Citation: Chunhui Gao,  Lurong Li,  Guanwei Peng,  Jinni Shen,  Wenxin Dai,  Zizhong Zhang. Efficient photocatalytic NADH regeneration and enzymatic CO2 reduction over[Cp*Rh(bpy)H2O]2+ self-assembled CdIn2S4 flowerlike microspheres[J]. Acta Physico-Chimica Sinica, ;2026, 42(3): 100165. doi: 10.1016/j.actphy.2025.100165 shu

Efficient photocatalytic NADH regeneration and enzymatic CO2 reduction over[Cp*Rh(bpy)H2O]2+ self-assembled CdIn2S4 flowerlike microspheres

  • Corresponding author: Zizhong Zhang, z.zhang@fzu.edu.cn
  • Received Date: 15 July 2025
    Revised Date: 14 August 2025
    Accepted Date: 17 August 2025

  • Integrating photocatalytic cofactor regeneration with enzymatic cascades enables sustainable CO2 valorization but faces challenges like limited hydrogen sources and homogeneous mediator and photogenerated holes-induced enzyme deactivation. This study demonstrates that the low oxidation potential of L-ascorbic acid (L-AA) can enhance proton supply and promote the formation of[Cp*Rh(bpy)H]+ intermediates. Only 0.26 mg (≈ 0.12 mmol L-1)[Cp*Rh(bpy)Cl]Cl can achieve efficient/selective reduced nicotinamide adenine dinucleotide (NADH) regeneration, which is more than twice as effective as the typical sacrificial agent triethanolamine (TEOA). A novel strategy was developed via electrostatic self-assembly of [Cp*Rh(bpy)H2O]2+ onto CdIn2S4 microsphere photocatalysts. This innovative integration physically separated free mediators and photogenerated holes from enzymes, effectively suppressing enzyme deactivation through spatial compartmentalization. The optimal integrated photocatalytic system achieved 90% NADH regeneration efficiency within 40 min of 420 nm light irradiation, outperforming previously reported systems. When coupled with formate dehydrogenase (FDH), the integrated system achieved formic acid generation rates of 443.5 μmol g-1 h-1 (one light-dark cycle) and 202.7 μmol g-1 h-1 (continuous light), representing 1.2- and 3.2-fold improvements over free mediator systems, respectively. This study provides an efficient and sustainable new strategy for light driven coenzyme regeneration and enzyme catalyzed CO2 synthesis of high value-added chemicals.
  • 加载中
    1. [1]

      M. Meinshausen, N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, M.R. Allen, Nature 458(2009) 1158, https://doi.org/10.1038/nature08017.

    2. [2]

      R. Chen, Q. Wu, J. Luo, X. Zu, S. Zhu, Y. Sun, Acta Phys. Chim. Sin. 41(2025) 100019, https://doi.org/10.3866/PKU.WHXB202308052.

    3. [3]

      X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 9(2016) 2177, https://doi.org/10.1039/C6EE00383D.

    4. [4]

      C. Zhuang, W. Li, Y. Chang, S. Li, Y. Zhang, Y. Li, J. Gao, G. Chen, Z. Kang, J. Mater. Chem. A 12(2024) 5711, https://doi.org/10.1039/d3ta07951a.

    5. [5]

      J. Zhang, G. Yu, C. Yang, S. Li, Curr. Opin. Chem. Eng. 45(2024) 101040, https://doi.org/10.1016/j.coche.2024.101040.

    6. [6]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. Chim. Sin. 40(2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.

    7. [7]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40(2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.

    8. [8]

      D. Feng, X. Li, Y. Liu, X. Chen, S. Li, Renewables 1(2023) 485, https://doi.org/10.31635/renewables.023.202300037.

    9. [9]

      S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3(2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183.

    10. [10]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52(2023) 239, https://doi.org/10.1016/s1872-2067(23)64496-1.

    11. [11]

      Y. Kong, W. Wei, L. Xu, C. Chen, Acta Phys. Chim. Sin. 40(2024) 2307049, https://doi.org/10.3866/PKU.WHXB202307049.

    12. [12]

      M. Lin, M. Luo, Y. Liu, J. Shen, J. Long, Z. Zhang, Chin. J. Catal. 50(2023) 239, https://doi.org/10.1016/S1872-2067(23)64477-8.

    13. [13]

      H.-R. Zhu, H.-M. Xu, C.-J. Huang, Z.-J. Zhang, Q.-N. Zhan, T.-Y. Shuai, G.-R. Li, Chin. J. Catal. 62(2024) 53, https://doi.org/10.1016/S1872-2067(24)60053-7.

    14. [14]

      C. Fu, Z. Wan, X. Yang, J. Zhang, Z. Zhang, J. Mater. Chem. A 12(2024) 28618, https://doi.org/10.1039/D4TA04600E.

    15. [15]

      H. Xu, Z. Wang, H. Liao, D. Li, J. Shen, J. Long, W. Dai, X. Wang, Z. Zhang, Appl. Catal. B Environ. 336(2023) 122935, https://doi.org/10.1016/j.apcatb.2023.122935.

    16. [16]

      S.H. Lee, D.S. Choi, S.K. Kuk, C.B. Park, Angew. Chem. Int. Ed. 57(2018) 7958, https://doi.org/10.1002/anie.201710070.

    17. [17]

      X. Tan, J. Nielsen, Chem. Soc. Rev. 51(2022) 4763, https://doi.org/10.1039/D2CS00309K.

    18. [18]

      S. Zhang, S. Liu, Y. Sun, S. Li, J. Shi, Z. Jiang, Chem. Soc. Rev. 50(2021) 13449, https://doi.org/10.1039/D1CS00392E.

    19. [19]

      S. Li, J. Shi, S. Liu, W. Li, Y. Chen, H. Shan, Y. Cheng, H. Wu, Z. Jiang, Chin. J. Catal. 44(2023) 96, https://doi.org/10.1016/S1872-2067(22)64154-8.

    20. [20]

      Y. Sun, J. Shi, Z. Wang, H. Wang, S. Zhang, Y. Wu, H. Wang, S. Li, Z. Jiang, J. Am. Chem. Soc. 144(2022) 4168, https://doi.org/10.1021/jacs.1c12790.

    21. [21]

      F. Hollmann, D.J. Opperman, C.E. Paul, Angew. Chem. Int. Ed. 60(2021) 5644, https://doi.org/10.1002/anie.202001876.

    22. [22]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. Chim. Sin. 40(2024) 2405016, https://doi.org/10.3866/pku.Whxb202405016.

    23. [23]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41(2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.

    24. [24]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233(2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.

    25. [25]

      G. Zhao, C. Yang, W. Meng, X. Huang, J. Mater. Chem. A 12(2024) 3209, https://doi.org/10.1039/D3TA07015H.

    26. [26]

      H. Wu, C. Tian, X. Song, C. Liu, D. Yang, Z. Jiang, Green Chem. 15(2013) 1773, https://doi.org/10.1039/C3GC37129H.

    27. [27]

      L. Tong, Z. Gong, Y. Wang, J. Luo, S. Huang, R. Gao, G. Chen, G. Ouyang, J. Am. Chem. Soc. 146(2024) 21025, https://doi.org/10.1021/jacs.4c06142.

    28. [28]

      H. Guo, L. Luan, J. Cai, X. Ji, H. Yu, Y. Huang, Chem. Eng. J. 479(2024) 147720, https://doi.org/10.1016/j.cej.2023.147720.

    29. [29]

      S. Wang, X. Wu, J. Fang, F. Zhang, Y. Liu, H. Liu, Y. He, M. Luo, R. Li, ACS Catal. 13(2023) 4433, https://doi.org/10.1021/acscatal.2c05722.

    30. [30]

      H. Zhao, L. Wang, G. Liu, Y. Liu, S. Zhang, L. Wang, X. Zheng, L. Zhou, J. Gao, J. Shi, Y. Jiang, ACS Catal. 13(2023) 6619, https://doi.org/10.1021/acscatal.2c06332.

    31. [31]

      P. Wei, Y. Zhang, J. Dong, Y. Cao, S.M.Y. Lee, W. Lou, C. Peng, Appl. Catal. B Environ. Energy. 357(2024) 124257, https://doi.org/10.1016/j.apcatb.2024.124257.

    32. [32]

      S. Liu, J. Shi, J. Jia, Y. Yang, S. Zhang, D. Yang, Y. Chen, S. Li, Z. Jiang, ACS Catal. 13(2023) 14233, https://doi.org/10.1021/acscatal.3c03180.

    33. [33]

      J. Liu, X. Ren, C. Li, M. Wang, H. Li, Q. Yang, Appl. Catal. B Environ. Energy. 310(2022) 121314, https://doi.org/10.1016/j.apcatb.2022.121314.

    34. [34]

      L. Zhou, Z. Su, J. Wang, Y. Cai, N. Ding, L. Wang, J. Zhang, Y. Liu, J. Lei, Appl. Catal. B Environ. Energy. 341(2024) 123290, https://doi.org/10.1016/j.apcatb.2023.123290.

    35. [35]

      H.B. Zhang, Z.L. Wang, J.F. Zhang, K. Dai, Chin. J. Catal. 49(2023) 42, https://doi.org/10.1016/s1872-2067(23)64444-4.

    36. [36]

      Y.M. Song, X.L. Zheng, Y.Q. Yang, Y.H. Liu, J. Li, D.X. Wu, W.F. Liu, Y.J. Shen, X.L. Tian, Adv. Mater. 36(2024) 2305835, https://doi.org/10.1002/adma.202305835.

    37. [37]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63(2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0.

    38. [38]

      J. Yang, Z. Yang, K. Yang, Q. Yu, X. Zhu, H. Xu, H. Li, Chin. J. Catal. 44(2023) 67, https://doi.org/10.1016/S1872-2067(22)64152-4.

    39. [39]

      H.J. Zhang, Y.J. Gao, S.G. Meng, Z.R. Wang, P.X. Wang, Z.L. Wang, C.W. Qiu, S.F. Chen, B. Weng, Y.M. Zheng, Adv. Sci. 11(2024) 2400099, https://doi.org/10.1002/advs.202400099.

    40. [40]

      Q.-L. Mo, J.-L. Li, S.-R. Xu, K. Wang, X.-Z. Ge, Y. Xiao, G. Wu, F.-X. Xiao, Adv. Funct. Mater. 33(2023) 2210332, https://doi.org/10.1002/adfm.202210332.

    41. [41]

      H. Chen, Y. Huang, C. Sha, J.M. Moradian, Y.-C. Yong, Z. Fang, Renew. Sustain. Energy Rev. 178(2023) 113271, https://doi.org/10.1016/j.rser.2023.113271.

    42. [42]

      H. Zheng, Z. Huang, P. Wei, Y. Lin, Y. Cao, X. Zhang, B. Zhou, C. Peng, ACS Sustain. Chem. Eng. 13(2025) 4078, https://doi.org/10.1021/acssuschemeng.4c10134.

    43. [43]

      Y. Zhou, Y. He, M. Gao, N. Ding, J. Lei, Y. Zhou, Chin. Chem. Lett. 35(2024) 108690, https://doi.org/10.1016/j.cclet.2023.108690.

    44. [44]

      F. Xing, J. Bai, M. Zhang, Y. Mao, J. Liu, Chemphotochem 9(2025) e202400351, https://doi.org/10.1002/cptc.202400351.

    45. [45]

      W. Li, L. Wan, Y. Dong, H. Luo, W. Li, T.P. Lai, J. Zhao, G. Liu, Y. Gao, Y. Deng, W. Hu, L. Zhang, Chem. Eng. J. 517(2025) 164375, https://doi.org/10.1016/j.cej.2025.164375.

    46. [46]

      S. Zhang, Y. Zhang, Y. Chen, D. Yang, S. Li, Y. Wu, Y. Sun, Y. Cheng, J. Shi, Z. Jiang, ACS Catal. 11(2021) 476, https://doi.org/10.1021/acscatal.0c04462.

    47. [47]

      J. Shi, C. Tao, Z. Wang, Y. Dai, S. Zhang, J. Li, Y. Chen, X. Mao, Z. Jiang, Angew. Chem. Int. Ed. (2025) e202424995, https://doi.org/10.1002/anie.202424995.

    48. [48]

      Y. Liu, Y. Liu, Z. Yao, Z. Yu, H. Zhu, C. Xing, Y. Wang, X. Tan, Y. Huang, Y. Hou, S. Wang, Appl. Catal. B Environ. Energy. 371(2025) 125275, https://doi.org/10.1016/j.apcatb.2025.125275.

    49. [49]

      A.-M. Manke, K. Geisel, A. Fetzer, P. Kurz, Phys. Chem. Chem. Phys. 16(2014) 12029, https://doi.org/10.1039/C3CP55023K.

    50. [50]

      S. Zhang, J. Shi, Y. Sun, Y. Wu, Y. Zhang, Z. Cai, Y. Chen, C. You, P. Han, Z. Jiang, ACS Catal. 9(2019) 3913, https://doi.org/10.1021/acscatal.9b00255.

    51. [51]

      V. Ganesan, D. Sivanesan, S. Yoon, Inorg. Chem. 56(2017) 1366, https://doi.org/10.1021/acs.inorgchem.6b02474.

    52. [52]

      S. Singh, R.K. Yadav, T.W. Kim, C. Singh, P. Singh, S. Chaubey, A.P. Singh, J.-O. Baeg, S.K. Gupta, D. Tiwary, Energy Fuels 36(2022) 8402, https://doi.org/10.1021/acs.energyfuels.1c03697.

    53. [53]

      H.C. Lo, C. Leiva, O. Buriez, J.B. Kerr, M.M. Olmstead, R.H. Fish, Inorg. Chem. 40(2001) 6705, https://doi.org/10.1021/ic010562z.

    54. [54]

      A. Marrone, R.H. Fish, J. Organomet. Chem. 943(2021) 121810, https://doi.org/10.1016/j.jorganchem.2021.121810.

  • 加载中
    1. [1]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    3. [3]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    4. [4]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    5. [5]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    6. [6]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Chengxin ChenHongfei ShiXiaoyan CaiLiang MaoZhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155

    8. [8]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    9. [9]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    10. [10]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    11. [11]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    12. [12]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    13. [13]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    14. [14]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    16. [16]

      Wenwen Ma Lian Kong Jinyang Chu Li Ma Ziqing Ma Heyu Cheng Xinyuan Li Zhan Yu Zhen Zhao . Digitalization-Driven Olefin Production: Digital Design of Catalysts for CO2-Assisted Oxidation Dehydrogenation of Ethane to Ethylene. University Chemistry, 2026, 41(1): 363-372. doi: 10.12461/PKU.DXHX202506055

    17. [17]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    18. [18]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    19. [19]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(0)
  • Abstract views(52)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return