Citation: Yuhang Zhang, Yi Li, Yuehan Cao, Yingjie Shuai, Yu Zhou, Ying Zhou. Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100173. doi: 10.1016/j.actphy.2025.100173 shu

Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion

  • Corresponding author: Yuehan Cao, yhcao419@163.com Ying Zhou, yzhou@swpu.edu.cn
  • Received Date: 25 July 2025
    Revised Date: 22 August 2025
    Accepted Date: 24 August 2025

  • Methane, as an abundant resource, serves not only as an excellent fossil fuel but also as a pivotal feedstock for synthesizing high-value-added chemical products. Solar-driven methane conversion offers a highly promising pathway for the direct production of high-value chemicals such as methanol (CH3OH) and formaldehyde (HCHO) under mild conditions. However, the core challenge of this conversion process lies in the tendency of target products to undergo over-oxidation, resulting in low selectivity—a critical bottleneck that urgently requires breakthrough in this field. Herein, we constructed an Ir-modified CdS (Irx/CdS) photocatalytic system and proposed that regulating the generation types of key reaction intermediates via metallic Ir is an effective strategy to enhance the selectivity of target products and suppress over-oxidation. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) confirmed that the types of key intermediates generated during methane activation differ, which decisively influences the product distribution. On pure CdS surfaces, the key intermediate *CH3O tends to participate in subsequent deep oxidation reactions via its O atom, ultimately leading to over-oxidized products like CO2. In contrast, after Ir loading, the key reaction intermediate shifts to *CH3. The Ir sites facilitate the conversion of *CH3 to ‧CH3 radicals through localized electron transfer, and the generated ‧CH3 radicals rapidly combine with ‧OH radicals to selectively form CH3OH. The performance evaluation of photocatalytic methane conversion demonstrated that under conditions of 60 ℃, 0.1 MPa, and molecular oxygen as the oxidant, the 0.50 wt% Ir-loaded Ir0.50/CdS sample exhibited optimal performance: the yield of oxygenated liquid products (CH3OH and HCHO) reached 509.2 μmol g−1 h−1, with overall selectivity enhanced to 88%. Characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) revealed the coexistence of two valence states of Ir on the catalyst surface (metallic Ir0 and oxidized Ir4+), with the metallic state being dominant. The strategy proposed in this work—regulating intermediate species generation via metal modification to inhibit over-oxidation—provides a novel approach for the efficient conversion of methane into high-value oxygenated chemicals.
  • 加载中
    1. [1]

      Y. H. Chan, Z. P. Chan, S. S. M. Lock, C. L. Yiin, S. Y. Foong, M. K. Wong, M. A. Ishak, V. C. Quek, S. B. Ge, S. S. Lam, Chin. Chem. Lett. 35 (2024) 109329, https://doi.org/10.1016/j.cclet.2023.109329.  doi: 10.1016/j.cclet.2023.109329

    2. [2]

      S. Chu, Q. Wang, Front. Energy. 18 (2024) 717, https://doi.org/10.1007/s11708-024-0965-1.  doi: 10.1007/s11708-024-0965-1

    3. [3]

      Z. S. Yang, Q. Q. Zhang, H. Song, X. Chen, J. W. Cui, Y. H. Sun, L. Q. Liu, J. H. Ye, Chin. Chem. Lett. 35 (2024) 108418, https://doi.org/10.1016/j.cclet.2023.108418.  doi: 10.1016/j.cclet.2023.108418

    4. [4]

      Y. H. Niu, Z. Y. Chi, M. Li, MRE 4 (2024) 100282, https://doi.org/10.1016/j.matre.2024.100282.  doi: 10.1016/j.matre.2024.100282

    5. [5]

      S. Zhao, S. S. Shen, L. Han, B. C. Tian, N. Li, W. Chen, X. B. Li, Rare. Met. 43 (2024) 4038, https://doi.org/10.1007/s12598-024-02847-x.  doi: 10.1007/s12598-024-02847-x

    6. [6]

      L. F. Xiao, W. L. Ren, S. S. Shen, M. S. Chen, R. H. Liao, Y. T. Zhou, X. B. Li, Acta Phys. Chim. Sin. 40 (2024) 2308036, https://doi.org/10.3866/PKU.WHXB202308036.  doi: 10.3866/PKU.WHXB202308036

    7. [7]

      Q. X. Yue, R. H. Guo, R. F. Wang, S. L. An, G. F. Zhang, L. L. Guan, J. Inorg. Mater. 39 (2024) 1254, https://doi.org/10.15541/jim20240098.  doi: 10.15541/jim20240098

    8. [8]

      X. B. Li, Y. Y. Wan, F. Deng, Y. T. Zhou, P. H. Chen, F. Dong, J. Z. Jiang, Chin. Chem. Lett. 36 (2025) 111418, https://doi.org/10.1016/j.cclet.2025.111418.  doi: 10.1016/j.cclet.2025.111418

    9. [9]

      C. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, et al, Angew. Chem. Int. Ed. 51 (2012) 5129, https://doi.org/10.1002/anie.201108706.  doi: 10.1002/anie.201108706

    10. [10]

      K. T. Dinh, M. M. Sullivan, P. Serna, R. J. Meyer, M. Dinca, Y. Román-Leshkov, ACS Catal. 8 (2018) 8306, https://doi.org/10.1021/acscatal.8b01180.  doi: 10.1021/acscatal.8b01180

    11. [11]

      W. Y. Wang, W. Zhou, Y. C. Tang, W. C. Cao, S. R. Docherty, F. W. Wu, K. Cheng, Q. H. Zhang, C. Copéret, Y. Wang, J. Am. Chem. Soc. 145 (2023) 12928, https://doi.org/10.1021/jacs.3c04260.  doi: 10.1021/jacs.3c04260

    12. [12]

      H. Saito, H. Sato, T. Higashi, T. Sugimoto, Angew. Chem. Int. Ed. 62 (2023) e202306058, https://doi.org/10.1002/anie.202306058.  doi: 10.1002/anie.202306058

    13. [13]

      L. H. Luo, J. Luo, H. L. Li, F. N. Ren, Y. F. Zhang, A. D. Liu, W. X. Li, J. Zeng, Nat. Commun. 12 (2021) 1218, https://doi.org/10.1038/s41467-021-21482-z.  doi: 10.1038/s41467-021-21482-z

    14. [14]

      Z. Xiao, J. N. Shen, J. J. Zhang, D. M. Li, Y. Li, X. X. Wang, Z. Z. Zhang, J. Catal. 413 (2022) 20, https://doi.org/10.1016/j.jcat.2022.06.017.  doi: 10.1016/j.jcat.2022.06.017

    15. [15]

      Z. L. Wang, J. Wang, J. F. Zhang, K. Dai, Acta Phys. Chim. Sin. 39 (2023) 2209037, https://doi.org/10.3866/Pku.Whxb202209037.  doi: 10.3866/Pku.Whxb202209037

    16. [16]

      Z. S. Yang, Q. Q. Zhang, L. T. Ren, X. Chen, D. F. Wang, L. Q. Liu, J. H. Ye, Chem. Commun. 57 (2021) 871, https://doi.org/10.1039/d0cc07397k.  doi: 10.1039/d0cc07397k

    17. [17]

      K. Zheng, Y. Wu, J. C. Zhu, M. Y. Wu, X. C. Jiao, L. Li, S. M. Wang, M. H. Fan, J. Hu, W. S. Yan, et al, J. Am. Chem. Soc. 144 (2022) 12357, https://doi.org/10.1021/jacs.2c03866.  doi: 10.1021/jacs.2c03866

    18. [18]

      C. Sun, K. F. Zhao, Z. G. Yi, J. Inorg. Mater. 38 (2023) 1245, https://doi.org/10.15541/jim20230117.  doi: 10.15541/jim20230117

    19. [19]

      S. F. Cao, K. Zhang, B. Hanna, E. Al-Sayed, Chin. Chem. Lett. 33 (2022) 1757, https://doi.org/10.1016/j.cclet.2021.08.091.  doi: 10.1016/j.cclet.2021.08.091

    20. [20]

      Y. Ren, Q. Y. Liu, Y. X. Zhao, Q. Yang, S. G. He, Acta Phys. Chim. Sin. 36 (2020) 1904026, https://doi.org/10.3866/Pku.Whxb201904026.  doi: 10.3866/Pku.Whxb201904026

    21. [21]

      H. Song, X. G. Meng, Z. J. Wang, H. M. Liu, J. H. Ye, Joule. 3 (2019) 1606, https://doi.org/10.1016/j.joule.2019.06.023.  doi: 10.1016/j.joule.2019.06.023

    22. [22]

      N. D. Feng, H. W. Lin, H. Song, L. X. Yang, D. M. Tang, F. Deng, J. H. Ye, Nat. Commun. 12 (2021) 4652, https://doi.org/10.1038/s41467-021-24912-0.  doi: 10.1038/s41467-021-24912-0

    23. [23]

      A. Hu, L. Chang, Z. W. Zuo, Chin. Sci. Bull. 64 (2019) 1878, https://doi.org/10.1360/n972019-00115.  doi: 10.1360/n972019-00115

    24. [24]

      Y. H. Cao, W. Yu, C. Q. Han, Y. T. Yang, Z. Q. Rao, R. Guo, F. Dong, R. Y. Zhang, Y. Zhou, Angew. Chem. Int. Ed. 62 (2023) e202302196, https://doi.org/10.1002/anie.202302196.  doi: 10.1002/anie.202302196

    25. [25]

      Y. H. Cao, W. Yu, Y. Li, J. Meng, K. B. Zheng, C. Huang, X. Yang, Y. T. Yang, F. Dong, Y. Zhou, Adv. Energy Mater. 15 (2024) 2404871, https://doi.org/10.1002/aenm.202404871.  doi: 10.1002/aenm.202404871

    26. [26]

      J. J. Bolívar Caballero, I. N. Zaini, W. Yang, Appl. Energ. Combust. S. 10 (2022) 100064, https://doi.org/10.1016/j.jaecs.2022.100064.  doi: 10.1016/j.jaecs.2022.100064

    27. [27]

      C. Q. Han, Y. H. Cao, W. Yu, Z. A. Huang, F. Dong, L. Q. Ye, S. Yu, Y. Zhou, J. Am. Chem. Soc. 145 (2023) 8609, https://doi.org/10.1021/jacs.3c01317.  doi: 10.1021/jacs.3c01317

    28. [28]

      J. Ding, Z. Y. Teng, X. Z. Su, K. Kato, Y. H. Liu, T. Xiao, W. Liu, L. Y. Liu, Q. Zhang, X. Y. Ren, et al., Chem. 9 (2023) 1017, https://doi.org/10.1016/j.chempr.2023.02.011.  doi: 10.1016/j.chempr.2023.02.011

    29. [29]

      H. Song, X. G. Meng, S. Y. Wang, W. Zhou, X. S. Wang, T. Kako, J. H. Ye, J. Am. Chem. Soc. 141 (2019) 20507, https://doi.org/10.1021/jacs.9b11440.  doi: 10.1021/jacs.9b11440

    30. [30]

      T. C. Wei, J. Zhou, X. Q. An, MRE 4 (2024) 100285, https://doi.org/10.1016/j.matre.2024.100285.  doi: 10.1016/j.matre.2024.100285

    31. [31]

      P. P. Sun, J. Y. Zhang, Y. H. Song, Z. Mo, Z. G. Chen, H. Xu, Acta Phys. Chim. Sin. 40 (2024) 2311001, https://doi.org/10.3866/pku.whxb202311001.  doi: 10.3866/pku.whxb202311001

    32. [32]

      L. Cheng, Q. J. Xiang, Y. L. Liao, H. W. Zhang, Energy. Environ. Sci. 11 (2018) 1362, https://doi.org/10.1039/c7ee03640j.  doi: 10.1039/c7ee03640j

    33. [33]

      Y. Li, S. Yu, Y. H. Cao, Y. Huang, Q. H. Wang, Y. G. Duan, L. N. Li, K. B. Zheng, Y. Zhou, J. Mater. Sci. Technol. 193 (2024) 73, https://doi.org/10.1016/j.jmst.2024.01.021.  doi: 10.1016/j.jmst.2024.01.021

    34. [34]

      L. F. Jie, X. Gao, X. Q. Cao, S. Wu, X. X. Long, Q. Y. Ma, J. X. Su, Mat. Sci. Semicon. Proc. 176 (2024) 108288, https://doi.org/10.1016/j.mssp.2024.108288.  doi: 10.1016/j.mssp.2024.108288

    35. [35]

      H. W. Ding, B. Peng, Z. H. Wang, Q. F. Han, Acta Phys. Chim. Sin. 40 (2024) 2305048, https://doi.org/10.3866/pku.Whxb202305048.  doi: 10.3866/pku.Whxb202305048

    36. [36]

      Y. H. Cao, R. Guo, M. Z. Ma, Z. A. Huang, Y. Zhou, Acta Phys. Chim. Sin. 40 (2024) 2303029, https://doi.org/10.3866/pku.Whxb202303029.  doi: 10.3866/pku.Whxb202303029

    37. [37]

      Y. Li, S. Yu, J. L. Xiang, F. Y. Zhang, A. Q. Jiang, Y. G. Duan, C. Tang, Y. H. Cao, H. Guo, Y. Zhou, ACS Catal. 13 (2023) 8281, https://doi.org/10.1021/acscatal.3c01210.  doi: 10.1021/acscatal.3c01210

    38. [38]

      S. L. Wei, X. L. Zhu, P. Y. Zhang, Y. Y. Fan, Z. H. Sun, X. Zhao, D. X. Han, L. Niu, Appl. Catal. B-Environ. 283 (2021) 119661, https://doi.org/10.1016/j.apcatb.2020.119661.  doi: 10.1016/j.apcatb.2020.119661

    39. [39]

      W. C. Zhou, X. Y. Qiu, Y. H. Jiang, Y. Y. Fan, S. L. Wei, D. X. Han, L. Niu, Z. Y. Tang, J. Mater. Chem. A. 8 (2020) 13277, https://doi.org/10.1039/d0ta02793f.  doi: 10.1039/d0ta02793f

    40. [40]

      M. F. Kuehnel, K. L. Orchard, K. E. Dalle, E. Reisner, J. Am. Chem. Soc. 139 (2017) 7217, https://doi.org/10.1021/jacs.7b0036.  doi: 10.1021/jacs.7b0036

    41. [41]

      L. Zhu, Y. Liu, X. C. Peng, Y. B. Li, Y. L. Men, P. Liu, Y. X. Pan, ACS. Appl. Mater. Inter. 12 (2020) 12892, https://doi.org/10.1021/acsami.0c00163.  doi: 10.1021/acsami.0c00163

    42. [42]

      B. W. Qin, H. M. Yu, J. Chi, J. Jia, X. Q. Gao, D. W. Yao, B. L. Yi, Z. G. Shao, Rsc. Adv. 7 (2017) 31574, https://doi.org/10.1039/c7ra03675b.  doi: 10.1039/c7ra03675b

    43. [43]

      J. Mao, H. Liu, X. J. Cui, Y. L. Zhang, X. Y. Meng, Y. P. Zheng, M. S. Chen, Y. Pan, Z. C. Zhao, G. J. Hou, et al., Nat. Catal. 6 (2023) 1052, https://doi.org/10.1038/s41929-023-01030-2.  doi: 10.1038/s41929-023-01030-2

    44. [44]

      Y. K. Dai, B. Liu, Z. Y. Zhang, P. Guo, C. Liu, Y. L. Zhang, L. Zhao, Z. B. Wang, Adv. Mater. 35 (2023) e2210757, https://doi.org/10.1002/adma.202210757.  doi: 10.1002/adma.202210757

    45. [45]

      D. H. Mei, V. A. Glezakou, V. Lebarbier, L. Kovarik, H. Y. Wan, K. O. Albrecht, M. Gerber, R. Rousseau, R. A. Dagle, J. Catal. 316 (2014) 11, https://doi.org/10.1016/j.jcat.2014.04.021.  doi: 10.1016/j.jcat.2014.04.021

    46. [46]

      X. B. Li, Q. Liu, F. Deng, J. T. Huang, L. Han, C. Z. He, Z. Chen, Y. D. Luo, Y. F. Zhu, Appl. Catal. B: Environ. 314 (2022) 121502, https://doi.org/10.1016/j.apcatb.2022.121502.  doi: 10.1016/j.apcatb.2022.121502

    47. [47]

      Y. Lu, Y. Y. Wan, J. Liu, B. Hu, Y. Xie, X. B. Li, Sep. Purif. Technol. 358 (2025) 130126, https://doi.org/10.1016/j.seppur.2024.130126.  doi: 10.1016/j.seppur.2024.130126

  • 加载中
    1. [1]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    8. [8]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    9. [9]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    13. [13]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    15. [15]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return