Citation: Yu Liu, Pengfei Li, Yize Liu, Zaicheng Sun. Recent advances in carbon dots as a single photocatalyst[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100167. doi: 10.1016/j.actphy.2025.100167 shu

Recent advances in carbon dots as a single photocatalyst

  • Corresponding author: Zaicheng Sun, sunzc@bjut.edu.cn
  • Received Date: 11 June 2025
    Revised Date: 10 August 2025
    Accepted Date: 18 August 2025

  • Carbon dots (CDs), as a class of highly promising multifunctional carbon nanomaterials, have emerged as a hot research topic in photocatalysis due to their strong visible-light absorption, favorable optical properties, and tunable bandgap structures. In recent years, extensive efforts have been devoted to enhancing the catalytic performance by combining CDs with other catalysts to form complexes. Beyond that, CDs also present a decent catalytic performance in various fields. However, summaries focusing on photocatalytic performance and mechanisms of CDs as a single-component photocatalyst remain scarce. A thorough understanding of structural characteristics and modulation strategies of the CDs is crucial for further advancing their photocatalytic applications. This review systematically summarizes the intrinsic structural features of CDs, performance enhancement strategies, including elemental doping and surface functionalization, and their applications as single-component catalysts in diverse photocatalytic reactions.
  • 加载中
    1. [1]

      R. Kumar, D. Kumar, P. E. Lokhande, V. Kadam, C. Jagtap, A. S. Vedapathak, K. Singh, Y. K. Mishra, A. Kaushik, Coord. Chem. Rev. 534 (2025) 216556, https://doi.org/10.1016/j.ccr.2025.216556.  doi: 10.1016/j.ccr.2025.216556

    2. [2]

      S. Zhu, D. Wang, Adv. Energy Mater. 7 (23) (2017) 1700841, https://doi.org/10.1002/aenm.201700841.  doi: 10.1002/aenm.201700841

    3. [3]

      X. Li, Y. Chen, Y. Tao, L. Shen, Z. Xu, Z. Bian, H. Li, Chem. Catal. 2 (6) (2022) 1315, https://doi.org/10.1016/j.checat.2022.04.007.  doi: 10.1016/j.checat.2022.04.007

    4. [4]

      Y. He, P. Li, W. Liu, L. An, D. Qu, X. Wang, Z. Sun, Nano Res. 16 (4) (2023) 4620, https://doi.org/10.1007/s12274-022-5078-8.  doi: 10.1007/s12274-022-5078-8

    5. [5]

      Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Appl. Catal. B: Environ. 26 (2013) 138, https://doi.org/10.1016/j.apcatb.2013.02.011. 

    6. [6]

      Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31 (50) (2019) 1901997, https://doi.org/10.1002/adma.201901997.  doi: 10.1002/adma.201901997

    7. [7]

      J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. Lee, J. Zhong, Z. Kang, Science 347 (6225) (2015) 970, https://doi.org/10.1126/science.aaa3145.  doi: 10.1126/science.aaa3145

    8. [8]

      S. Manzoor, M. Younis, Y. Yao, Q. Tariq, B. Zhang, B. Tian, L. Yan, C. Qiu, Coord. Chem. Rev. 541 (2025) 216840, https://doi.org/10.1016/j.ccr.2025.216840.  doi: 10.1016/j.ccr.2025.216840

    9. [9]

      C. Bie, L. Wang, J. Yu, Chem 8 (6) (2022) 1567, https://doi.org/10.1016/j.chempr.2022.04.013.  doi: 10.1016/j.chempr.2022.04.013

    10. [10]

      J. B. Varley, A. Janotti, C. G. Van de Walle, Adv. Mater. 23 (20) (2011) 2343, https://doi.org/10.1002/adma.201003603.  doi: 10.1002/adma.201003603

    11. [11]

      J. Wang, S. He, M. Zhang, F. Yang, Q. Zhang, Z. Li, M. Robert, Adv. Energy Mater. 15 (25) (2025) 2406048, https://doi.org/10.1002/aenm.202406048.  doi: 10.1002/aenm.202406048

    12. [12]

      K. Meng, J, Zhang, B. Cheng, X, Ren, Z. Xia, F. Xu, L, Zhang, J. Yu, Adv. Mater. 36 (32) (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    13. [13]

      Q. Li, S, Zhao, B, Jiang, M. Jaroniec, Zhang, L. Zhang, Mater. Today 80 (2024) 886, https://doi.org/10.1016/j.mattod.2024.09.019.  doi: 10.1016/j.mattod.2024.09.019

    14. [14]

      C. Feng, Z. Wu, K. Huang, Ye, J. Ye, H, Zhang, Adv. Mater. 34 (23) (2022) 2200180, https://doi.org/10.1002/adma.202200180.  doi: 10.1002/adma.202200180

    15. [15]

      X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 126 (40) (2004) 12736, https://doi.org/10.1021/ja040082h.  doi: 10.1021/ja040082h

    16. [16]

      Y. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, et al., J. Am. Chem. Soc. 128 (24) (2006) 7756, https://doi.org/10.1021/ja062677d.  doi: 10.1021/ja062677d

    17. [17]

      G. A. Hutton, B. C. Martindale, E. Reisner, Chem. Soc. Rev. 46 (20) (2017) 6111, https://doi.org/10.1039/C7CS00235A.  doi: 10.1039/C7CS00235A

    18. [18]

      H. Ma, T. Wang, Y. Xu, W. Shi, R. Ma, Z. Xia, Q. Yang, G. Xie, S. Chen, Appl. Catal. B: Environ. Energy 349 (2024) 123857, https://doi.org/10.1016/j.apcatb.2024.123857.  doi: 10.1016/j.apcatb.2024.123857

    19. [19]

      L. Zdražil, A. Cadranel, M. Medved', M. Otyepka, R. Zbořil, D. M. Guldi, Chem 10 (9) (2024) 2700, https://doi.org/10.1016/j.chempr.2024.07.018.  doi: 10.1016/j.chempr.2024.07.018

    20. [20]

      J. Wang, J. Jiang, F. Li, J. Zou, K. Xiang, H. Wang, Y. Li, X. Li, Green Chem. 25 (1) (2023) 32, https://doi.org/10.1039/D2GC03160D  doi: 10.1039/D2GC03160D

    21. [21]

      Z. Yu, F. Li, Q. Xiang, J. Mater. Sci. Technol. 175 (2024) 244, https://doi.org/10.1016/j.jmst.2023.08.023.  doi: 10.1016/j.jmst.2023.08.023

    22. [22]

      A. Mei, Z. Xu, X. Wang, Y. Liu, J. Chen, J. Q. Shi, Environ. Res. 214 (2022) 114160, https://doi.org/10.1016/j.envres.2022.114160.  doi: 10.1016/j.envres.2022.114160

    23. [23]

      Y. Yao, H. Zhang, K. Hu, G. Nie, Y. Yang, Y. Wang, X. Duan, S. Wang, J. Environ. Chem. Eng. 10 (2) (2022) 107336, https://doi.org/10.1016/j.jece.2022.107336.  doi: 10.1016/j.jece.2022.107336

    24. [24]

      C. Cheng, Q. Liang, M. Yan, Z. Liu, Q. He, T. Wu, S. Luo, Y. Pan, C. Zhao, Y. Liu, J. Hazard. Mater. 424 (2022) 127721, https://doi.org/10.1016/j.jhazmat.2021.127721.  doi: 10.1016/j.jhazmat.2021.127721

    25. [25]

      D. Saini, A. K. Garg, C. Dalal, S. R. Anand, S. K. Sonkar, A. K. Sonker, G. Westman, ACS Appl. Nano Mater. 5 (3) (2022) 3087, https://doi.org/10.1021/acsanm.1c04142.  doi: 10.1021/acsanm.1c04142

    26. [26]

      K. Akbar, E. Moretti, A. Vomiero, Adv. Opt. Mater. 9 (17) (2021) 2100532, https://doi.org/10.1002/adom.202100532  doi: 10.1002/adom.202100532

    27. [27]

      S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H, Wang, B. Yang, Angew. Chem. Int. Ed. 52 (14) (2013) 3953, https://doi.org/10.1002/anie.201300519.  doi: 10.1002/anie.201300519

    28. [28]

      H. Liu, X. Zhong, Q. Pan, Y. Zhang, W, Deng, G. Zou, H. Hou, X. Ji, Coord. Chem. Rev. 498 (2024) 215468, https://doi.org/10.1016/j.ccr.2023.215468.  doi: 10.1016/j.ccr.2023.215468

    29. [29]

      N. V. Tepliakov, E. V. Kundelev, P. D. Khavlyuk, Y. Xiong, M. Y. Leonov, W. Zhu, A. V. Baranov, A. V. Fedorov, A. L. Rogach, I. D. Rukhlenko, ACS Nano 13 (9) (2019) 10737, https://doi.org/10.1021/acsnano.9b05444.  doi: 10.1021/acsnano.9b05444

    30. [30]

      M. A. Sk, A. Ananthanarayanan, L. Huang, K. H. Lim, P. Chen, J. Mater. Chem. C 2 (34) (2014) 6954, https://doi.org/10.1039/C4TC01191K.  doi: 10.1039/C4TC01191K

    31. [31]

      H. Yoon, Y. Chang, S. Song, E. S. Lee, S. Jin, C. Park, J. Lee, B. H. Kim, H. J. Kang, Y. H. Kim, et al., Adv. Mater. 28 (26) (2016) 5255, https://doi.org/10.1002/adma.201600616  doi: 10.1002/adma.201600616

    32. [32]

      J. Qin, C. Shen, L. Li, H. Liu, W. Zhang, X. Yang, C. Shan, Adv. Mater. 36 (32) (2024) 2404694, https://doi.org/10.1002/adma.202404694.  doi: 10.1002/adma.202404694

    33. [33]

      J. Xu, Q. Liang, Z. Li, V. Y. Osipov, Y. Lin, B. Ge, Q. Xu, J. Zhu, H. Bi, Adv. Mater. 34 (17) (2022) 2200011, https://doi.org/10.1002/adma.202200011  doi: 10.1002/adma.202200011

    34. [34]

      N. A. Rano, N. Martsinovich, Phys. Chem. A 129 (17) (2025) 3790, https://doi.org/10.1021/acs.jpca.4c07825  doi: 10.1021/acs.jpca.4c07825

    35. [35]

      L. Ai, Z. Song, M. Nie, J. Yu, F. Liu, H. Song, B. Zhang, G. I. Waterhouse, S. Lu, Angew. Chem. Int. Ed. 62 (12) (2023) e202217822, https://doi.org/10.1002/anie.202217822.  doi: 10.1002/anie.202217822

    36. [36]

      H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, S. T. Lee, Angew. Chem. Int. Ed. 49 (26) (2010) 4430, https://doi.org/10.1002/anie.200906154.  doi: 10.1002/anie.200906154

    37. [37]

      L. Wang, W. Li, L. Yin, Y. Liu, H. Guo, J. Lai, Y. Han, G. Li, M. Li, J. Zhang, et al., Sci. Adv. 6 (40) (2020) eabb6772, https://doi.org/10.1126/sciadv.abb6772.  doi: 10.1126/sciadv.abb6772

    38. [38]

      P. Li, S. Xue, L. Sun, X. Zong, L. An, D. Qu, X. Wang, Z. Sun, Light Sci. Appl. 11 (1) (2022) 298, https://doi.org/10.1038/s41377-022-00984-5.  doi: 10.1038/s41377-022-00984-5

    39. [39]

      S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53 (2018) 296, https://doi.org/10.1016/j.nanoen.2018.08.058.  doi: 10.1016/j.nanoen.2018.08.058

    40. [40]

      Q. Fu, S. Sun, N. Li, K. Lu, Z. Dong, Mater. Today Chem. 34 (2023) 101769, https://doi.org/10.1016/j.mtchem.2023.101769.  doi: 10.1016/j.mtchem.2023.101769

    41. [41]

      H. Zhang, J. Bai, X. Chen, L. Wang, W. Peng, Y. Zhao, J. Weng, W. Zhi, J. Wang, J. Colloid Interface Sci. 678 (2025) 77, https://doi.org/10.1016/j.jcis.2024.08.073.  doi: 10.1016/j.jcis.2024.08.073

    42. [42]

      Y. Pan, Z. Wei, M. Ma, X. Zhang, Z. Chi, Y. He, X. Wang, X. Ran, L. Guo, Nanoscale 14 (15) (2022) 5794, https://doi.org/10.1039/D2NR00211F.  doi: 10.1039/D2NR00211F

    43. [43]

      R. Yadav, Vikas, V. Lahariya, M. Tanwar, R. Kumar, A. Das, K. Sadhana, Diamond Relat. Mater. 139 (2023) 110411, https://doi.org/10.1016/j.diamond.2023.110411.  doi: 10.1016/j.diamond.2023.110411

    44. [44]

      F. Parmeggiani, D. Gemmati, C. Costagliola, F. Semeraro, P. Perri, S. D'Angelo, M. R. Romano, K. De Nadai, A. Sebastiani, C. Incorvaia, Mol. Diagn. Ther. 15 (4) (2011) 195, https://doi.org/10.1007/BF03256411.  doi: 10.1007/BF03256411

    45. [45]

      M. Makaremi, S. Grixti, K. T. Butler, G. A. Ozin, C. V. Singh, ACS Appl. Mater. Interfaces 10 (13) (2018) 11143. https://doi.org/10.1021/acsami.8b01729.  doi: 10.1021/acsami.8b01729

    46. [46]

      M. A. Khan, S. Mutahir, I. Shaheen, Y. Qunhui, M. Bououdina, M. Humayun, Coord. Chem. Rev. 522 (2025) 216227, https://doi.org/10.1016/j.ccr.2024.216227.  doi: 10.1016/j.ccr.2024.216227

    47. [47]

      C. Ye, L. Xu, S. Chen, C. Wang, M. Su, G. Dai, X. Wang, F. Li, Y. Song, Dyes Pigm. 184 (2021) 108772, https://doi.org/10.1016/j.dyepig.2020.108772.  doi: 10.1016/j.dyepig.2020.108772

    48. [48]

      J. Fang, Y. Wang, M. Kurashvili, S. Rieger, W. Kasprzyk, Q. Wang, J. Stolarczyk, J. Feldmann, T. Debnath, Angew. Chem. Int. Ed. 62 (33) (2023) e202305817, https://doi.org/10.1002/anie.202305817.  doi: 10.1002/anie.202305817

    49. [49]

      D. Langford, Y. Reva, Y. Bo, K. Gubanov, M. Wu, A. Günay-Gürer, L. A. Mai, R. W. Crisp, I. Engelmann, E. Spiecker, et al., Angew. Chem. Int. Ed. 64 (13) (2025) e202418626, https://doi.org/10.1002/anie.202418626.  doi: 10.1002/anie.202418626

    50. [50]

      R. M. Mathew, J. John, E. S. Zachariah, J. Jose, T. Titus, R. Abraham, A. Joseph, V. Thomas, React. Kinet. Mech. Catal. 129 (2) (2020) 1131, https://doi.org/10.1007/s11144-020-01724-9.  doi: 10.1007/s11144-020-01724-9

    51. [51]

      G. Jiang, J. Fan, Y. Wan, J. Li, F. Pi, Chem. Eng. J. 480 (2024) 148216, https://doi.org/10.1016/j.cej.2023.148216.  doi: 10.1016/j.cej.2023.148216

    52. [52]

      Z. Peng, Y. Zhou, C. Ji, J. Pardo, K. J. Mintz, R. R. Pandey, C. C. Chusuei, R. M. Graham, G. Yan, R. M. Leblanc, Nanomaterials 10 (8) (2020) 1560, https://doi.org/10.3390/nano10081560.  doi: 10.3390/nano10081560

    53. [53]

      S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, Q. Chang, Nanoscale 5 (23) (2013) 11665. https://doi.org/10.1039/C3NR03893A.  doi: 10.1039/C3NR03893A

    54. [54]

      K. Yaemsunthorn, A. Sysło, D. Krok-Janiszewska, W. Kasprzyk, K. Spilarewicz, M. Pacia, W. Thongpan, M. Kobielusz, W. Macyk, J. Ortyl, Carbon 234 (2025) 119967. https://doi.org/10.1016/j.carbon.2024.119967.  doi: 10.1016/j.carbon.2024.119967

    55. [55]

      H. J. Yashwanth, S. R. Rondiya, N. Y. Dzade, S. D. Dhole, D. M. Phase, K. Hareesh, Vacuum 180 (2020) 109589, https://doi.org/10.1016/j.vacuum.2020.109589.  doi: 10.1016/j.vacuum.2020.109589

    56. [56]

      X. Yang, L. Ai, J. Yu, G. I. Waterhouse, L. Sui, J. Ding, B. Zhang, X. Yong, S. Lu, Sci. Bull. 67 (14) (2022) 1450, https://doi.org/10.1016/j.scib.2022.06.013.  doi: 10.1016/j.scib.2022.06.013

    57. [57]

      Q. Zhang, F. Wang, R. Wang, J. Liu, Y. Ma, X. Qin, X. Zhong, Adv. Sci. 10 (11) (2023) 2207566. https://doi.org/10.1002/advs.202207566.  doi: 10.1002/advs.202207566

    58. [58]

      R. Umami, F. A. Permatasari, D. A. Muyassiroh, A. S. Santika, C. D. Sundari, A. L. Ivansyah, T. Ogi, F. Iskandar, J. Mater. Chem. C 10 (4) (2022) 1394, https://doi.org/10.1039/D1TC04951H.  doi: 10.1039/D1TC04951H

    59. [59]

      D. Zhang, D. Chao, C. Yu, Q. Zhu, S. Zhou, L. Tian, L. Zhou, J. Phys. Chem. Lett. 12 (37) (2021) 8939, https://doi.org/10.1021/acs.jpclett.1c02475.  doi: 10.1021/acs.jpclett.1c02475

    60. [60]

      W. U. Khan, L. Qin, W. U. Khan, S. U. Khan, M. M. Hussain, F. Ahmed, S. Kamal, P. Zhou, ACS Appl. Nano Mater. 6 (19) (2023) 17838, https://doi.org/10.1021/acsanm.3c03131.  doi: 10.1021/acsanm.3c03131

    61. [61]

      B. Kommula, S. Chakraborty, M. Banoo, R. S. Roy, S. Sil, A. Swarnkar, B. Rawat, K. Kailasam, U. K. Gautam, ACS Appl. Mater. Interfaces 16 (30) (2024) 39470, https://doi.org/10.1021/acsami.4c08635.  doi: 10.1021/acsami.4c08635

    62. [62]

      L. Zdražil, Z. Baďura, M. Langer, S. Kalytchuk, D. Panáček, M. Scheibe, Š. Kment, H. Kmentová, M. A. Thottappali, E. Mohammadi, et al., Small 19 (32) (2023) 2206587, https://doi.org/10.1002/smll.202206587.  doi: 10.1002/smll.202206587

    63. [63]

      W. Han, D. Li, X. Hu, W. Qin, H. Sun, S. Wang, X. Duan, Mater. Today Chem. 30 (2023) 101546, https://doi.org/10.1016/j.mtchem.2023.101546.  doi: 10.1016/j.mtchem.2023.101546

    64. [64]

      H. Qin, L. Sun, S. Zou, A. Bian, Y. Cui, J. Hou, C. Lu, C. Li, F. Guo, W. Shi, Chem. Eng. J. 499 (2024) 156239, https://doi.org/10.1016/j.cej.2024.156239.  doi: 10.1016/j.cej.2024.156239

    65. [65]

      H. Qin, K. Sun, P. Hao, H. Yuan, Y. Shen, A. Bian, Y. Cui, J. Hou, W. Shi, C. Li, et al., J. Catal. 435 (2024) 115579, https://doi.org/10.1016/j.jcat.2024.115579.  doi: 10.1016/j.jcat.2024.115579

    66. [66]

      K. Niu, C. Ma, R. Dong, H. Liu, S. Yu, L. Xing, Nano Res. 17 (6) (2024) 4825, https://doi.org/10.1007/s12274-024-6451-6.  doi: 10.1007/s12274-024-6451-6

    67. [67]

      L. Morbiato, L. Cardo, E. Sturabotti, P. Gobbo, G. Filippini, M. Prato, ACS Nano 19 (4) (2025) 4887, https://doi.org/10.1021/acsnano.4c16538.  doi: 10.1021/acsnano.4c16538

    68. [68]

      D. Sarma, B. Majumdar, T. K. Sarma, ACS Sustain. Chem. Eng. 6 (12) (2018) 16573, https://doi.org/10.1021/acssuschemeng.8b03811.  doi: 10.1021/acssuschemeng.8b03811

    69. [69]

      Q. Wang, J. Li, X. Tu, H. Liu, M. Shu, R. Si, C. T. Ferguson, K. Zhang, R. Li, Chem. Mater. 32 (2) (2020) 734, https://doi.org/10.1021/acs.chemmater.9b03708.  doi: 10.1021/acs.chemmater.9b03708

    70. [70]

      T. Zhang, B. Huang, H. Huang, A. Yan, S. Lu, X. Qian, Chin. Chem. Lett. (2025) 110885, https://doi.org/10.1016/j.cclet.2025.110885.  doi: 10.1016/j.cclet.2025.110885

    71. [71]

      W. Wu, Q. Zhang, R. Wang, Y. Zhao, Z. Li, H. Ning, Q. Zhao, Wiederrecht, G. P.; J. Qiu, M. Wu, ACS Catal. 8 (2) (2018) 747, https://doi.org/10.1021/acscatal.7b03423.  doi: 10.1021/acscatal.7b03423

    72. [72]

      J. Yang, S. He, H. Liu, E. Jaatinen, E. Waclawik, J. Quan, S. Sarina, C. He, S. Huang, H. Zhu, et al., J. Mater. Chem. A 11 (9) (2023) 4751, https://doi.org/10.1039/D2TA09982A.  doi: 10.1039/D2TA09982A

    73. [73]

      F. Tong, X. Liang, X. Bao, Z. Zheng, ACS Catal. 14 (15) (2024) 11425, https://doi.org/10.1021/acscatal.4c03566.  doi: 10.1021/acscatal.4c03566

    74. [74]

      P. Ghosh, D. Bairagi, N. Hazra, S. Jana, A. Banerjee, ACS Appl. Nano Mater. 6 (19) (2023) 18100, https://doi.org/10.1021/acsanm.3c03380.  doi: 10.1021/acsanm.3c03380

    75. [75]

      S. Bibi, N. Shakir, M. Sadiq, S. Sadiq, I. Ullah, Q. Khan, B. Bostan, M. Ismail, J. Mol. Struct. 1312 (2024) 138488, https://doi.org/10.1016/j.molstruc.2024.138488.  doi: 10.1016/j.molstruc.2024.138488

    76. [76]

      J. Fang, T. Debnath, S. Bhattacharyya, M. Döblinger, J. Feldmann, J. K. Stolarczyk, Nat. Commun. 11 (1) (2020) 5179, https://doi.org/10.1038/s41467-020-18583-6.  doi: 10.1038/s41467-020-18583-6

    77. [77]

      B. Martindale, G. Hutton, C. Caputo, S. Prantl, R. Godin, J. R. Durrant, E. Reisner, Angew. Chem. Int. Ed. 56 (23) (2017) 6459, https://doi.org/10.1002/anie.201700949.  doi: 10.1002/anie.201700949

    78. [78]

      X. Ou, X. Chen, S. Zhao, Y. Shi, J. Zhang, M. Wu, A. J. Ragauskas, X. Song, Z. Zhang, Small 21 (6) (2025) 2408200, https://doi.org/10.1002/smll.202408200.  doi: 10.1002/smll.202408200

    79. [79]

      Q. Zhang, Y. Zhang, H. Shi, H. Zhang, J. Zhao, Z. Zheng, H. Yang, P. Yang, Aggregate 5 (1) (2024) e424, https://doi.org/10.1002/agt2.424.  doi: 10.1002/agt2.424

    80. [80]

      L. Jiang, S. Xie, H. Chen, J. Yang, X. Wang, W. Li, X. Peng, Z. Wu, H. Wang, J. Wang, et al., Appl. Catal. B: Environ. Energy 365 (2025) 124881, https://doi.org/10.1016/j.apcatb.2024.124881.  doi: 10.1016/j.apcatb.2024.124881

    81. [81]

      X. Liu, Y. Wang, Y. Gu, W. Lu, Chem. Eng. J. 499 (2024) 156573, https://doi.org/10.1016/j.cej.2024.156573.  doi: 10.1016/j.cej.2024.156573

    82. [82]

      Y. Zhou, E. Zahran, B. Quiroga, J. Perez, K. J. Mintz, Z. Peng, P. Y. Liyanage, R. R. Pandey, C. C. Chusuei, R. M. Leblanc, Appl. Catal. B: Environ. 248 (2019) 157, https://doi.org/10.1016/j.apcatb.2019.02.019.  doi: 10.1016/j.apcatb.2019.02.019

    83. [83]

      Y. Bakier, H. M. El-Bery, Environ. Chem. Eng. 11 (6) (2023) 111493, https://doi.org/10.1016/j.jece.2023.111493.  doi: 10.1016/j.jece.2023.111493

    84. [84]

      W. Han, H. Zhang, D. Li, W. Qin, X. Zhang, S. Wang, X. Duan, Appl. Catal. B: Environ. Energy 350 (2024) 123918, https://doi.org/10.1016/j.apcatb.2024.123918.  doi: 10.1016/j.apcatb.2024.123918

    85. [85]

      N. Meng, M. Zhou, X. Zhang, L. Ma, S. Ding, W. Wang, Chem. Eng. J. 503 (2025) 158432, https://doi.org/10.1016/j.cej.2024.158432.  doi: 10.1016/j.cej.2024.158432

    86. [86]

      M. Gu, D. Y. Lee, J. Mun, D. Kim, H. Cho, B. Kim, W. Kim, G. Lee, B. S. Kim, H. I. Kim, Appl. Catal. B: Environ. 312 (2022) 121379, https://doi.org/10.1016/j.apcatb.2022.121379.  doi: 10.1016/j.apcatb.2022.121379

    87. [87]

      J. Wang, J, Li, Z. Li, J. Wu, H. Si, Y. Wu, Z. Guo, X. Wang, F. Liao, H. Huang, et al., Nano Res. 17 (7) (2024) 5956, https://doi.org/10.1007/s12274-024-6623-4.  doi: 10.1007/s12274-024-6623-4

    88. [88]

      H. Li, C. Sun, M. Ali, F. Zhou, X. Zhang, D. R. MacFarlane, Angew. Chem. Int. Ed. 54 (29) (2015) 8420, https://doi.org/10.1002/anie.201501698.  doi: 10.1002/anie.201501698

    89. [89]

      Z. Liu, B. Chen, M. Liu, H. Zou, C. Huang, Green Chem. 19 (6) (2017) 1494, https://doi.org/10.1039/C6GC03288E.  doi: 10.1039/C6GC03288E

    90. [90]

      S. Liu, J. Shi, J. Jia, Y. Yang, S. Zhang, D. Yang, Y. Chen, S. Li, Z. Jiang, ACS Catal. 13 (21) (2023) 14233, https://doi.org/10.1021/acscatal.3c03180  doi: 10.1021/acscatal.3c03180

    91. [91]

      Z. Zhao, B. Pieber, M. Delbianco, ACS Catal. 12 (22) (2022) 13831, https://doi.org/10.1021/acscatal.2c04025.  doi: 10.1021/acscatal.2c04025

    92. [92]

      C. Campalani, M. Durai, W. Leitner, A. Bordet, Green Chem. 27 (10) (2025) 2666, https://doi.org/10.1039/D4GC05468G.  doi: 10.1039/D4GC05468G

    93. [93]

      D. Guo, J. Lei, D. Rong, T. Zhang, B. Zhang, Z. Tang, H. Shen, C. Deng, S. Qu, Adv. Sci. 9 (36) (2022) 2205106, https://doi.org/10.1002/advs.202205106.  doi: 10.1002/advs.202205106

    94. [94]

      H. Wang, Q. Wang, Q. Wang, W. Dong, Y. Liu, Q. Hu, X. Song, S. Shuang, C. Dong, X. Gong, J. Clean. Prod. 411 (2023) 137337, https://doi.org/10.1016/j.jclepro.2023.137337.  doi: 10.1016/j.jclepro.2023.137337

    95. [95]

      Gunture, T. Y. Lee, NPJ Clean Water 7 (1) (2024) 132, https://doi.org/10.1038/s41545-024-00426-2.  doi: 10.1038/s41545-024-00426-2

    96. [96]

      Y. Xiao, Z. Xia, W. Hu, B. Liu, C. Lü, Small 20 (32) (2024), 2309893, http://doi.org/10.1002/smll.202309893.  doi: 10.1002/smll.202309893

  • 加载中
    1. [1]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    3. [3]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    5. [5]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    6. [6]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    10. [10]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    11. [11]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    12. [12]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    13. [13]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    14. [14]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    15. [15]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    16. [16]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    19. [19]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    20. [20]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return