Jian, W. Han, X. Lu, H. Yang, Y. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Adv. Energy Mater. 3 (2012) 156, https://doi.org/10.1002/aenm.201200558.  doi: 10.1002/aenm.201200558

    38. [38]

      Y. Zhou, M. Sun, M. Cao, Y. Zeng, M. Su, A. Dou, X. Hou, Y. Liu, J. Colloid Interface Sci. 657 (2023) 472, https://doi.org/10.1016/j.jcis.2023.12.008.  doi: 10.1016/j.jcis.2023.12.008

    39. [39]

      A. L. Viet, M. V. Reddy, R. Jose, B. V. R. Chowdari, S. J. Phys. Chem. C 114 (2009) 664, https://doi.org/10.1021/jp9088589.  doi: 10.1021/jp9088589

    40. [40]

      S. Qi, R. Zuo, Y. Liu, Y. Wang, Mater. Res. Bull. 48 (2012) 1213, https://doi.org/10.1016/j.materresbull.2012.11.074.  doi: 10.1016/j.materresbull.2012.11.074

    41. [41]

      F. Tuinstra, J. L. Koenig, J. Chem. Phys. 53 (1970) 1126, https://doi.org/10.1063/1.1674108.  doi: 10.1063/1.1674108

    42. [42]

      A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 43 (8) (2005) 1731, https://doi.org/10.1016/j.carbon.2005.02.018.  doi: 10.1016/j.carbon.2005.02.018

    43. [43]

      A. H. Al-Marri, F. Janene, A. Moulahi, A. T. Mogharbel, E. S. Al-Farraj, A. M. Al-Mohaimeed, I. Mjejri, Ionics 29 (2023) 5505, https://doi.org/10.1007/s11581-023-05255-w.  doi: 10.1007/s11581-023-05255-w

    44. [44]

      L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, Sci. Rep. 6 (2016), 21177https://doi.org/10.1038/srep21177.  doi: 10.1038/srep21177

    45. [45]

      Y. Uebou, T. Kiyabu, S. Okada, J.-I. Yamaki, The Rep. Inst. Adv. Mater. Study, 16 (2002) 1.https://doi.org/10.15017/7951.  doi: 10.15017/7951

    46. [46]

      M. Gaberšček, Nat. Commun. 12 (2021) 6513, https://doi.org/10.1038/s41467-021-26894-5.  doi: 10.1038/s41467-021-26894-5

    47. [47]

      L. S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada, J.-I. Yamaki, J. Electrochem. Soc. 157 (2010) A536, https://doi.org/10.1149/1.3298903.  doi: 10.1149/1.3298903

    48. [48]

      X. Jiang, L. Yang, B. Ding, B. Qu, G. Ji, J. Y. Lee, J. Mater Chem A, 4 (2016) 14669, https://doi.org/10.1039/c6ta05030a.  doi: 10.1039/c6ta05030a

    49. [49]

      K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S. O. Steinmueller, S. H. Tolbert, B. M. Smarsly, B. Dunn, T. Brezesinski, J. Am. Chem. Soc. 132 (2010) 6982, https://doi.org/10.1021/ja9106385.  doi: 10.1021/ja9106385

    50. [50]

      T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S. H. Tolbert, J. Am. Chem. Soc. 131 (2009) 1802, https://doi.org/10.1021/ja8057309.  doi: 10.1021/ja8057309

    51. [51]

      J. E. B. Randles, Trans. Faraday Soc. 44 (1948) 327, https://doi.org/10.1039/TF9484400327.  doi: 10.1039/TF9484400327

    52. [52]

      A. Sevcík, Collect. Czech Chem. Commun. 13 (1948) 349, https://doi.org/10.1135/cccc19480349.  doi: 10.1135/cccc19480349

    53. [53]

      X. He, Y. Ling, Y. Wu, Y. Lei, D. Cao, C. Zhang, Small 21 (2025) 2412817, https://doi.org/10.1002/smll.202412817.  doi: 10.1002/smll.202412817

    54. [54]

      Y. Zhao, Z. Zhang, Y. Zheng, Y. Luo, X. Jiang, Y. Wang, Z. Wang, Y. Wu, Y. Zhang, X. Liu, B. Fang, Nanomaterials 14 (2024) 1604, https://doi.org/10.3390/nano14191604.  doi: 10.3390/nano14191604

    55. [55]

      H. Bai, X. Zhu, H. Ao, G. He, H. Xiao, Y. Chen, J. Energy Chem. 90 (2023) 518, https://doi.org/10.1016/j.jechem.2023.11.004.  doi: 10.1016/j.jechem.2023.11.004

    56. [56]

      R. Liu, S. Zheng, Y. Yuan, P. Yu, Z. Liang, W. Zhao, R. Shahbazian‐Yassar, J. Ding, J. Lu, Y. Yang, Adv. Energy Mater. 11 (2020) 2003256, https://doi.org/10.1002/aenm.202003256.

    57. [57]

      A. H. Al-Marri, F. Janene, A. Moulahi, A. T. Mogharbel, E. S. Al-Farraj, A. M. Al-Mohaimeed, I. Mjejri, Ionics 29 (2023) 5505, https://doi.org/10.1007/s11581-023-05255-w.  doi: 10.1007/s11581-023-05255-w

    58. [58]

      K. Islam, R. Sultana, A. Rakshit, U. K. Goutam, S. Chakraborty, SN Appl. Sci. 2 (2020) 782, https://doi.org/10.1007/s42452-020-2558-x.  doi: 10.1007/s42452-020-2558-x

    59. [59]

      Z. Li, F. Huang, B. Peng, A. Yan, H. Dong, H. Feng, H. Zhao, Mater. Lett. 214 (2017) 165, https://doi.org/10.1016/j.matlet.2017.11.124.  doi: 10.1016/j.matlet.2017.11.124

    60. [60]

      Y. Luo, P. Wang, L.-P. Ma, H.-M. Cheng, J. Alloys Compd. 453 (2007) 138, https://doi.org/10.1016/j.jallcom.2006.11.113.  doi: 10.1016/j.jallcom.2006.11.113

    61. [61]

      S. Lavela, A. C. D. N. Santos, F. V. Da Motta, M. R. D. Bomio, P. Lavela, C. P. Vicente, J. L. Tirado, ACS Appl. Mater. Interfaces 16 (2024) 56975, https://doi.org/10.1021/acsami.4c09706.  doi: 10.1021/acsami.4c09706

    62. [62]

      G. H. Waller, P. D. Brooke, B. H. Rainwater, S. Y. Lai, R. Hu, Y. Ding, F. M. Alamgir, K. H. Sandhage, M. L. Liu, J. Power Sources 306 (2015) 162, https://doi.org/10.1016/j.jpowsour.2015.11.114.  doi: 10.1016/j.jpowsour.2015.11.114

    63. [63]

      S. Lavela, C. Pérez-Vicente, P. Lavela, J. L. Tirado, J. Energy Storage 118 (2025) 116295, https://doi.org/10.1016/j.est.2025.116295.  doi: 10.1016/j.est.2025.116295

    64. [64]

      L. Baggetto, N. J. Dudney, G. M. Veith, Electrochim. Acta 90 (2012) 135, https://doi.org/10.1016/j.electacta.2012.11.120.  doi: 10.1016/j.electacta.2012.11.120

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 100022-0. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    4. [4]

      Wenhui LiYakun TangYusheng ZhouYue ZhangWenhai ZhangQingtao MaLang LiuSen DongYuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119

    5. [5]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    7. [7]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    10. [10]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    13. [13]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    14. [14]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    15. [15]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    17. [17]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return