Citation: Ling Zhou,  Long Li,  Liwen Huang,  Yan Wu. Enhanced H2O2 production performance via indirect two-electron reduction of HOF/BiVO4 (010) S-scheme photocatalyst[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100172. doi: 10.1016/j.actphy.2025.100172 shu

Enhanced H2O2 production performance via indirect two-electron reduction of HOF/BiVO4 (010) S-scheme photocatalyst

  • Corresponding author: Liwen Huang,  Yan Wu, 
  • Received Date: 15 July 2025
    Revised Date: 20 August 2025
    Accepted Date: 24 August 2025

  • Solar-driven oxygen reduction for H2O2 production offers a green, efficient, and environmentally friendly alternative to the conventional industrial anthraquinone process and direct H2/O2 synthesis. In this study, through targeted crystal facet engineering, a hydrogen-bonded organic framework (HOF) was selectively anchored onto the (010) facet of BiVO4, forming an S-scheme heterojunction where the HOF is the reducing side and oxygen reduction occurs to produce H2O2. This configuration significantly enhanced the H2O2 yield to 555 μmol g-1 h-1, representing a ~37% improvement compared to randomly contacted HOF/BiVO4 systems. In situ Kelvin probe force microscopy (KPFM) revealed the formation of an intrinsic electric field between the (110) and (010) facets of pristine BiVO4, with the (010) facet becoming electron-rich under illumination. Further investigation of the HOF/BiVO4 (010) material, where HOF is directionally anchored to the (010) facet of BiVO4, demonstrated the establishment of an additional built-in electric field between the two components. Thus, we propose a novel HOF/BiVO4(010) photocatalytic material featuring dual built-in electric fields in the heterojunctions, which significantly promote the dual directed charge transfer in the different facets of single crystal BiVO4 and the interface of the S-scheme heterojunction. In situ X-ray Photoelectron Spectroscopy (XPS) further confirmed the S-scheme heterojunction electron transfer mechanism. By introducing electron scavengers and hole trappers, we conclusively verified that the heterojunction-mediated photocatalytic process follows a two-electron Oxygen Reduction Reaction (ORR) pathway. Electron Paramagnetic Resonance (EPR) spectroscopy detected the presence of superoxide radicals (∙O2-), indicating that the ORR proceeds via an indirect two-electron transfer mechanism. The synergistic effects of the dual built-in electric fields, S-scheme heterojunction structure, and two-electron ORR pathway collectively contribute to the superior photocatalytic performance of this system.
  • 加载中
    1. [1]

      J. Qiu, D. Dai, J. Yao, Coord Chem. Rev. 501(2024) 215597, https://doi.org/10.1016/j.ccr.2023.215597.

    2. [2]

      J. Ji, Z. Wang, Q. Xu, Q. Zhu, M. Xing, Chem. Eur. J. 29(2023) e202203921. https://doi.org/10.1002/chem.202203921.

    3. [3]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. Chim. Sin. 41(2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.

    4. [4]

      H. Li, W. Wang, K. Xu, B. Cheng, J. Xu, S. Cao, Chin. J. Catal. 72(2025) 24, https://doi.org/10.1016/S1872-2067(24)60257-3.

    5. [5]

      X. Ruan, M. Xu, C. Ding, J. Leng, G. Fang, D. Meng, W. Zhang, Z. Jiang, S. Ravi, X. Cui, et al., Adv. Energy Mater. 15(2025) 2405478, https://doi.org/10.1002/aenm.202405478.

    6. [6]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41(2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.

    7. [7]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54(2025) 4874, https://doi.org/10.1039/D4CS01091D.

    8. [8]

      J. Li, N. Xu, Y. Zhang, H. Dong, C. Li, Chin. Chem. Lett. (2024) 110470, https://doi.org/10.1016/j.cclet.2024.110470.

    9. [9]

      X. Cheng, L. Liang, J. Ye, N. Li, B. Yan, G. Chen, Sci. Total Environ. 888(2023) 164086, https://doi.org/10.1016/j.scitotenv.2023.164086.

    10. [10]

      B. Xia, G. Liu, K. Fan, R. Chen, X. Liu, L. Li, Chin. J. Catal. 69(2025) 315, https://doi.org/10.1016/S1872-2067(24)60210-X.

    11. [11]

      Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21(2025) 2409079, https://doi.org/10.1002/smll.202409079.

    12. [12]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40(2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.

    13. [13]

      Y. Zhao, C. Yang, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63(2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0.

    14. [14]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63(2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0.

    15. [15]

      G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. Talebian-Kiakalaieh, J. Ran, Chin. J. Catal. 61(2024) 97, https://doi.org/10.1016/S1872-2067(24)60014-8.

    16. [16]

      Z. Lu, R. Chen, G. Liu, B. Xia, K. Fan, T. Liu, Y. Xia, S. Liu, B. You, Adv. Funct. Mater. (2025) 2500944, https://doi.org/10.1002/adfm.202500944.

    17. [17]

      B. Xia, G. Liu, K. Fan, R. Chen, X. Liu, L. Li, Chin. J. Catal. 69(2025) 315, https://doi.org/10.1016/S1872-2067(24)60210-X.

    18. [18]

      Z. Xie, H. Tan, H. Wu, R. Amal, J. Scott, Y. Ng, Mater. Today Energy 26(2022) 100986, https://doi.org/10.1016/j.mtener.2022.100986.

    19. [19]

      G. Wang, H. Cheng, Sep. Purif. Technol. 318(2023) 123949, https://doi.org/10.1016/j.seppur.2023.123949.

    20. [20]

      Y. Zhao, Q. Jia, Z. Tian, Y. Wang, J. Li, S. Song, T. Fu, X. Cui, G. Liu, X. Zhou, L. Jiang, J. Energy Chem. 103(2025) 877, https://doi.org/10.1016/j.jechem.2024.12.003.

    21. [21]

      D. Seo, V. Somjit, D.H. Wi, G. Galli, K. Choi, J. Am. Chem. Soc. 147(2025) 3261, https://doi.org/10.1021/jacs.4c13290.

    22. [22]

      K. Wang, M. Wang, J. Yu, D. Liao, H. Shi, X. Wang, H. Yu, ACS Appl. Nano Mater. 4(2021) 13158, https://doi.org/10.1021/acsanm.1c02688.

    23. [23]

      X. Wang, D. Liao, H. Yu, J. Yu, Dalton Trans. 47(2018) 6370, https://doi.org/10.1039/C8DT00780B.

    24. [24]

      X. Liu, G. Liu, T. Fu, K. Ding, J. Guo, Z. Wang, W. Xia, H. Shangguan, Adv. Sci. 11(2024) 2400101, https://doi.org/10.1002/advs.202400101.

    25. [25]

      Y. Yao, Q. Wu, S. Ren, Y. Zhao, L. Guan, Adv. Opt. Mater. 13(2025) 2402260, https://doi.org/10.1002/adom.202402260.

    26. [26]

      X. Li, Z. Su, H. Jiang, J. Liu, L. Zheng, H. Zheng, S. Wu, X. Shi, Small 20(2024) 2400617, https://doi.org/10.1002/smll.202400617.

    27. [27]

      Y. Lin, X. Jiang, S.T. Kim, S. Alahakoon, X. Hou, Z. Zhang, C. Thompson, R.A. Smaldone, C. Ke, J. Am. Chem. Soc. 139(2017) 7172, https://doi.org/10.1021/jacs.7b03204.

    28. [28]

      C. Ban, Y. Wang, Y. Feng, Z. Zhu, Y. Duan, J. Ma, X. Zhang, X. Liu, K. Zhou, H. Zou, D. Yu, X. Tao, L. Gan, G. Han, X. Zhou, Energy Environ. Sci. 17(2024) 518, https://doi.org/10.1039/D3EE02800C.

    29. [29]

      Q. Zhang, G. Liu, T. Liu, ACS Sustain. Chem. Eng. 12(2024) 5675, https://doi.org/10.1021/acssuschemeng.4c00637.

    30. [30]

      Q. Zhou, Y. Guo, Y. Zhu, Nat. Catal. 6(2023) 574, https://doi.org/10.1038/s41929-023-00972-x.

    31. [31]

      J. Wang, J. Bai, Y. Zhang, L. Li, C. Zhou, T. Zhou, J. Li, H. Zhu, B. Zhou, ACS Appl. Mater. Interfaces 15(2023) 14359, https://doi.org/10.1021/acsami.2c23169.

    32. [32]

      X. Luo, S. Yang, Z. Wang, Y. Xu, Sep. Purif. Technol. 318(2023) 123966, https://doi.org/10.1016/j.seppur.2023.123966.

    33. [33]

      N. Zhang, Q. Yin, S. Guo, K. Chen, T. Liu, P. Wang, Z. Zhang, T. Lu, Appl. Catal. B Environ. 296(2021) 120337, https://doi.org/10.1016/j.apcatb.2021.120337.

    34. [34]

      H. Shi, Y. Li, X. Wang, H. Yu, J. Yu, Appl. Catal. B Environ. 297(2021) 120414, https://doi.org/10.1016/j.apcatb.2021.120414.

    35. [35]

      H. Shi, Y. Li, K. Wang, S. Li, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 443(2022) 136429, https://doi.org/10.1016/j.cej.2022.136429.

    36. [36]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15(2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.

    37. [37]

      W. Wang, Z. Chen, C. Li, B. Cheng, K. Yang, S. Zhang, G. Luo, J. Yu, S. Cao, Adv. Funct. Mater. (2025) 2422307. https://doi.org/10.1002/adfm.202422307.

    38. [38]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. Chim. Sin. 40(2024) 2406005, https://doi.org/10.3866/PKU.WHXB202406005.

    39. [39]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64(2025) e202425038, https://doi.org/10.1002/anie.202425038.

    40. [40]

      H. Tan, C. Chai, J. Heng, Q.V. Thi, X. Wu, Y.H. Ng, E. Ye, Adv. Sci. 12(2025) 2407801, https://doi.org/10.1002/advs.202407801.

    41. [41]

      L. Jian, Y. Dong, H. Zhao, C. Pan, G. Wang, Y. Zhu, Appl. Catal. B Environ. 342(2024) 123340, https://doi.org/10.1016/j.apcatb.2023.123340.

    42. [42]

      L. Ding, Z. Pan, Q. Wang, Chin. Chem. Lett. 35(2024) 110125, https://doi.org/10.1016/j.cclet.2024.110125.

    43. [43]

      H. Luo, T. Shan, J. Zhou, L. Huang, L. Chen, R. Sa, Y. Yamauchi, J. You, Y. Asakura, Z. Yuan, et al., Appl. Catal. B Environ. 337(2023) 122933, https://doi.org/10.1016/j.apcatb.2023.122933.

    44. [44]

      L. Lin, Y. Ma, J. Vequizo, M. Nakabayashi, C. Gu, X. Tao, H. Yoshida, Y. Pihosh, Y. Nishina, A. Yamakata, et al., Nat. Commun. 15(2024) 397, https://doi.org/10.1038/s41467-024-44706-4.

    45. [45]

      Q. Zhang, B. Wang, H. Miao, J. Fan, T. Sun, E. Liu, Chem. Eng. J. 482(2024) 148844, https://doi.org/10.1016/j.cej.2024.148844.

    46. [46]

      X. Wang, S. Yuan, B. Feng, X. Qiu, C. Yu, W. Lu, X. Xu, Y. Hu, Y. Shi, J. Colloid Interface Sci. 691(2025) 137371, https://doi.org/10.1016/j.jcis.2025.137371.

    47. [47]

      J. Zhou, T. Shan, S. Wu, J. Li, F. Zhang, L. Huang, L. Chen, H. Xiao, Chem. Eng. J. 492(2024) 152441, https://doi.org/10.1016/j.cej.2024.152441.

    48. [48]

      J. Tang, X. Wang, Y. Huang, X. Du, Z. He, D. Wang, S. Song, Chem. Eng. J. 499(2024) 156055, https://doi.org/10.1016/j.cej.2024.156055.

    49. [49]

      K. Wang, Y. Yang, S. Farhan, Y. Wu, W. Lin, Chem. Eng. J. 490(2024) 151408, https://doi.org/10.1016/j.cej.2024.151408.

    50. [50]

      W. Fu, S. Wang, Y. Zhang, B. Cheng, Y. Wu, J. Mater. Sci. Technol. 232(2025) 181, https://doi.org/10.1016/j.jmst.2024.12.081.

    51. [51]

      S. Yang, K. Wang, Q. Chen, Y. Wu, J. Mater. Sci. Technol. 175(2024) 104, https://doi.org/10.1016/j.jmst.2023.07.044.

    52. [52]

      S. Yang, K. Wang, Z. Wu, Y. Wu, J. Mater. Sci. Technol. 200(2024) 253, https://doi.org/10.1016/j.jmst.2024.02.055.

    53. [53]

      R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64(2025) e202414229, https://doi.org/10.1002/anie.202414229.

    54. [54]

      M. Gu, Y. Yang, L. Zhang, B. Zhu, G. Liang, J. Yu, App. Catal. B: Environ. 324(2023) 122227, https://doi.org/10.1016/j.apcatb.2022.122227.

  • 加载中
    1. [1]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    2. [2]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    3. [3]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    4. [4]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    5. [5]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    6. [6]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    7. [7]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    8. [8]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    9. [9]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    10. [10]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    11. [11]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    12. [12]

      Ze Luo Yukun Zhu Yadan Luo Guangmin Ren Yonghong Wang Hua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-. doi: 10.1016/j.actphy.2025.100166

    13. [13]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    14. [14]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    15. [15]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    17. [17]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    19. [19]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(0)
  • Abstract views(53)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return