Citation: Ze Luo,  Yukun Zhu,  Yadan Luo,  Guangmin Ren,  Yonghong Wang,  Hua Tang. Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100166. doi: 10.1016/j.actphy.2025.100166 shu

Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction

  • Corresponding author: Hua Tang, huatang79@163.com
  • Received Date: 16 July 2025
    Revised Date: 15 August 2025
    Accepted Date: 17 August 2025

  • Addressing the global energy and environmental crisis necessitates the development of sustainable photocatalytic technologies capable of efficiently converting biomass into high-value chemicals and clean fuels. In this study, we develop a novel one-dimensional/two-dimensional (1D/2D) In2O3/ZnIn2S4S-scheme heterojunction photocatalyst through in situ growth process. This rationally designed architecture combines rod-like In2O3 with sheet-like ZnIn2S4 nanosheets, facilitating directional charge transport and providing a high density of active sites. Consequently, the optimized In2O3/ZnIn2S4 heterojunction achieved a 5-hydroxymethylfurfural (HMF) conversion rate of 81.6% with a high selectivity of 78.2% toward 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). Furthermore, it exhibited a hydrogen (H2) evolution rate of 257.69 μmol g-1 h-1 under 420 nm LED irradiation. These results demonstrate the efficacy of S-scheme heterojunctions in enabling spatial charge separation and boosting photocatalytic activity, offering a promising strategy for solar-driven biomass valorization and sustainable H2 production.
  • 加载中
    1. [1]

      M. Wang, H. Zhou, F. Wang, Acc. Chem. Res. 56(2023) 1057. https://doi.org/10.1021/acs.accounts.3c00039.

    2. [2]

      X. Liu, X. Duan, W. Wei, S. Wang, B. Ni, Green Chem. 21(2019) 4266. https://doi.org/10.1039/C9GC01728C.

    3. [3]

      X. Fu, H. Huang, G. Tang, J. Zhang, J. Sheng, H. Tang, Chin. J. Struct. Chem. 43(2024) 100214. https://doi.org/10.1016/j.cjsc.2024.100214.

    4. [4]

      Z. Huang, N. Luo, C. Zhang, F. Wang, Nat. Rev. Chem. 6(2022) 197. https://doi.org/10.1038/s41570-022-00359-9.

    5. [5]

      X. Wu, N. Luo, S. Xie, H. Zhang, Q. Zhang, F. Wang, Y. Wang, Chem. Soc. Rev. 49(2020) 6198. https://doi.org/10.1039/D0CS00314J.

    6. [6]

      L. Granone, F. Sieland, N. Zheng, R. Dillert, D. Bahnemann, Green Chem. 20(2018) 1169. https://doi.org/10.1039/C7GC03522E.

    7. [7]

      Q. Qin, T. Li, X. Sun, A. Pei, Y. Jia, H. He, F. Gao, P. Wang, Q. Wu, R. Liu, S. Dai, H. Lin, Q. Zhang, Y. Zhao, G. Chen, Nano Lett. 24(2024) 16351. https://doi.org/10.1021/acs.nanolett.4c04786.

    8. [8]

      G. Han, Y.H. Jin, R.A. Burgess, N.E. Dickenson, X.M. Cao, Y. Sun, J. Am. Chem. Soc. 139(2017) 15584. https://doi.org/10.1021/jacs.7b08657.

    9. [9]

      Y. Wan, J. Lee, ACS Catal. 11(2021) 2524. https://doi.org/10.1021/acscatal.0c05419.

    10. [10]

      B. Zhu, C. Chen, L. Huai, Z. Zhou, L. Wang, J. Zhang, Appl. Catal. B Environ. 297(2021) 120396. https://doi.org/10.1016/j.apcatb.2021.120396.

    11. [11]

      X. Liu, J. Tang, Y. Chen, X. Song, J. Guo, G. Wang, S. Han, X. Chen, C. Zhang, S. Dou, ACS Catal. 15(2025) 7308. https://doi.org/10.1021/acscatal.4c06577.

    12. [12]

      H.T. Vuong, D.V. Nguyen, L.P. Phuong, P.P. Minh, B.N. Ho, H.A. Nguyen, Carbon Neutral. 2(2023) 425. https://doi.org/10.1002/cnl2.65.

    13. [13]

      J. Yu, X. Li, Z. Jin, H. Tang, E. Liu, Chin. J. Struct. Chem. 41(2022) 2206001. https://doi.org/10.14102/j.cnki.0254-5861.2022-0158.

    14. [14]

      J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59(2024) 4. https://doi.org/10.1016/s1872-2067(24)60011-2.

    15. [15]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59(2024) 185. https://doi.org/10.1016/s1872-2067(23)64610-8.

    16. [16]

      Y. An, T. Lei, W. Jiang, H. Pang, Green Chem. 26(2024) 35. https://doi.org/10.1039/D4GC03597F.

    17. [17]

      Q. Zhang, H. Zhang, B. Gu, Q. Tang, Q. Cao, W. Fang, Appl. Catal. B Environ. 320(2023) 122006. https://doi.org/0.1016/j.apcatb.2022.122006.

    18. [18]

      K. Liu, D. Li, Y. Zhu, J. Ren, S. Sarina, D. Yang, Ind. Crops Prod. 230(2025) 121058. https://doi.org/10.1016/j.indcrop.2025.121058.

    19. [19]

      P. Zhu, W. Zhang, Q. Li, ACS Sustain. Chem. Eng. 10(2022) 8778. https://doi.org/10.1021/acssuschemeng.2c01143.

    20. [20]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231(2025) 286. https://doi.org/10.1016/j.jmst.2025.02.013.

    21. [21]

      L. Sun, X. Yu, L. Tang, W. Wang, Q. Liu, Chin. J. Catal. 52(2023) 164. https://doi.org/10.1016/S1872-2067(23)64507-3.

    22. [22]

      F. Wang, J. Li, X. Yu, H. Tang, J. Xu, L. Sun, Q. Liu, J. Mater. Sci. Technol. 146(2023) 49. https://doi.org/10.1016/j.jmst.2022.10.040.

    23. [23]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229(2025) 48. https://doi.org/10.1016/j.jmst.2024.12.047.

    24. [24]

      S. Liu, B. Zhang, Z. Yang, Z. Xue, T. Mu, Green Chem. 25(2023) 2620. https://doi.org/10.1039/D2GC04535D.

    25. [25]

      S. Meng, H. Wu, Y. Cui, X. Zheng, H. Wang, S. Chen, Y. Wang, X. Fu, Appl. Catal. B Environ. 266(2020) 118617. https://doi.org/10.1016/j.apcatb.2020.118617.

    26. [26]

      S. Dhingra, T. Chhabra, V. Krishnan, C.M. Nagaraja, ACS Appl. Energy Mater. 3(2020) 7138. https://doi.org/10.1021/acsaem.0c01189.

    27. [27]

      J. Li, L. Sun, H. Jiang, L. Wang, Q. Liu, J. Alloy. Compd. 1008(2024) 176770. https://doi.org/10.1016/j.jallcom.2024.176770.

    28. [28]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9(2025) 328–342. https://doi.org/10.1038/s41570-025-00698-3.

    29. [29]

      S. Wang, K. Qi, J. Mater. Sci. Technol. 226(2025) 317. https://doi.org/10.1016/j.jmst.2024.11.056.

    30. [30]

      M. Gu, J. Zhang, I.V. Kurganskii, A.S. Poryvaev, M.V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37(2025) 2414803. https://doi.org/10.1002/adma.202414803.

    31. [31]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232(2025) 302. https://doi.org/10.1016/j.jmst.2025.01.036.

    32. [32]

      C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang, J. Mater. Sci. Technol. 169(2024) 182. https://doi.org/10.1016/j.jmst.2023.06.011.

    33. [33]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41(2025) 100084. https://doi.org/10.1016/j.actphy.2025.100084.

    34. [34]

      Y. Zhang, S. Wang, Chin. J. Catal. 71(2025) 1. https://doi.org/10.1016/S1872-2067(24)60253-6.

    35. [35]

      R. Yang, L. Mei, Y. Fan, Q. Zhang, R. Zhu, R. Amal, Z. Yin, Z. Zeng, Small Methods 5(2021) 2100887. https://doi.org/10.1002/smtd.202100887.

    36. [36]

      J. Cheng, Z. Niu, Z. Zhao, X. Pei, S. Zhang, H. Wang, D. Li, Z. Guo, Adv. Energy Mater. 13(2023) 2203248. https://doi.org/10.1002/aenm.202203248.

    37. [37]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197(2024) 183. https://doi.org/10.1016/j.jmst.2024.02.012.

    38. [38]

      L. Xu, L. Ni, W. Shi, J. Guan, Chin. J. Catal. 33(2012) 1101. https://doi.org/10.1016/s1872-2067(11)60382-3.

    39. [39]

      P. Lu, B. Du, K. Liu, Z. Luo, A. Sikandaier, L. Diao, J. Sun, L. Jiang, Y. Zhu, Chin. J. Struct. Chem. 43(2024) 100361. https://doi.org/10.1016/j.cjsc.2024.100361.

    40. [40]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64(2024) 1. https://doi.org/10.1016/S1872-2067(24)60102-6.

    41. [41]

      J. Sun, P. Song, S. Zhang, Z. Sima, Z. Lu, Q. Wang, J. Alloys Compd. 888(2021) 161509. https://doi.org/10.1016/j.jallcom.2021.161509.

    42. [42]

      W. Yang, L. Zhang, J. Xie, X. Zhang, Q. Liu, T. Yao, S. Wei, Q. Zhang, Y. Xie, Angew. Chem. Int. Ed. 55(2016) 6716. https://doi.org/10.1002/anie.201602543.

    43. [43]

      P. Lu, K. Liu, Y. Liu, Z. Ji, X. Wang, B. Hui, Y. Zhu, D. Yang, L. Jiang, Appl. Catal. B Environ. 345(2024) 123697. https://doi.org/10.1016/j.apcatb.2024.123697.

    44. [44]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37(2025) 2505088. https://doi.org/10.1002/adma.202505088.

    45. [45]

      X. Guo, B. Du, W. Yan, Y. Wu, J. Feng, Y. Zhu, Environ. Res. 283(2025) 122129. https://doi.org/10.1016/j.envres.2025.122129.

    46. [46]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40(2024) 2307016. https://doi.org/10.3866/PKU.WHXB202307016.

    47. [47]

      Y. Fan, X. Hao, N. Yi, Z. Jin, Appl. Catal. B Environ. 357(2024) 124313. https://doi.org/10.1016/j.apcatb.2024.124313.

    48. [48]

      M.M. Fang, J.X. Shao, X.G. Huang, J.Y. Wang, W. Chen, J. Mater. Sci. Technol. 56(2020) 10. https://doi.org/10.1016/j.jmst.2020.01.054.

    49. [49]

      Y. Luo, H. Zheng, X. Li, F. Li, H. Tang, X. She, Acta Phys. Chim. Sin. 41(2025) 100052. https://doi.org/10.1016/j.actphy.2025.100052.

    50. [50]

      Z. Wang, S. Meng, J. Li, D. Guo, S. Fu, D. Zhang, X. Yang, G. Sui, Small 20(2024) 2406125. https://doi.org/10.1002/smll.202406125.

    51. [51]

      J. Li, C. Jin, Y. Zhao, X. Yu, W. Ren, L. Sun, L. Wang, W. Wang, J. Zhang, J. Yang, ACS Catal. 15(2025) 12123. https://doi.org/10.1021/acscatal.5c03346.

    52. [52]

      T. Xia, W. Gong, Y. Chen, M. Duan, J. Ma, X. Cui, Y. Dai, C. Gao, Y. Xiong, Angew. Chem. Int. Ed. 61(2022) e202204225. https://doi.org/10.1002/anie.202204225.

    53. [53]

      S. Si, P. Gong, X. Bao, X. Tan, Y. Mao, H. Zhang, D. Xiao, K. Song, Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, B. Huang, H. Cheng, ACS Catal. 14(2024) 8343. https://doi.org/10.1021/acscatal.4c00123.

    54. [54]

      D. Zeng, W. Wang, B. Cui, B. Jiang, C. Zhang, L. Zhang, W. Wang, Fuel 381(2025) 133238. https://doi.org/10.1016/j.fuel.2024.133238.

    55. [55]

      R. Wang, J. Shen, W. Zhang, Q. Liu, M. Zhang, H. Tang, Ceram. Int. 46(2020) 23. https://doi.org/10.1016/j.ceramint.2019.08.226.

    56. [56]

      L. Sun, W. Wang, P. Lu, Q. Liu, L. Wang, H. Tang, Chin. J. Catal. 51(2023) 90. https://doi.org/10.1016/s1872-2067(23)64492-4.

    57. [57]

      Z. Li, Y. Yang, C. Zhang, W. Fan, G. Li, J. Fang, L. Lu, Chem Catal. 4(2024) 100902. https://doi.org/10.1016/j.checat.2024.100902.

    58. [58]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M.S. Ahmed, Z. Lin, M.M.-J. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y.H. Tsang, H. Huang, Angew. Chem. Int. Ed. 63(2024) e202405756. https://doi.org/10.1002/anie.202405756.

    59. [59]

      J. Yan, L. Wei, Acta Phys. Chim. Sin. 40(2024) 2312024. https://doi.org/10.3866/PKU.WHXB202312024.

    60. [60]

      L. Sun, J. Gao, J. Shen, Z. Lu, H. Jiang, W. Wang, L. Wang, X. Yu, J. Yang, Q. Liu, Ceram. Int. 50(2024) 53801. https://doi.org/10.1016/j.ceramint.2024.10.234.

    61. [61]

      H. Huang, L. Li, R. Wang, A.R.M. Shaheer, T. Liu, H. Liu, R. Cao, Sci. China Mater. 67(2024) 1839. https://doi.org/10.1007/s40843-024-2885-0.

    62. [62]

      A. Sikandaier, Y. Zhu, D. Yang, Chin. J. Struct. Chem. 43(2024) 100242. https://doi.org/10.1016/j.cjsc.2024.100242.

    63. [63]

      Y. Zhuang, S. Meng, X. Yang, D. Guo, D. Zhang, T. Peng, Y. Li, J. Li, Appl. Surf. Sci. 699(2025) 163188. https://doi.org/10.1016/j.apsusc.2025.163188.

    64. [64]

      X. Yang, Y. Luo, J. Xue, Z. Yang, T. Feng, W. Shan, H. Zhang, H. Tang, J. Colloid Interface Sci. 688(2025) 317. https://doi.org/10.1016/j.jcis.2025.02.148.

    65. [65]

      J. Tang, R. Xu, G. Sui, D. Guo, Z. Zhao, S. Fu, X. Yang, Y. Li, J. Li, Small 19(2023) 2208232. https://doi.org/10.1002/smll.202208232.

    66. [66]

      B. Zhu, X. Hong, L. Tang, Q. Liu, H. Tang, Acta Phys. Chim. Sin. 38(2022) 2111008. https://doi.org/10.3866/pku.whxb202111008.

    67. [67]

      B. Zhang, C. Fang, J. Ning, R. Dai, Y. Liu, Q. Wu, F. Zhang, W. Zhang, S. Dou, X. Liu, Carbon Neutral. 2(2023) 646. https://doi.org/10.1002/cnl2.96.

    68. [68]

      X. Liu, Z. Jiang, Chin. J. Catal. 70(2025) 5. https://doi.org/10.1016/S1872-2067(24)60223-8.

    69. [69]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16(2025) 946. https://doi.org/10.1038/s41467-025-56306-x.

    70. [70]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82(2024) 251. https://doi.org/10.1016/j.mattod.2024.11.012.

    71. [71]

      Y. Zhang, Z. Zhang, J. Mater. Sci. Technol. 171(2024) 147. https://doi.org/10.1016/j.jmst.2023.06.048.

    72. [72]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64(2025) e202414672. https://doi.org/10.1002/anie.202414672.

    73. [73]

      C. An, A. Sikandaier, X. Guo, Y. Zhu, H. Tang, D. Yang, Acta Phys. Chim. Sin. 40(2024) 2405019. https://doi.org/10.3866/pku.whxb202405019.

    74. [74]

      X. Hao, W. Deng, Y. Fan, Z. Jin, J. Mater. Chem. A 12(2024) 18. https://doi.org/10.1039/D4TA01140F.

    75. [75]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54(2025) 4874. https://doi.org/10.1039/d4cs01091d.

    76. [76]

      R. He, D. Xu, M. Sayed, J. Materiomics 11(2025) 100989. https://doi.org/10.1016/j.jmat.2024.100989.

    77. [77]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. (2025) e202505456. https://doi.org/10.1002/ange.202505456.

    78. [78]

      B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62(2023) e202313172. https://doi.org/10.1002/anie.202313172.

    79. [79]

      Y. Zhu, J. Ren, G. Huang, C. Dong, Y. Huang, P. Lu, H. Tang, Y. Liu, S. Shen, D. Yang, Adv. Funct. Mater. 34(2024) 2311623. https://doi.org/10.1002/adfm.202311623.

    80. [80]

      Y. Zhu, Y. Zhuang, L. Wang, H. Tang, X. Meng, X. She, Chin. J. Catal. 43(2022) 11. https://doi.org/10.1016/S1872-2067(22)64099-3.

  • 加载中
    1. [1]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    2. [2]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    3. [3]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    5. [5]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    8. [8]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    9. [9]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    11. [11]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    13. [13]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    14. [14]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    16. [16]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    17. [17]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    18. [18]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    20. [20]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(54)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return