Recent advances in carbon dots as a single photocatalyst
- Corresponding author: Zaicheng Sun, sunzc@bjut.edu.cn
Citation:
Yu Liu, Pengfei Li, Yize Liu, Zaicheng Sun. Recent advances in carbon dots as a single photocatalyst[J]. Acta Physico-Chimica Sinica,
;2026, 42(2): 100167.
doi:
10.1016/j.actphy.2025.100167
R. Kumar, D. Kumar, P. E. Lokhande, V. Kadam, C. Jagtap, A. S. Vedapathak, K. Singh, Y. K. Mishra, A. Kaushik, Coord. Chem. Rev. 534 (2025) 216556, https://doi.org/10.1016/j.ccr.2025.216556.
doi: 10.1016/j.ccr.2025.216556
S. Zhu, D. Wang, Adv. Energy Mater. 7 (23) (2017) 1700841, https://doi.org/10.1002/aenm.201700841.
doi: 10.1002/aenm.201700841
X. Li, Y. Chen, Y. Tao, L. Shen, Z. Xu, Z. Bian, H. Li, Chem. Catal. 2 (6) (2022) 1315, https://doi.org/10.1016/j.checat.2022.04.007.
doi: 10.1016/j.checat.2022.04.007
Y. He, P. Li, W. Liu, L. An, D. Qu, X. Wang, Z. Sun, Nano Res. 16 (4) (2023) 4620, https://doi.org/10.1007/s12274-022-5078-8.
doi: 10.1007/s12274-022-5078-8
Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Appl. Catal. B: Environ. 26 (2013) 138, https://doi.org/10.1016/j.apcatb.2013.02.011.
Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31 (50) (2019) 1901997, https://doi.org/10.1002/adma.201901997.
doi: 10.1002/adma.201901997
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. Lee, J. Zhong, Z. Kang, Science 347 (6225) (2015) 970, https://doi.org/10.1126/science.aaa3145.
doi: 10.1126/science.aaa3145
S. Manzoor, M. Younis, Y. Yao, Q. Tariq, B. Zhang, B. Tian, L. Yan, C. Qiu, Coord. Chem. Rev. 541 (2025) 216840, https://doi.org/10.1016/j.ccr.2025.216840.
doi: 10.1016/j.ccr.2025.216840
C. Bie, L. Wang, J. Yu, Chem 8 (6) (2022) 1567, https://doi.org/10.1016/j.chempr.2022.04.013.
doi: 10.1016/j.chempr.2022.04.013
J. B. Varley, A. Janotti, C. G. Van de Walle, Adv. Mater. 23 (20) (2011) 2343, https://doi.org/10.1002/adma.201003603.
doi: 10.1002/adma.201003603
J. Wang, S. He, M. Zhang, F. Yang, Q. Zhang, Z. Li, M. Robert, Adv. Energy Mater. 15 (25) (2025) 2406048, https://doi.org/10.1002/aenm.202406048.
doi: 10.1002/aenm.202406048
K. Meng, J, Zhang, B. Cheng, X, Ren, Z. Xia, F. Xu, L, Zhang, J. Yu, Adv. Mater. 36 (32) (2024) 2406460, https://doi.org/10.1002/adma.202406460.
doi: 10.1002/adma.202406460
Q. Li, S, Zhao, B, Jiang, M. Jaroniec, Zhang, L. Zhang, Mater. Today 80 (2024) 886, https://doi.org/10.1016/j.mattod.2024.09.019.
doi: 10.1016/j.mattod.2024.09.019
C. Feng, Z. Wu, K. Huang, Ye, J. Ye, H, Zhang, Adv. Mater. 34 (23) (2022) 2200180, https://doi.org/10.1002/adma.202200180.
doi: 10.1002/adma.202200180
X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 126 (40) (2004) 12736, https://doi.org/10.1021/ja040082h.
doi: 10.1021/ja040082h
Y. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, et al., J. Am. Chem. Soc. 128 (24) (2006) 7756, https://doi.org/10.1021/ja062677d.
doi: 10.1021/ja062677d
G. A. Hutton, B. C. Martindale, E. Reisner, Chem. Soc. Rev. 46 (20) (2017) 6111, https://doi.org/10.1039/C7CS00235A.
doi: 10.1039/C7CS00235A
H. Ma, T. Wang, Y. Xu, W. Shi, R. Ma, Z. Xia, Q. Yang, G. Xie, S. Chen, Appl. Catal. B: Environ. Energy 349 (2024) 123857, https://doi.org/10.1016/j.apcatb.2024.123857.
doi: 10.1016/j.apcatb.2024.123857
L. Zdražil, A. Cadranel, M. Medved', M. Otyepka, R. Zbořil, D. M. Guldi, Chem 10 (9) (2024) 2700, https://doi.org/10.1016/j.chempr.2024.07.018.
doi: 10.1016/j.chempr.2024.07.018
J. Wang, J. Jiang, F. Li, J. Zou, K. Xiang, H. Wang, Y. Li, X. Li, Green Chem. 25 (1) (2023) 32, https://doi.org/10.1039/D2GC03160D
doi: 10.1039/D2GC03160D
Z. Yu, F. Li, Q. Xiang, J. Mater. Sci. Technol. 175 (2024) 244, https://doi.org/10.1016/j.jmst.2023.08.023.
doi: 10.1016/j.jmst.2023.08.023
A. Mei, Z. Xu, X. Wang, Y. Liu, J. Chen, J. Q. Shi, Environ. Res. 214 (2022) 114160, https://doi.org/10.1016/j.envres.2022.114160.
doi: 10.1016/j.envres.2022.114160
Y. Yao, H. Zhang, K. Hu, G. Nie, Y. Yang, Y. Wang, X. Duan, S. Wang, J. Environ. Chem. Eng. 10 (2) (2022) 107336, https://doi.org/10.1016/j.jece.2022.107336.
doi: 10.1016/j.jece.2022.107336
C. Cheng, Q. Liang, M. Yan, Z. Liu, Q. He, T. Wu, S. Luo, Y. Pan, C. Zhao, Y. Liu, J. Hazard. Mater. 424 (2022) 127721, https://doi.org/10.1016/j.jhazmat.2021.127721.
doi: 10.1016/j.jhazmat.2021.127721
D. Saini, A. K. Garg, C. Dalal, S. R. Anand, S. K. Sonkar, A. K. Sonker, G. Westman, ACS Appl. Nano Mater. 5 (3) (2022) 3087, https://doi.org/10.1021/acsanm.1c04142.
doi: 10.1021/acsanm.1c04142
K. Akbar, E. Moretti, A. Vomiero, Adv. Opt. Mater. 9 (17) (2021) 2100532, https://doi.org/10.1002/adom.202100532
doi: 10.1002/adom.202100532
S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H, Wang, B. Yang, Angew. Chem. Int. Ed. 52 (14) (2013) 3953, https://doi.org/10.1002/anie.201300519.
doi: 10.1002/anie.201300519
H. Liu, X. Zhong, Q. Pan, Y. Zhang, W, Deng, G. Zou, H. Hou, X. Ji, Coord. Chem. Rev. 498 (2024) 215468, https://doi.org/10.1016/j.ccr.2023.215468.
doi: 10.1016/j.ccr.2023.215468
N. V. Tepliakov, E. V. Kundelev, P. D. Khavlyuk, Y. Xiong, M. Y. Leonov, W. Zhu, A. V. Baranov, A. V. Fedorov, A. L. Rogach, I. D. Rukhlenko, ACS Nano 13 (9) (2019) 10737, https://doi.org/10.1021/acsnano.9b05444.
doi: 10.1021/acsnano.9b05444
M. A. Sk, A. Ananthanarayanan, L. Huang, K. H. Lim, P. Chen, J. Mater. Chem. C 2 (34) (2014) 6954, https://doi.org/10.1039/C4TC01191K.
doi: 10.1039/C4TC01191K
H. Yoon, Y. Chang, S. Song, E. S. Lee, S. Jin, C. Park, J. Lee, B. H. Kim, H. J. Kang, Y. H. Kim, et al., Adv. Mater. 28 (26) (2016) 5255, https://doi.org/10.1002/adma.201600616
doi: 10.1002/adma.201600616
J. Qin, C. Shen, L. Li, H. Liu, W. Zhang, X. Yang, C. Shan, Adv. Mater. 36 (32) (2024) 2404694, https://doi.org/10.1002/adma.202404694.
doi: 10.1002/adma.202404694
J. Xu, Q. Liang, Z. Li, V. Y. Osipov, Y. Lin, B. Ge, Q. Xu, J. Zhu, H. Bi, Adv. Mater. 34 (17) (2022) 2200011, https://doi.org/10.1002/adma.202200011
doi: 10.1002/adma.202200011
N. A. Rano, N. Martsinovich, Phys. Chem. A 129 (17) (2025) 3790, https://doi.org/10.1021/acs.jpca.4c07825
doi: 10.1021/acs.jpca.4c07825
L. Ai, Z. Song, M. Nie, J. Yu, F. Liu, H. Song, B. Zhang, G. I. Waterhouse, S. Lu, Angew. Chem. Int. Ed. 62 (12) (2023) e202217822, https://doi.org/10.1002/anie.202217822.
doi: 10.1002/anie.202217822
H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, S. T. Lee, Angew. Chem. Int. Ed. 49 (26) (2010) 4430, https://doi.org/10.1002/anie.200906154.
doi: 10.1002/anie.200906154
L. Wang, W. Li, L. Yin, Y. Liu, H. Guo, J. Lai, Y. Han, G. Li, M. Li, J. Zhang, et al., Sci. Adv. 6 (40) (2020) eabb6772, https://doi.org/10.1126/sciadv.abb6772.
doi: 10.1126/sciadv.abb6772
P. Li, S. Xue, L. Sun, X. Zong, L. An, D. Qu, X. Wang, Z. Sun, Light Sci. Appl. 11 (1) (2022) 298, https://doi.org/10.1038/s41377-022-00984-5.
doi: 10.1038/s41377-022-00984-5
S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53 (2018) 296, https://doi.org/10.1016/j.nanoen.2018.08.058.
doi: 10.1016/j.nanoen.2018.08.058
Q. Fu, S. Sun, N. Li, K. Lu, Z. Dong, Mater. Today Chem. 34 (2023) 101769, https://doi.org/10.1016/j.mtchem.2023.101769.
doi: 10.1016/j.mtchem.2023.101769
H. Zhang, J. Bai, X. Chen, L. Wang, W. Peng, Y. Zhao, J. Weng, W. Zhi, J. Wang, J. Colloid Interface Sci. 678 (2025) 77, https://doi.org/10.1016/j.jcis.2024.08.073.
doi: 10.1016/j.jcis.2024.08.073
Y. Pan, Z. Wei, M. Ma, X. Zhang, Z. Chi, Y. He, X. Wang, X. Ran, L. Guo, Nanoscale 14 (15) (2022) 5794, https://doi.org/10.1039/D2NR00211F.
doi: 10.1039/D2NR00211F
R. Yadav, Vikas, V. Lahariya, M. Tanwar, R. Kumar, A. Das, K. Sadhana, Diamond Relat. Mater. 139 (2023) 110411, https://doi.org/10.1016/j.diamond.2023.110411.
doi: 10.1016/j.diamond.2023.110411
F. Parmeggiani, D. Gemmati, C. Costagliola, F. Semeraro, P. Perri, S. D'Angelo, M. R. Romano, K. De Nadai, A. Sebastiani, C. Incorvaia, Mol. Diagn. Ther. 15 (4) (2011) 195, https://doi.org/10.1007/BF03256411.
doi: 10.1007/BF03256411
M. Makaremi, S. Grixti, K. T. Butler, G. A. Ozin, C. V. Singh, ACS Appl. Mater. Interfaces 10 (13) (2018) 11143. https://doi.org/10.1021/acsami.8b01729.
doi: 10.1021/acsami.8b01729
M. A. Khan, S. Mutahir, I. Shaheen, Y. Qunhui, M. Bououdina, M. Humayun, Coord. Chem. Rev. 522 (2025) 216227, https://doi.org/10.1016/j.ccr.2024.216227.
doi: 10.1016/j.ccr.2024.216227
C. Ye, L. Xu, S. Chen, C. Wang, M. Su, G. Dai, X. Wang, F. Li, Y. Song, Dyes Pigm. 184 (2021) 108772, https://doi.org/10.1016/j.dyepig.2020.108772.
doi: 10.1016/j.dyepig.2020.108772
J. Fang, Y. Wang, M. Kurashvili, S. Rieger, W. Kasprzyk, Q. Wang, J. Stolarczyk, J. Feldmann, T. Debnath, Angew. Chem. Int. Ed. 62 (33) (2023) e202305817, https://doi.org/10.1002/anie.202305817.
doi: 10.1002/anie.202305817
D. Langford, Y. Reva, Y. Bo, K. Gubanov, M. Wu, A. Günay-Gürer, L. A. Mai, R. W. Crisp, I. Engelmann, E. Spiecker, et al., Angew. Chem. Int. Ed. 64 (13) (2025) e202418626, https://doi.org/10.1002/anie.202418626.
doi: 10.1002/anie.202418626
R. M. Mathew, J. John, E. S. Zachariah, J. Jose, T. Titus, R. Abraham, A. Joseph, V. Thomas, React. Kinet. Mech. Catal. 129 (2) (2020) 1131, https://doi.org/10.1007/s11144-020-01724-9.
doi: 10.1007/s11144-020-01724-9
G. Jiang, J. Fan, Y. Wan, J. Li, F. Pi, Chem. Eng. J. 480 (2024) 148216, https://doi.org/10.1016/j.cej.2023.148216.
doi: 10.1016/j.cej.2023.148216
Z. Peng, Y. Zhou, C. Ji, J. Pardo, K. J. Mintz, R. R. Pandey, C. C. Chusuei, R. M. Graham, G. Yan, R. M. Leblanc, Nanomaterials 10 (8) (2020) 1560, https://doi.org/10.3390/nano10081560.
doi: 10.3390/nano10081560
S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, Q. Chang, Nanoscale 5 (23) (2013) 11665. https://doi.org/10.1039/C3NR03893A.
doi: 10.1039/C3NR03893A
K. Yaemsunthorn, A. Sysło, D. Krok-Janiszewska, W. Kasprzyk, K. Spilarewicz, M. Pacia, W. Thongpan, M. Kobielusz, W. Macyk, J. Ortyl, Carbon 234 (2025) 119967. https://doi.org/10.1016/j.carbon.2024.119967.
doi: 10.1016/j.carbon.2024.119967
H. J. Yashwanth, S. R. Rondiya, N. Y. Dzade, S. D. Dhole, D. M. Phase, K. Hareesh, Vacuum 180 (2020) 109589, https://doi.org/10.1016/j.vacuum.2020.109589.
doi: 10.1016/j.vacuum.2020.109589
X. Yang, L. Ai, J. Yu, G. I. Waterhouse, L. Sui, J. Ding, B. Zhang, X. Yong, S. Lu, Sci. Bull. 67 (14) (2022) 1450, https://doi.org/10.1016/j.scib.2022.06.013.
doi: 10.1016/j.scib.2022.06.013
Q. Zhang, F. Wang, R. Wang, J. Liu, Y. Ma, X. Qin, X. Zhong, Adv. Sci. 10 (11) (2023) 2207566. https://doi.org/10.1002/advs.202207566.
doi: 10.1002/advs.202207566
R. Umami, F. A. Permatasari, D. A. Muyassiroh, A. S. Santika, C. D. Sundari, A. L. Ivansyah, T. Ogi, F. Iskandar, J. Mater. Chem. C 10 (4) (2022) 1394, https://doi.org/10.1039/D1TC04951H.
doi: 10.1039/D1TC04951H
D. Zhang, D. Chao, C. Yu, Q. Zhu, S. Zhou, L. Tian, L. Zhou, J. Phys. Chem. Lett. 12 (37) (2021) 8939, https://doi.org/10.1021/acs.jpclett.1c02475.
doi: 10.1021/acs.jpclett.1c02475
W. U. Khan, L. Qin, W. U. Khan, S. U. Khan, M. M. Hussain, F. Ahmed, S. Kamal, P. Zhou, ACS Appl. Nano Mater. 6 (19) (2023) 17838, https://doi.org/10.1021/acsanm.3c03131.
doi: 10.1021/acsanm.3c03131
B. Kommula, S. Chakraborty, M. Banoo, R. S. Roy, S. Sil, A. Swarnkar, B. Rawat, K. Kailasam, U. K. Gautam, ACS Appl. Mater. Interfaces 16 (30) (2024) 39470, https://doi.org/10.1021/acsami.4c08635.
doi: 10.1021/acsami.4c08635
L. Zdražil, Z. Baďura, M. Langer, S. Kalytchuk, D. Panáček, M. Scheibe, Š. Kment, H. Kmentová, M. A. Thottappali, E. Mohammadi, et al., Small 19 (32) (2023) 2206587, https://doi.org/10.1002/smll.202206587.
doi: 10.1002/smll.202206587
W. Han, D. Li, X. Hu, W. Qin, H. Sun, S. Wang, X. Duan, Mater. Today Chem. 30 (2023) 101546, https://doi.org/10.1016/j.mtchem.2023.101546.
doi: 10.1016/j.mtchem.2023.101546
H. Qin, L. Sun, S. Zou, A. Bian, Y. Cui, J. Hou, C. Lu, C. Li, F. Guo, W. Shi, Chem. Eng. J. 499 (2024) 156239, https://doi.org/10.1016/j.cej.2024.156239.
doi: 10.1016/j.cej.2024.156239
H. Qin, K. Sun, P. Hao, H. Yuan, Y. Shen, A. Bian, Y. Cui, J. Hou, W. Shi, C. Li, et al., J. Catal. 435 (2024) 115579, https://doi.org/10.1016/j.jcat.2024.115579.
doi: 10.1016/j.jcat.2024.115579
K. Niu, C. Ma, R. Dong, H. Liu, S. Yu, L. Xing, Nano Res. 17 (6) (2024) 4825, https://doi.org/10.1007/s12274-024-6451-6.
doi: 10.1007/s12274-024-6451-6
L. Morbiato, L. Cardo, E. Sturabotti, P. Gobbo, G. Filippini, M. Prato, ACS Nano 19 (4) (2025) 4887, https://doi.org/10.1021/acsnano.4c16538.
doi: 10.1021/acsnano.4c16538
D. Sarma, B. Majumdar, T. K. Sarma, ACS Sustain. Chem. Eng. 6 (12) (2018) 16573, https://doi.org/10.1021/acssuschemeng.8b03811.
doi: 10.1021/acssuschemeng.8b03811
Q. Wang, J. Li, X. Tu, H. Liu, M. Shu, R. Si, C. T. Ferguson, K. Zhang, R. Li, Chem. Mater. 32 (2) (2020) 734, https://doi.org/10.1021/acs.chemmater.9b03708.
doi: 10.1021/acs.chemmater.9b03708
T. Zhang, B. Huang, H. Huang, A. Yan, S. Lu, X. Qian, Chin. Chem. Lett. (2025) 110885, https://doi.org/10.1016/j.cclet.2025.110885.
doi: 10.1016/j.cclet.2025.110885
W. Wu, Q. Zhang, R. Wang, Y. Zhao, Z. Li, H. Ning, Q. Zhao, Wiederrecht, G. P.; J. Qiu, M. Wu, ACS Catal. 8 (2) (2018) 747, https://doi.org/10.1021/acscatal.7b03423.
doi: 10.1021/acscatal.7b03423
J. Yang, S. He, H. Liu, E. Jaatinen, E. Waclawik, J. Quan, S. Sarina, C. He, S. Huang, H. Zhu, et al., J. Mater. Chem. A 11 (9) (2023) 4751, https://doi.org/10.1039/D2TA09982A.
doi: 10.1039/D2TA09982A
F. Tong, X. Liang, X. Bao, Z. Zheng, ACS Catal. 14 (15) (2024) 11425, https://doi.org/10.1021/acscatal.4c03566.
doi: 10.1021/acscatal.4c03566
P. Ghosh, D. Bairagi, N. Hazra, S. Jana, A. Banerjee, ACS Appl. Nano Mater. 6 (19) (2023) 18100, https://doi.org/10.1021/acsanm.3c03380.
doi: 10.1021/acsanm.3c03380
S. Bibi, N. Shakir, M. Sadiq, S. Sadiq, I. Ullah, Q. Khan, B. Bostan, M. Ismail, J. Mol. Struct. 1312 (2024) 138488, https://doi.org/10.1016/j.molstruc.2024.138488.
doi: 10.1016/j.molstruc.2024.138488
J. Fang, T. Debnath, S. Bhattacharyya, M. Döblinger, J. Feldmann, J. K. Stolarczyk, Nat. Commun. 11 (1) (2020) 5179, https://doi.org/10.1038/s41467-020-18583-6.
doi: 10.1038/s41467-020-18583-6
B. Martindale, G. Hutton, C. Caputo, S. Prantl, R. Godin, J. R. Durrant, E. Reisner, Angew. Chem. Int. Ed. 56 (23) (2017) 6459, https://doi.org/10.1002/anie.201700949.
doi: 10.1002/anie.201700949
X. Ou, X. Chen, S. Zhao, Y. Shi, J. Zhang, M. Wu, A. J. Ragauskas, X. Song, Z. Zhang, Small 21 (6) (2025) 2408200, https://doi.org/10.1002/smll.202408200.
doi: 10.1002/smll.202408200
Q. Zhang, Y. Zhang, H. Shi, H. Zhang, J. Zhao, Z. Zheng, H. Yang, P. Yang, Aggregate 5 (1) (2024) e424, https://doi.org/10.1002/agt2.424.
doi: 10.1002/agt2.424
L. Jiang, S. Xie, H. Chen, J. Yang, X. Wang, W. Li, X. Peng, Z. Wu, H. Wang, J. Wang, et al., Appl. Catal. B: Environ. Energy 365 (2025) 124881, https://doi.org/10.1016/j.apcatb.2024.124881.
doi: 10.1016/j.apcatb.2024.124881
X. Liu, Y. Wang, Y. Gu, W. Lu, Chem. Eng. J. 499 (2024) 156573, https://doi.org/10.1016/j.cej.2024.156573.
doi: 10.1016/j.cej.2024.156573
Y. Zhou, E. Zahran, B. Quiroga, J. Perez, K. J. Mintz, Z. Peng, P. Y. Liyanage, R. R. Pandey, C. C. Chusuei, R. M. Leblanc, Appl. Catal. B: Environ. 248 (2019) 157, https://doi.org/10.1016/j.apcatb.2019.02.019.
doi: 10.1016/j.apcatb.2019.02.019
Y. Bakier, H. M. El-Bery, Environ. Chem. Eng. 11 (6) (2023) 111493, https://doi.org/10.1016/j.jece.2023.111493.
doi: 10.1016/j.jece.2023.111493
W. Han, H. Zhang, D. Li, W. Qin, X. Zhang, S. Wang, X. Duan, Appl. Catal. B: Environ. Energy 350 (2024) 123918, https://doi.org/10.1016/j.apcatb.2024.123918.
doi: 10.1016/j.apcatb.2024.123918
N. Meng, M. Zhou, X. Zhang, L. Ma, S. Ding, W. Wang, Chem. Eng. J. 503 (2025) 158432, https://doi.org/10.1016/j.cej.2024.158432.
doi: 10.1016/j.cej.2024.158432
M. Gu, D. Y. Lee, J. Mun, D. Kim, H. Cho, B. Kim, W. Kim, G. Lee, B. S. Kim, H. I. Kim, Appl. Catal. B: Environ. 312 (2022) 121379, https://doi.org/10.1016/j.apcatb.2022.121379.
doi: 10.1016/j.apcatb.2022.121379
J. Wang, J, Li, Z. Li, J. Wu, H. Si, Y. Wu, Z. Guo, X. Wang, F. Liao, H. Huang, et al., Nano Res. 17 (7) (2024) 5956, https://doi.org/10.1007/s12274-024-6623-4.
doi: 10.1007/s12274-024-6623-4
H. Li, C. Sun, M. Ali, F. Zhou, X. Zhang, D. R. MacFarlane, Angew. Chem. Int. Ed. 54 (29) (2015) 8420, https://doi.org/10.1002/anie.201501698.
doi: 10.1002/anie.201501698
Z. Liu, B. Chen, M. Liu, H. Zou, C. Huang, Green Chem. 19 (6) (2017) 1494, https://doi.org/10.1039/C6GC03288E.
doi: 10.1039/C6GC03288E
S. Liu, J. Shi, J. Jia, Y. Yang, S. Zhang, D. Yang, Y. Chen, S. Li, Z. Jiang, ACS Catal. 13 (21) (2023) 14233, https://doi.org/10.1021/acscatal.3c03180
doi: 10.1021/acscatal.3c03180
Z. Zhao, B. Pieber, M. Delbianco, ACS Catal. 12 (22) (2022) 13831, https://doi.org/10.1021/acscatal.2c04025.
doi: 10.1021/acscatal.2c04025
C. Campalani, M. Durai, W. Leitner, A. Bordet, Green Chem. 27 (10) (2025) 2666, https://doi.org/10.1039/D4GC05468G.
doi: 10.1039/D4GC05468G
D. Guo, J. Lei, D. Rong, T. Zhang, B. Zhang, Z. Tang, H. Shen, C. Deng, S. Qu, Adv. Sci. 9 (36) (2022) 2205106, https://doi.org/10.1002/advs.202205106.
doi: 10.1002/advs.202205106
H. Wang, Q. Wang, Q. Wang, W. Dong, Y. Liu, Q. Hu, X. Song, S. Shuang, C. Dong, X. Gong, J. Clean. Prod. 411 (2023) 137337, https://doi.org/10.1016/j.jclepro.2023.137337.
doi: 10.1016/j.jclepro.2023.137337
Gunture, T. Y. Lee, NPJ Clean Water 7 (1) (2024) 132, https://doi.org/10.1038/s41545-024-00426-2.
doi: 10.1038/s41545-024-00426-2
Y. Xiao, Z. Xia, W. Hu, B. Liu, C. Lü, Small 20 (32) (2024), 2309893, http://doi.org/10.1002/smll.202309893.
doi: 10.1002/smll.202309893
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Renyi Shao , Khurram Abbas , Vladimir Yu. Osipov , Haimei Zhu , Yuan Li , Usama , Hong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134
Jingjing Liu , Aoqi Wei , Hao Zhang , Shuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
Shiyi Chen , Jialong Fu , Jianping Qiu , Guoju Chang , Shiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
Zihan Cheng , Kai Jiang , Jun Jiang , Henggang Wang , Hengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169
Cheng-an Tao , Jian Huang , Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
Yichang Liu , Li An , Dan Qu , Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105
Chunyuan Kang , Xiaoyu Li , Fan Yang , Bai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156