Citation: Yinghao Zhang,  Huaxin Liu,  Hanrui Ding,  Zhi Zheng,  Wentao Deng,  Guoqiang Zou,  Laiqiang Xu,  Hongshuai Hou,  Xiaobo Ji. The application of carbon dots in electrolytes of advanced batteries[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100170. doi: 10.1016/j.actphy.2025.100170 shu

The application of carbon dots in electrolytes of advanced batteries

  • Corresponding author: Laiqiang Xu,  Hongshuai Hou, 
  • Received Date: 29 June 2025
    Revised Date: 16 August 2025
    Accepted Date: 19 August 2025

  • In response to the growing demand for renewable energy, rechargeable batteries, such as lithium-ion batteries, are finding increasingly widespread applications in energy storage and daily life. Currently, the pursuit of batteries with high specific energy and enhanced safety is constrained by limitations in the electrolyte bulk and interfacial reactions. Consequently, modulating the electrolyte and its interphases is key to overcoming current bottlenecks and developing next-generation batteries. As an emerging nanomaterial, the rich surface functional groups and dopable sites of carbon dots (CDs) enable them to simultaneously regulate bulk ion dynamics and interface stability through surface chemistry design, showcasing immense potential in addressing the critical challenges in electrolytes. This review systematically summarizes the cutting-edge applications of CDs in electrolytes for lithium-ion, sodium-ion, and zinc-ion batteries. It introduces the structural characteristics, classification, and synthesis methods of CDs, and outlines their multifaceted roles as additives in liquid electrolytes, fillers in solid-state electrolytes, and interfacial regulators for solid composite electrolytes. A special focus is placed on elucidating the mechanisms of CDs in regulating ion deposition, constructing functionalized interfacial layers, and optimizing the electrolyte microenvironment. Finally, this review discusses the challenges and future outlook for CDs in electrolyte engineering, aiming to provide new perspectives and theoretical support for the design of battery systems with high specific energy and high safety.
  • 加载中
    1. [1]

      T. Liang, A. Vecchi, K. Knobloch, A. Sciacovelli, K. Engelbrecht, Y.L. Li, Y.L. Ding, Renew. Sust. Energy Rev. 163(2022) 112478, https://doi.org/10.1016/j.rser.2022.112478.

    2. [2]

      N. Nasajpour-Esfahani, H. Garmestani, M. Bagheritabar, D.J. Jasim, D. Toghraie, S. Dadkhah, H. Firoozeh, Renew. Sust. Energy Rev. 203(2024) 114783, https://doi.org/10.1016/j.rser.2024.114783.

    3. [3]

      P.X. Bai, X. Ji, J.X. Zhang, W.R. Zhang, S. Hou, H. Su, M.J. Li, T. Deng, L.S. Cao, S.F. Liu, et al., Angew. Chem. Int. Ed. 61(2022) e202202731, https://doi.org/10.1002/anie.202202731.

    4. [4]

      X.Y. Zheng, L.Q. Huang, X.L. Ye, J.X. Zhang, F.Y. Min, W. Luo, Y.H. Huang, Chem 7(2021) 2312, https://doi.org/10.1016/j.chempr.2021.02.025.

    5. [5]

      J.J. Xu, J.X. Zhang, T.P. Pollard, Q.D. Li, S. Tan, S.Y. Hou, H.L. Wan, F. Chen, H.X. He, E.Y. Hu, et al., Nature 614(2023) 694, https://doi.org/10.1038/s41586-022-05627-8.

    6. [6]

      X.Y. Wang, M. Chen, S.Y. Li, C. Zhao, W.D. Zhang, Z.Y. Shen, Y. He, G. Feng, Y.Y. Lu, ACS Cent. Sci. 7(2021) 2029, https://doi.org/10.1021/acscentsci.1c01014.

    7. [7]

      S.Z. Zhao, H.Y. Che, S.L. Chen, H.X. Tao, J.P. Liao, X.Z. Liao, Z.F. Ma, Electrochem. Energy Rev. 7(2024) 3, https://doi.org/10.1007/s41918-023-00196-4.

    8. [8]

      V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115(2015) 4744, https://doi.org/10.1021/cr500304f.

    9. [9]

      R.T. Guo, L. Li, B.W. Wang, Y.G. Xiang, G.Q. Zou, Y.R. Zhu, H.S. Hou, X.B. Ji, Energy Storage Mater. 37(2021) 8, https://doi.org/10.1016/j.ensm.2021.01.020.

    10. [10]

      Z.F. Ge, L.Q. Xu, Y.L. Xu, J.E. Wu, Z.L. Geng, X.T. Xiao, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Nano Energy 119(2024) 109053, https://doi.org/10.1016/j.nanoen.2023.109053.

    11. [11]

      S. Li, Z. Luo, H.Y. Tu, H. Zhang, W.N. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Energy Storage Mater. 42(2021) 679, https://doi.org/10.1016/j.ensm.2021.08.008.

    12. [12]

      H.Y. Tu, H.X. Liu, L.Q. Xu, Z. Luo, L. Li, Y. Tian, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Chem. Sci. 14(2023) 12194, https://doi.org/10.1039/d3sc04606k.

    13. [13]

      L.Q. Xu, S. Li, H.Y. Tu, F.J. Zhu, H.X. Liu, W.T. Deng, J.B. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, ACS Nano 17(2023) 22082, https://doi.org/10.1021/acsnano.3c08935.

    14. [14]

      L.Q. Xu, J.Y. Li, L. Li, Z. Luo, Y.E. Xiang, W.N. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Small 17(2021) 2102978, https://doi.org/10.1002/smll.202102978.

    15. [15]

      F.J. Zhu, L.Q. Xu, X.Y. Hu, M.S. Yang, H.X. Liu, C.L. Gan, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Angew. Chem. Int. Ed. 63(2024) e202410016, https://doi.org/10.1002/anie.202410016.

    16. [16]

      S. Mandani, D. Dey, B. Sharma, T.K. Sarma, Carbon 119(2017) 569, https://doi.org/10.1016/j.carbon.2017.04.075.

    17. [17]

      Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, et al., J. Am. Chem. Soc. 128(2006) 7756, https://doi.org/10.1021/ja062677d.

    18. [18]

      X.Y. Xu, R. Ray, Y.L. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, J. Am. Chem. Soc. 126(2004) 12736, https://doi.org/10.1021/ja040082h.

    19. [19]

      Y. Shi, H. Xu, T. Yuan, T. Meng, H. Wu, J. Chang, H. Wang, X. Song, Y. Li, X. Li, et al., Aggregate 3(2022) e108, https://doi.org/10.1002/agt2.108.

    20. [20]

      P. Fan, X.J. Zhang, H.H. Deng, X.H. Guan, Appl. Catal., B 285(2021) 119829, https://doi.org/10.1016/j.apcatb.2020.119829.

    21. [21]

      J.X. Qin, X.G. Yang, C.L. Shen, Y. Chang, Y. Deng, Z.F. Zhang, H. Liu, C.F. Lv, Y.Z. Li, C. Zhang, et al., Nano Energy 101(2022) 107549, https://doi.org/10.1016/j.nanoen.2022.107549.

    22. [22]

      W.Z. Song, X.X. Wang, S.L. Nong, M.R. Wang, S.M. Kang, F. Wang, L. Xu, Adv. Funct. Mater. 34(2024) 2402761, https://doi.org/10.1002/adfm.202402761.

    23. [23]

      M. Shaker, S. Ng, A.A.S. Ghazvini, S. Javanmardi, M.A. Gaho, Z. Jin, Q. Ge, J. Energy Storage 85(2024) 111040, https://doi.org/10.1016/j.est.2024.111040.

    24. [24]

      L. Ai, Y.S. Yang, B.Y. Wang, J.B. Chang, Z.Y. Tang, B. Yang, S.Y. Lu, Sci. Bull. 66(2021) 839, https://doi.org/10.1016/j.scib.2020.12.015.

    25. [25]

      J.R. Li, X.J. Zhao, X. Gong, Small 20(2024) 2400107, https://doi.org/10.1002/smll.202400107.

    26. [26]

      S. Li, L. Li, H.Y. Tu, H. Zhang, D.S. Silvester, C.E. Banks, G.Q. Zou, H.S. Hou, X.B. Ji, Mater. Today 51(2021) 188, https://doi.org/10.1016/j.mattod.2021.07.028.

    27. [27]

      A. Pal, G. Natu, K. Ahmad, A. Chattopadhyay, J. Mater. Chem. A 6(2018) 4111, https://doi.org/10.1039/c7ta10224k.

    28. [28]

      C. Ma, K. Dai, H.S. Hou, X.B. Ji, L.B. Chen, D.C. Ivey, W.F. Wei, Adv. Sci. 5(2018) 1700996, https://doi.org/10.1002/advs.201700996.

    29. [29]

      V. Nguyen, J.H. Si, L.H. Yan, X. Hou, Carbon 108(2016) 268, https://doi.org/10.1016/j.carbon.2016.07.019.

    30. [30]

      M.G. Yi, M.J. Jing, Y.C. Yang, Y.J. Huang, G.Q. Zou, T.J. Wu, H.S. Hou, X.B. Ji, Adv. Funct. Mater. 34(2024) 2400001, https://doi.org/10.1002/adfm.202400001.

    31. [31]

      K. Vishweswariah, N.G. Ningappa, M.D. Bouguern, M.R.A. Kumar, M.B. Armand, K. Zaghib, Adv. Energy Mater.(2025) 2501883, https://doi.org/10.1002/aenm.202501883.

    32. [32]

      L.L. Chen, L. Zhu, H.L. Cheng, W.Y. Xu, G.J. Li, Y.Q. Zhang, J.J. Gu, L. Chen, Z.L. Xie, Z.H. Li, et al., ACS Nano 18(2024) 23154, https://doi.org/10.1021/acsnano.4c05362.

    33. [33]

      K. Wang, J.Q. Gao, H.X. Liu, W.S. Jian, J.N. Huang, X.Y. Hu, S.Y. Lai, Y.F. Li, G.Q. Zou, H.S. Hou, et al., Small Struct. 6(2025) 2400343, https://doi.org/10.1002/sstr.202400343.

    34. [34]

      H. Zhang, Z. Luo, W.T. Deng, J.G. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, Chem. Eng. J. 461(2023) 142105, https://doi.org/10.1016/j.cej.2023.142105.

    35. [35]

      F.L. Yuan, Y.K. Wang, G. Sharma, Y.T. Dong, X.P. Zheng, P.C. Li, A. Johnston, G. Bappi, J.Z. Fan, H. Kung, et al., Nat. Photonics 14(2020) 171, https://doi.org/10.1038/s41566-019-0557-5.

    36. [36]

      B.Y. Wang, S.Y. Lu, Matter 5(2022) 110, https://doi.org/10.1016/j.matt.2021.10.016.

    37. [37]

      H.X. Liu, Y. Ye, F.J. Zhu, X. Zhong, D.Z. Luo, Y. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Angew. Chem. Int. Ed. 63(2024) e202409044, https://doi.org/10.1002/anie.202409044.

    38. [38]

      X.J. Li, X. Li, L. Jiang, P. Zuo, Y. Zhao, S.M. Wang, X.Z. Chen, M.S. Liang, L. Ma, Carbon 185(2021) 384, https://doi.org/10.1016/j.carbon.2021.09.043.

    39. [39]

      T.T. Long, Z.Y. Hu, Z.Y. Gao, H.M. Luo, H.C. Li, Y. Chen, L. Liu, D. Xu, Spectrochim. Acta, Part A 301(2023) 122947, https://doi.org/10.1016/j.saa.2023.122947.

    40. [40]

      R.Q. Ye, C.S. Xiang, J. Lin, Z.W. Peng, K.W. Huang, Z. Yan, N.P. Cook, E.L.G. Samuel, C.C. Hwang, G.D. Ruan, et al., Nat. Commun. 4(2013) 2943, https://doi.org/10.1038/ncomms3943.

    41. [41]

      J.C. Kong, Y.H. Wei, F. Zhou, L.T. Shi, S.J. Zhao, M.Y. Wan, X.F. Zhang, Molecules 29(2024) 2002, https://doi.org/10.3390/molecules29092002.

    42. [42]

      D.L. Sun, R.Y. Hong, J.Y. Liu, F. Wang, Y.F. Wang, Chem. Eng. J. 303(2016) 217, https://doi.org/10.1016/j.cej.2016.05.098.

    43. [43]

      Q.L. Zhao, C.Y. Fan, H. Bu, J. Gao, L.L. Li, X.F. Yu, X.J. Yang, Z.M. Lu, X.H. Zhang, Chem. Eng. J. 500(2024) 156704, https://doi.org/10.1016/j.cej.2024.156704.

    44. [44]

      Z. Han, L.K. Chen, G.R. Zheng, D.F. Zhang, K. Yang, G.Y. Xiao, H. Xu, Y.H. Li, X.F. An, Y.T. Ma, et al., Adv. Mater. 37(2025) 2416668, https://doi.org/10.1002/adma.202416668.

    45. [45]

      W. Zhao, Z.M. Lu, F.F. Song, J.B. Han, Q. Zhang, Y. Cong, A.Y. Lu, T. Gao, Colloids Surf., A 712(2025) 136459, https://doi.org/10.1016/j.colsurfa.2025.136459.

    46. [46]

      C.X. Wang, C.K. Qiao, F.J. Tian, R.X. Chen, L.L. Guo, T. Pang, J. Li, R.L. Pang, H.Z. Xie, Nanotechnology 36(2025) 245701, https://doi.org/10.1088/1361-6528/addaca.

    47. [47]

      D. Langford, Y. Reva, Y.F. Bo, K. Gubanov, M.J. Wu, A. Günay-Gürer, L.A. Mai, R.W. Crisp, I. Engelmann, E. Spiecker, et al., Angew. Chem. Int. Ed. 64(2025) e202418626, https://doi.org/10.1002/anie.202418626.

    48. [48]

      B. Vercelli, E. De Micheli, R. Donnini, M. Losurdo, H. Lange, B. La Ferla, A. Pavan, M. Saibene, G. Capitani, F. Ghezzi, et al., Small Struct. 6(2025) 2400481, https://doi.org/10.1002/sstr.202400481.

    49. [49]

      H. Safardoust-Hojaghan, O. Amiri, M. Salavati-Niasari, M. Hassanpour, H. Khojasteh, L.K. Foong, J. Mol. Liq. 301(2020) 112413, https://doi.org/10.1016/j.molliq.2019.112413.

    50. [50]

      C.Z. Xu, J.Z. Kang, Y.Q. Zhao, L. Zhu, J.T. Zhang, B.M. Wei, H.B. Wang, New J. Chem. 47(2023) 3159, https://doi.org/10.1039/d2nj04211h.

    51. [51]

      J.T. Li, W.J. Fu, X.Y. Zhang, Q.J. Zhang, D.D. Ma, Y.T. Wang, W.H. Qian, D. Zhu, Carbon 208(2023) 208, https://doi.org/10.1016/j.carbon.2023.03.039.

    52. [52]

      Z.H. Ma, Y. Han, X. Wang, G.W. Sun, Y. Li, Colloids Surf., A 652(2022) 129818, https://doi.org/10.1016/j.colsurfa.2022.129818.

    53. [53]

      H.X. Yu, X.Y. Zuo, X. Zhang, X.B. Wang, F. Zhou, Chem. Eng. J. 510(2025) 161810, https://doi.org/10.1016/j.cej.2025.161810.

    54. [54]

      A.A. Tyutrin, R. Wang, E.F. Martynovich, J. Lumin. 246(2022) 118806, https://doi.org/10.1016/j.jlumin.2022.118806.

    55. [55]

      H.S. Hou, C.E. Banks, M.J. Jing, Y. Zhang, X.B. Ji, Adv. Mater. 27(2015) 7861, https://doi.org/10.1002/adma.201503816.

    56. [56]

      L. Li, Y. Li, Y. Ye, R. Guo, A. Wang, G. Zou, H. Hou, X. Ji, ACS Nano 15(2021) 6872, https://doi.org/10.1021/acsnano.0c10624.

    57. [57]

      Y. Han, B.J. Tang, L. Wang, H. Bao, Y.H. Lu, C.T. Guan, L. Zhang, M.Y. Le, Z. Liu, M.H. Wu, ACS Nano 14(2020) 14761, https://doi.org/10.1021/acsnano.0c01899.

    58. [58]

      Z.H. Yan, J.K. Li, S. Zhou, X.M. Yang, Carbon 241(2025) 120394, https://doi.org/10.1016/j.carbon.2025.120394.

    59. [59]

      H.Z. Guo, Y.H. Lu, Z.D. Lei, H. Bao, M.W. Zhang, Z.M. Wang, C.T. Guan, B.J. Tang, Z. Liu, L. Wang, Nat. Commun. 15(2024) 4843, https://doi.org/10.1038/s41467-024-49172-6.

    60. [60]

      S.Z. Wang, J.Y. Shi, Z.H. Liu, Y.Y. Xia, Adv. Energy Mater. 14(2024) 2401526, https://doi.org/10.1002/aenm.202401526.

    61. [61]

      D. Lu, R.H. Li, M.M. Rahman, P.Y. Yu, L. Lv, S. Yang, Y.Q. Huang, C.C. Sun, S.Q. Zhang, H.K. Zhang, et al., Nature 627(2024) 101, https://doi.org/10.1038/s41586-024-07045-4.

    62. [62]

      K.L. Jungjohann, R.N. Gannon, S. Goriparti, S.J. Randolph, L.C. Merrill, D.C. Johnson, K.R. Zavadil, S.J. Harris, K.L. Harrison, ACS Energy Lett. 6(2021) 2138, https://doi.org/10.1021/acsenergylett.1c00509.

    63. [63]

      S. Li, Z. Luo, L. Li, J.G. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, Energy Storage Mater. 32(2020) 306, https://doi.org/10.1016/j.ensm.2020.07.008.

    64. [64]

      C. Chen, J.M. Zhang, B.R. Hu, Q.W. Liang, X.H. Xiong, Nat. Commun. 14(2023) 4018, https://doi.org/10.1038/s41467-023-39636-6.

    65. [65]

      Z.M. Hao, Y. Lu, G.J. Yang, Q. Zhao, Z.H. Yan, J. Chen, Adv. Mater. 37(2025) 2415258, https://doi.org/10.1002/adma.202415258.

    66. [66]

      S. Sen, F.H. Richter, Adv. Sci. 10(2023) 2303985, https://doi.org/10.1002/advs.202303985.

    67. [67]

      A.M. Haregewoin, A.S. Wotango, B.J. Hwang, Energy Environ. Sci. 9(2016) 1955, https://doi.org/10.1039/c6ee00123h.

    68. [68]

      D.K. Hong, Y. Choi, J. Ryu, J. Mun, W. Choi, M. Park, Y. Lee, N.S. Choi, G. Lee, B.S. Kim, et al., J. Mater. Chem. A 7(2019) 20325, https://doi.org/10.1039/c9ta06260b.

    69. [69]

      H.Y. Tu, S. Li, Z. Luo, L.Q. Xu, H. Zhang, Y.E. Xiang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Chem. Commun. 58(2022) 6449, https://doi.org/10.1039/d2cc01334g.

    70. [70]

      W.X. Liu, T. Xie, X.W. Wang, W.T. Deng, L. Huang, R. Khan, Y. Wang, H.S. Hou, D. Wang, Y.P. Wu, Adv. Funct. Mater. 34(2024) 2410843, https://doi.org/10.1002/adfm.202410843.

    71. [71]

      W.Y. Lu, Y.S. Liu, S.C. Cao, P.S. Yi, S. He, F.K. Zuo, L.L. Ma, M.X. Ye, J.F. Shen, Adv. Mater. 37(2025) 2500873, https://doi.org/10.1002/adma.202500873.

    72. [72]

      J. Chen, J.W. Wu, X.D. Wang, A.A. Zhou, Z.L. Yang, Energy Storage Mater. 35(2021) 70, https://doi.org/10.1016/j.ensm.2020.11.017.

    73. [73]

      F.Q. Liu, W.P. Wang, Y.X. Yin, S.F. Zhang, J.L. Shi, L. Wang, X.D. Zhang, Y. Zheng, J.J. Zhou, L. Li, et al., Sci. Adv. 4(2018) eaat5383, https://doi.org/10.1126/sciadv.aat5383.

    74. [74]

      X.A. Liu, L.D. Sun, F. Zhai, T. Wu, P. Wang, H.Y. Du, Y.B. Xu, X.L. Wang, Adv. Energy Mater. 15(26) (2025) 2405433, https://doi.org/10.1002/aenm.202405433.

    75. [75]

      Z.H. Huang, J.S. Wei, T.B. Song, J.W. Ni, F. Wang, H.M. Xiong, Smartmat 3(2022) 323, https://doi.org/10.1002/smm2.1121.

    76. [76]

      J. Bae, Y.T. Li, J. Zhang, X.Y. Zhou, F. Zhao, Y. Shi, J.B. Goodenough, G.H. Yu, Angew. Chem. Int. Ed. 57(2018) 2096, https://doi.org/10.1002/anie.201710841.

    77. [77]

      C. Guo, K. Du, R.M. Tao, Y.Q. Guo, S.H. Yao, J.X. Wang, D.Y. Wang, J.Y. Liang, S.Y. Lu, Adv. Funct. Mater. 33(2023) 2301111, https://doi.org/10.1002/adfm.202301111.

    78. [78]

      S.Y. Zhang, K.H. Gu, B.A. Lu, J.W. Han, J. Zhou, Acta Phys. Chim. Sin. 40(2024) 2309028, https://doi.org/10.3866/PKU.WHXB202309028.

    79. [79]

      N. Hong, S. Zhang, J. Li, H. Wang, J. Huang, X. Hu, B. Zhang, F. Hua, J. Zeng, W. Jian, et al., Angew. Chem. Int. Ed. 64(2025) e202423479, https://doi.org/10.1002/anie.202423479.

    80. [80]

      Z.H. Cui, C. Liu, A. Manthiram, Adv. Mater.(2025) 2420463, https://doi.org/10.1002/adma.202420463.

    81. [81]

      Y. Zhao, L.V. Goncharova, A. Lushington, Q. Sun, H. Yadegari, B.Q. Wang, W. Xiao, R.Y. Li, X.L. Sun, Adv. Mater. 29(2017) 1606663, https://doi.org/10.1002/adma.201606663.

    82. [82]

      X.Y. Liu, X.Y. Zheng, Y.M. Dai, B. Li, J.Y. Wen, T. Zhao, W. Luo, Adv. Mater. 35(2023) 2304256, https://doi.org/10.1002/adma.202304256.

    83. [83]

      Y.R. Zhong, Q.W. Shi, C.Q. Zhu, Y.F. Zhang, M. Li, J.S. Francisco, H.L. Wang, J. Am. Chem. Soc. 143(2021) 13929, https://doi.org/10.1021/jacs.1c06794.

    84. [84]

      H.Y. Tu, Y.H. Zhang, J.E. Wu, Y.J. Li, H.X. Liu, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Adv. Funct. Mater. 35(2025) 2413488, https://doi.org/10.1002/adfm.202413488.

    85. [85]

      J.C. Zhu, Z.W. Tie, S.S. Bi, Z.Q. Niu, Angew. Chem. Int. Ed. 63(2024) e202403712, https://doi.org/10.1002/anie.202403712.

    86. [86]

      X. Zhang, J.P. Hu, N. Fu, W.B. Zhou, B. Liu, Q. Deng, X.W. Wu, Infomat 4(2022) e12306, https://doi.org/10.1002/inf2.12306.

    87. [87]

      L. Jiang, Y.Q. Ding, L. Li, Y. Tang, P. Zhou, B.G. Lu, S.Y. Tian, J. Zhou, Nano-Micro Lett. 17(2025) 202, https://doi.org/10.1007/s40820-025-01709-0.

    88. [88]

      H. Zhang, R.T. Guo, S. Li, C. Liu, H.Y. Li, G.Q. Zou, J.G. Hu, H.S. Hou, X.B. Ji, Nano Energy 92(2022) 106752, https://doi.org/10.1016/j.nanoen.2021.106752.

    89. [89]

      J.E. Wu, C. Liu, H. Zhang, Z.F. Ge, H.Y. Tu, W.T. Deng, H.S. Hou, X.B. Ji, J. Phys. Chem. Lett. 13(2022) 11883, https://doi.org/10.1021/acs.jpclett.2c03502.

    90. [90]

      S. Cai, G. Chang, J.G. Hu, J.E. Wu, Y.Q. Luo, G.Q. Zou, H.S. Hou, X.B. Ji, Chin. J. Chem. 41(2023) 1697, https://doi.org/10.1002/cjoc.202200799.

    91. [91]

      Z.P. Shao, L. Lin, W.B. Zhuang, S.Z. Liu, P. Yang, K.P. Zhu, C.W. Li, G.D. Guo, W.H. Wang, Q.C. Zhang, et al., Adv. Mater. 36(2024) 2406093, https://doi.org/10.1002/adma.202406093.

    92. [92]

      M. Gopalakrishnan, M.T. Hlaing, T. Kulandaivel, W. Kao-ian, M. Etesami, W.R. Liu, M.T. Nguyen, T. Yonezawa, W. Limphirat, S. Kheawhom, J. Alloys Compd. 1013(2025) 178521, https://doi.org/10.1016/j.jallcom.2025.178521.

    93. [93]

      F. Liu, S.H. Xu, W.B. Gong, K.T. Zhao, Z.M. Wang, J. Luo, C.S. Li, Y. Sun, P. Xue, C.L. Wang, et al., ACS Nano 17(2023) 18494, https://doi.org/10.1021/acsnano.3c06245.

    94. [94]

      N. Sarfraz, N. Kanwal, M. Ali, K. Ali, A. Hasnain, M. Ashraf, M. Ayaz, J. Ifthikar, S. Ali, A. Hendi, et al., Energy Storage Mater. 71(2024) 103619, https://doi.org/10.1016/j.ensm.2024.103619.

    95. [95]

      T. Li, Q. Zheng, J.T. Li, Z.Y. Zhao, W.B. Huang, B. Zhang, G.H. Zhao, T.L. Wu, D.L. Peng, Q.S. Xie, et al., ACS Energy Lett. 10(2025) 2228, https://doi.org/10.1021/acsenergylett.5c00455.

    96. [96]

      H.C. Sun, S.F. Kang, L.F. Cui, Chem. Eng. J. 454(2023) 140375, https://doi.org/10.1016/j.cej.2022.140375.

    97. [97]

      R. Dubey, J. Sastre, C. Cancellieri, F. Okur, A. Forster, L. Pompizii, A. Priebe, Y.E. Romanyuk, L.P.H. Jeurgens, M. Kovalenko, et al., Adv. Energy Mater. 11(2021) 2102086, https://doi.org/10.1002/aenm.202102086.

    98. [98]

      F.J. Zhu, H.X. Liu, B.C. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Adv. Funct. Mater. (2025) 2507998, https://doi.org/10.1002/adfm.202507998.

    99. [99]

      G.S. MacGlashan, Y.G. Andreev, P.G. Bruce, Nature 398(1999) 792, https://doi.org/10.1038/19730.

    100. [100]

      L.Q. Xu, J.Y. Li, Y.E. Xiang, Y. Tian, R. Momen, H.X. Liu, F.J. Zhu, H.Y. Tu, Z. Luo, S.S. Fang, et al., Energy Storage Mater. 52(2022) 655, https://doi.org/10.1016/j.ensm.2022.08.034.

    101. [101]

      Z.H. Chen, H. Jia, S.S. Yan, J.F. Gohy, Nano Energy 114(2023) 108637, https://doi.org/10.1016/j.nanoen.2023.108637.

    102. [102]

      N. Wang, Y.T. Wei, S. Yu, W.C. Zhang, X.Y. Huang, B.B. Fan, H. Yuan, Y.Q. Tan, J. Mater. Sci. Technol. 183(2024) 206, https://doi.org/10.1016/j.jmst.2023.10.005.

    103. [103]

      G. Homann, L. Stolz, K. Neuhaus, M. Winter, J. Kasnatscheew, Adv. Funct. Mater. 30(2020) 2006289, https://doi.org/10.1002/adfm.202006289.

    104. [104]

      H.X. Liu, L.Q. Xu, H.Y. Tu, Z. Luo, F.J. Zhu, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Small 19(2023) 2301275, https://doi.org/10.1002/smll.202301275.

    105. [105]

      H.X. Liu, L.Q. Xu, F.J. Zhu, D.Z. Luo, Y. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Nano Energy 126(2024) 109623, https://doi.org/10.1016/j.nanoen.2024.109623.

    106. [106]

      L.Q. Xu, H.Y. Tu, F.J. Zhu, Y.E. Xiang, Z. Luo, S.S. Fang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Smartmat 3(2022) 286, https://doi.org/10.1002/smm2.1097.

    107. [107]

      Y.F. He, L. Wang, A.P. Wang, B. Zhang, H. Pham, J. Park, X.M. He, Exploration 4(2024) 20230114, https://doi.org/10.1002/exp.20230114.

    108. [108]

      H.X. Liu, F.J. Zhu, Y.H. Zhang, Y.M. Liu, Y. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Angew. Chem. Int. Ed. 64(26) (2025) e202505230, https://doi.org/10.1002/anie.202505230.

  • 加载中
    1. [1]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    2. [2]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    3. [3]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    4. [4]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    5. [5]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    6. [6]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    7. [7]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    8. [8]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    9. [9]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    10. [10]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    11. [11]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    12. [12]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-0. doi: 10.3866/PKU.WHXB202308048

    13. [13]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    14. [14]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    15. [15]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    16. [16]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    17. [17]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    18. [18]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    19. [19]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    20. [20]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

Metrics
  • PDF Downloads(0)
  • Abstract views(48)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return