Citation: Guoqiang Peng, Xiuyan Li, Min Li, Zhibo Su, Falu Hu, Guowei Zhou. Engineering efficient metal-organic frameworks for photocatalytic CO2 reduction[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100164. doi: 10.1016/j.actphy.2025.100164 shu

Engineering efficient metal-organic frameworks for photocatalytic CO2 reduction

  • Corresponding author: Falu Hu, faluhu@qlu.edu.cn Guowei Zhou, gwzhou@qlu.edu.cn
  • Received Date: 12 July 2025
    Revised Date: 14 August 2025
    Accepted Date: 17 August 2025

  • Over the past decades, excessive CO2 emissions have led to various environmental issues. Solar-driven photocatalytic conversion of CO2 into valuable chemicals offers a promising solution for energy and environmental problems. Recently, a class of porous coordination polymers that self-assemble from organic linkers and metal ions or clusters, metal-organic frameworks (MOFs), have been widely explored for photoinduced CO2 conversion because of their great CO2 capture ability and adjustable structures. However, the development of MOFs with high efficiency for CO2 conversion remains a significant challenge. In this review, we elaborate on four key engineering strategies for constructing efficient MOFs toward photocatalytic CO2 reduction: ligand engineering, secondary building unit (SBU) engineering, defect engineering, and morphology engineering. These strategies focus on optimizing key structural properties of MOFs that critically influence their catalytic performance in CO2 photoreduction, notably light absorption, CO2 adsorption capacity, and charge separation and transport. The established design principles and modulation strategies demonstrate broad applicability and can be extended to guide the rational design of diverse MOF-based functional systems. Furthermore, we critically evaluate the advantages and disadvantages of each strategy, highlighting their specific contributions and inherent limitations. Finally, we outline the development prospects and identify promising future research directions for MOF-based photocatalytic CO2 reduction.
  • 加载中
    1. [1]

      A. Reisinger, J. Fuglestvedt, A. Pirani, O. Geden, C. Jones, S. Maharaj, E. Poloczanska, A. Morelli, T. Johansen, C. Adler, R. Betts, S. Seneviratne, Annu. Rev. Environ. Resour. 50 (2025) 1.1, https://doi.org/10.1146/annurev-environ-111523-102029.  doi: 10.1146/annurev-environ-111523-102029

    2. [2]

      H. McLaughlin, A. Littlefield, M. Menefee, A. Kinzer, T. Hull, B. Sovacool, M. Bazilian, J. Kim, S. Griffiths, Renew. Sust. Energ. Rev. 183 (2023) 113215, https://doi.org/10.1016/j.rser.2023.113215.  doi: 10.1016/j.rser.2023.113215

    3. [3]

      H. Chen, Y. Zheng, J. Li, L. Li, X. Wang, ACS Nano. 17 (2023) 9763, https://doi.org/10.1021/acsnano.3c01062.  doi: 10.1021/acsnano.3c01062

    4. [4]

      W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng, B. Xie, C. Toe, X. Zhu, J. Wang, et al., Chem. Soc. Rev. 49 (2020) 8584, https://doi.org/10.1039/D0CS00025F.  doi: 10.1039/D0CS00025F

    5. [5]

      T. Senftle, E. Carter, Acc. Chem. Res. 50 (2017) 472, https://doi.org/10.1021/acs.accounts.6b00479.  doi: 10.1021/acs.accounts.6b00479

    6. [6]

      F. Zhao, B. Zhu, L. Wang, J. Yu, J. Colloid Interface Sci. 659 (2024) 486, https://doi.org/10.1016/j.jcis.2023.12.173.  doi: 10.1016/j.jcis.2023.12.173

    7. [7]

      C. Ehlig-Economides, Curr. Opin. Chem. Eng. 42 (2023) 100957, https://doi.org/10.1016/j.coche.2023.100957.  doi: 10.1016/j.coche.2023.100957

    8. [8]

      J. Li, S. Jiang, S. Song, Chin. J. Catal. 59 (2024) 1, https://doi.org/10.1016/S1872-2067(23)64647-9.  doi: 10.1016/S1872-2067(23)64647-9

    9. [9]

      S. Das, J. Pérez-Ramírez, J. Gong, N. Dewangan, K. Hidajat, B. Gates, S. Kawi, Chem. Soc. Rev. 49 (2020) 2937, https://doi.org/10.1039/C9CS00713J.  doi: 10.1039/C9CS00713J

    10. [10]

      S. Wang, L. Wang, D. Wang, Y. Li, Energy Environ. Sci. 16 (2023) 2759, https://doi.org/10.1039/D3EE00037K.  doi: 10.1039/D3EE00037K

    11. [11]

      L. Qiu, H. Li, L. He, Acc. Chem. Res. 56 (2023) 2225, https://doi.org/10.1021/acs.accounts.3c00316.  doi: 10.1021/acs.accounts.3c00316

    12. [12]

      J. Wang, D. Liu, M. Li, X. Gu, S. Wu, J. Zhang, Chin. J. Catal. 63 (2024) 202, https://doi.org/10.1016/S1872-2067(24)60074-4.  doi: 10.1016/S1872-2067(24)60074-4

    13. [13]

      Q. Chen, X. Wang, Y. Zhou, Y. Tan, H. Li, J. Fu, M. Liu, Adv. Mater. 36 (2024) 2303902, https://doi.org/10.1002/adma.202303902.  doi: 10.1002/adma.202303902

    14. [14]

      X. Wang, Q. Chen, Y. Zhou, Y. Tan, Y. Wang, H. Li, Y. Chen, M. Sayed, R. Geioushy, N. Allam, J. Fu, Y. Sun, M. Liu, Nano Res. 17 (2024) 1101, https://doi.org/10.1007/s12274-023-5910-9.  doi: 10.1007/s12274-023-5910-9

    15. [15]

      X. She, Y. Wang, H. Xu, S. Chi Edman Tsang, S. Lau, Angew. Chem. Int. Ed. 61 (2022) e202211396, https://doi.org/10.1002/anie.202211396.  doi: 10.1002/anie.202211396

    16. [16]

      M. Liu, G. Liang, N. Zhang, T. Li, L. Diao, P. Lu, X. Zhao, D. Li, D. Yang, Chin. J. Struct. Chem. 43 (2024) 100359, https://doi.org/10.1016/j.cjsc.2024.100359.  doi: 10.1016/j.cjsc.2024.100359

    17. [17]

      R. Li, C. Tung, B. Zhu, Y. Lin, F. Tian, T. Liu, H. Chen, P. Kuang, J. Yu, J. Colloid Interface Sci. 674 (2024) 326, https://doi.org/10.1016/j.jcis.2024.06.176.  doi: 10.1016/j.jcis.2024.06.176

    18. [18]

      R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20 (2024) 2402867, https://doi.org/10.1002/smll.202402867.  doi: 10.1002/smll.202402867

    19. [19]

      X. Zhang, K. Liu, J. Fu, H. Li, H. Pan, J. Hu, M. Liu, Front. Phys. 16 (2021) 63500, https://doi.org/10.1007/s11467-021-1079-4.  doi: 10.1007/s11467-021-1079-4

    20. [20]

      H. Choi, Y. Choi, J. Kim, J. Lee, E. Kang, J. Yun, H. Park, M. Kim, H. Ullah, K. Shin, H. Kim, Chem. Eng. J. 503 (2025) 158163, https://doi.org/10.1016/j.cej.2024.158163.  doi: 10.1016/j.cej.2024.158163

    21. [21]

      Y. Guo, T. Li, D. Li, J. Cheng, Renew. Sust. Energ. Rev. 189 (2024) 114053, https://doi.org/10.1016/j.rser.2023.114053.  doi: 10.1016/j.rser.2023.114053

    22. [22]

      F. Wang, Y. Liu, M. Peng, M. Yang, Y. Chen, J. Du, A. Chen, ACS Catal. 14 (2024) 16434, https://doi.org/10.1021/acscatal.4c06065.  doi: 10.1021/acscatal.4c06065

    23. [23]

      Y. Xu, Y. Yang, M. Wu, X. Yang, X. Bie, S. Zhang, Q. Li, Y. Zhang, C. Zhang, R. Przekop, B. Sztorch, D. Brzakalski, H. Zhou, Acta Phys. Chim. Sin. 40 (2024) 2304003, https://doi.org/10.3866/PKU.WHXB202304003.  doi: 10.3866/PKU.WHXB202304003

    24. [24]

      H. Cao, Y. Li, Q. Hu, J. Wu, M. Zhong, L. Ji, Chem. Eng. J. 481 (2024) 148551, https://doi.org/10.1016/j.cej.2024.148551.  doi: 10.1016/j.cej.2024.148551

    25. [25]

      M. Suvarna, T. Araújo, J. Pérez-Ramírez, Appl. Catal. B: Environ. 315 (2022) 121530, https://doi.org/10.1016/j.apcatb.2022.121530.  doi: 10.1016/j.apcatb.2022.121530

    26. [26]

      D. Koshy, S. Nathan, A. Asundi, A. Abdellah, S. Dull, D. Cullen, D. Higgins, Z. Bao, S. Bent, T. Jaramillo, Angew. Chem. Int. Ed. 60 (2021) 17472, https://doi.org/10.1002/anie.202101326.  doi: 10.1002/anie.202101326

    27. [27]

      Z. Zhang, X. Wang, H. Tang, D. Li, J. Xu, Chin. J. Catal. 55 (2023) 227, https://doi.org/10.1016/S1872-2067(23)64549-8.  doi: 10.1016/S1872-2067(23)64549-8

    28. [28]

      F. Wang, X. Li, K. Lu, M. Zhou, C. Yu, K. Yang, Chin. J. Catal. 63 (2024) 190, https://doi.org/10.1016/S1872-2067(24)60066-5.  doi: 10.1016/S1872-2067(24)60066-5

    29. [29]

      S. Xu, F. Xiao, Chin. J. Struct. Chem. 42 (2023) 100173, https://doi.org/10.1016/j.cjsc.2023.100173.  doi: 10.1016/j.cjsc.2023.100173

    30. [30]

      F. Kolahdouzan, N. Goodarzi, M. Setayeshmehr, D. Mousavi, A. Moshfegh, Chin. J. Catal. 70 (2025) 230, https://doi.org/10.1016/S1872-2067(24)60214-7.  doi: 10.1016/S1872-2067(24)60214-7

    31. [31]

      J. Yu, X. Li, J. Fu, K. Dai, Sci. China Mater. 67 (2024) 379, https://doi.org/10.1007/s40843-024-2779-5.  doi: 10.1007/s40843-024-2779-5

    32. [32]

      J. Lei, N. Zhou, S. Sang, S. Meng, J. Low, Y. Li, Chin, J, Catal. 65 (2024) 163, https://doi.org/10.1016/S1872-2067(24)60109-9.  doi: 10.1016/S1872-2067(24)60109-9

    33. [33]

      X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005.  doi: 10.3866/PKU.WHXB202408005

    34. [34]

      Z. Zhang, B. Rhimi, Z. Liu, M. Zhou, G. Deng, W. Wei, L. Mao, H. Li, Z. Jiang, Acta Phys. Chim. Sin. 40 (2024) 2406029, https://doi.org/10.3866/PKU.WHXB202406029.  doi: 10.3866/PKU.WHXB202406029

    35. [35]

      Z. Zhou, W. Guo, T. Yang, D. Zheng, Y. Fang, X. Lin, Y. Hou, G. Zhang, S. Wang, Chin. J. Struct. Chem. 43 (2024) 100245, https://doi.org/10.1016/j.cjsc.2024.100245.  doi: 10.1016/j.cjsc.2024.100245

    36. [36]

      S. Fang, M. Rahaman, J. Bharti, E. Reisner, M. Robert, G. Ozin, Y. Hu, Nat. Rev. Method. Prime. 3 (2023) 61, https://doi.org/10.1038/s43586-023-00243-w.  doi: 10.1038/s43586-023-00243-w

    37. [37]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    38. [38]

      X. Hou, C. Ai, S. Yang, J. Zhang, Y. Zhang, J. Liu, J. Materiomics. 11 (2025) 100998, https://doi.org/10.1016/j.jmat.2024.100998.  doi: 10.1016/j.jmat.2024.100998

    39. [39]

      G. Pan, Z. Xia, N. Wang, H. Sun, Z. Guo, Y. Li, X. Li, Chin. J. Struct. Chem. 43 (2024) 100463, https://doi.org/10.1016/j.cjsc.2024.100463.  doi: 10.1016/j.cjsc.2024.100463

    40. [40]

      X. Fu, H. Huang, G. Tang, J. Zhang, J. Sheng, H. Tang, Chin. J. Struct. Chem. 43 (2024) 100214, https://doi.org/10.1016/j.cjsc.2024.100214.  doi: 10.1016/j.cjsc.2024.100214

    41. [41]

      K. Huang, G. Liang, S. Sun, H. Hu, X. Peng, R. Shen, X. Li, J. Mater. Sci. Technol. 193 (2024) 98, https://doi.org/10.1016/j.jmst.2024.01.034.  doi: 10.1016/j.jmst.2024.01.034

    42. [42]

      D. Chen, Z. Wang, J. Fu, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 541, https://doi.org/10.1007/s40843-023-2770-8.  doi: 10.1007/s40843-023-2770-8

    43. [43]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2024) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    44. [44]

      L. Zhu, F. Hu, B. Sun, S. Gu, T. Gao, G. Zhou. Adv. Sustainable Syst. 7 (2023) 2200394, https://doi.org/10.1002/adsu.202200394.  doi: 10.1002/adsu.202200394

    45. [45]

      F. Liu, Z. Liu, G. Zhou, T. Gao, W. Liu, B. Sun, Acta Phys. Chim. Sin. 41 (2025) 100071, https://doi.org/10.1016/j.actphy.2025.100071.  doi: 10.1016/j.actphy.2025.100071

    46. [46]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou, Chin. J. Catal. 64 (2024) 152, https://doi.org/10.1016/S1872-2067(24)60099-9.  doi: 10.1016/S1872-2067(24)60099-9

    47. [47]

      B. Zhang, F. Liu, B. Sun, T. Gao, G. Zhou, Chin. J. Catal. 59 (2024) 334, https://doi.org/10.1016/S1872-2067(23)64633-9.  doi: 10.1016/S1872-2067(23)64633-9

    48. [48]

      D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou, Chin. J. Catal. 50 (2023) 273, https://doi.org/10.1016/S1872-2067(23)64462-6.  doi: 10.1016/S1872-2067(23)64462-6

    49. [49]

      F. Xie, C. Bie, J. Sun, Z. Zhang, B. Zhu, J. Mater. Sci. Technol. 170 (2024) 87, https://doi.org/10.1016/j.jmst.2023.06.028.  doi: 10.1016/j.jmst.2023.06.028

    50. [50]

      B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/S1872-2067(23)64466-3.  doi: 10.1016/S1872-2067(23)64466-3

    51. [51]

      M. Cabrero-Antonino, A. Uscategui-Linares, R. Ramírez‐Grau, P. García‐Aznar, G. Sastre, J. Zhang, S. Goberna‐Ferrón, J. Albero, J. Yu, H. García, F. Xu, A. Primo, Angew. Chem. Int. Ed. 64 (2025) e202503860, https://doi.org/10.1002/anie.202503860.  doi: 10.1002/anie.202503860

    52. [52]

      C. Chen, X. Zhang, E. Liu, J. Xu, J. Sun, H. Shi, J. Mater. Sci. Technol. 198 (2024) 1, https://doi.org/10.1016/j.jmst.2024.01.063.  doi: 10.1016/j.jmst.2024.01.063

    53. [53]

      R. Chen, H. Zhang, Y. Dong, H. Shi, J. Mater. Sci. Technol. 170 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.005.  doi: 10.1016/j.jmst.2023.07.005

    54. [54]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.  doi: 10.3866/PKU.WHXB202403005

    55. [55]

      B. Zhang, B. Sun, F. Liu, T. Gao, G. Zhou, Sci. China Mater. 67 (2024) 424, https://doi.org/10.1007/s40843-023-2754-8.  doi: 10.1007/s40843-023-2754-8

    56. [56]

      S. Li, X. Li, Y. Liu, P. Zhang, J. Zhang, B. Zhang, Chin. J. Catal. 72 (2025) 130, https://doi.org/10.1016/S1872-2067(25)64652-3.  doi: 10.1016/S1872-2067(25)64652-3

    57. [57]

      T. Yang, B. Wang, P. Chu, J. Xia, H. Li, Chin. J. Catal. 59 (2024) 204, https://doi.org/10.1016/S1872-2067(24)60003-3.  doi: 10.1016/S1872-2067(24)60003-3

    58. [58]

      Y. Wang, Y. Pan, H. Zhu, Y. Xiang, R. Han, R. Huang, C. Du, C. Pan, Acta Phys. Chim. Sin. 40 (2024) 2304050, https://doi.org/10.3866/PKU.WHXB202304050.  doi: 10.3866/PKU.WHXB202304050

    59. [59]

      Z. Zhu, X. Xing, Q. Qi, W. Shen, H. Wu, D. Li, B. Li, J. Liang, X. Tang, J. Zhao, H. Li, P. Huo, Chin. J. Struct. Chem. 42 (2023) 100194, https://doi.org/10.1016/j.cjsc.2023.100194.  doi: 10.1016/j.cjsc.2023.100194

    60. [60]

      X. Hu, H. Zhang, Y. Wang, B. Shiu, J. Lin, S. Zhang, C. Lou, T. Li, Chem. Eng. J. 450 (2022) 138129, https://doi.org/10.1016/j.cej.2022.138129.  doi: 10.1016/j.cej.2022.138129

    61. [61]

      J. Karges, Angew. Chem. Int. Ed. 61 (2021) e202112236, https://doi.org/10.1002/anie.202112236.  doi: 10.1002/anie.202112236

    62. [62]

      K. Teng, L. Niu, Q. Yang, J. Am. Chem. Soc. 145 (2023) 4081, https://doi.org/10.1021/jacs.2c11868.  doi: 10.1021/jacs.2c11868

    63. [63]

      Q. Yao, J. Fan, S. Long, X. Zhao, H. Li, J. Du, K. Shao, X. Peng, Chem. 8 (2022) 197, https://doi.org/10.1016/j.chempr.2021.10.006.  doi: 10.1016/j.chempr.2021.10.006

    64. [64]

      C. Zhang, X. Hu, L. Jin, L. Lin, H. Lin, Z. Yang, W. Huang, Adv. Healthcare. Mater. 12 (2023) 2300530, https://doi.org/10.1002/adhm.202300530.  doi: 10.1002/adhm.202300530

    65. [65]

      L. Liang, J. Cao, J. Huan, M. Xing, Sci. China Mater. 67 (2024) 382, https://doi.org/10.1007/s40843-023-2722-y.  doi: 10.1007/s40843-023-2722-y

    66. [66]

      R. Zhang, Z. Chen, Y. Li, D. Chen, T. Wang, B. Wang, Q. Zhou, S. Cheng, D. Xu, X. Wang, L. Niu, J. Tu, Q. Wu, J. Mater. Sci. Technol. 192 (2024) 173, https://doi.org/10.1016/j.jmst.2024.01.018.  doi: 10.1016/j.jmst.2024.01.018

    67. [67]

      P. Li, Y. Zhang, C. Wang, S. Wang, W. Yan, D. Xiao, J. Kang, D. Yang, H. Wu, A. Dong, Rare Met. 42 (2023) 4167, https://doi.org/10.1007/s12598-023-02481-z.  doi: 10.1007/s12598-023-02481-z

    68. [68]

      A. Fujishima, K. Honda, Nature 238 (1972) 37, https://doi.org/10.1038/238037a0.  doi: 10.1038/238037a0

    69. [69]

      R. Wang, M. Shi, F. Xu, Y. Qiu, P. Zhang, K. Shen, Q. Zhao, J. Yu, Y. Zhang, Nat. Commun. 11 (2020) 4465, https://doi.org/10.1038/s41467-020-18267-1.  doi: 10.1038/s41467-020-18267-1

    70. [70]

      B. He, C. Luo, Z. Wang, L. Zhang, J. Yu, Appl. Catal. B: Environ. 323 (2023) 122200, https://doi.org/10.1016/j.apcatb.2022.122200.  doi: 10.1016/j.apcatb.2022.122200

    71. [71]

      F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613, https://doi.org/10.1038/s41467-020-18350-7.  doi: 10.1038/s41467-020-18350-7

    72. [72]

      W. Li, H. Yu, D. Qin, Q. Li, X. Song, H. Wang, Y. Ma, Y. Shang, Y. Wang, J. Li, Y. Zhu, Sep. Purif. Technol. 361 (2025) 131354, https://doi.org/10.1016/j.seppur.2024.131354.  doi: 10.1016/j.seppur.2024.131354

    73. [73]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, https://doi.org/10.1016/S1872-2067(23)64551-6.  doi: 10.1016/S1872-2067(23)64551-6

    74. [74]

      E. Lu, J. Tao, C. Yang, Y. Hou, J. Zhang, X. Wang, X. Fu, Acta Phys. Chim. Sin. 39 (2023) 2211029, https://doi.org/ 10.3866/PKU.WHXB202211029.  doi: 10.3866/PKU.WHXB202211029

    75. [75]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    76. [76]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.  doi: 10.1038/s41467-021-25007-6

    77. [77]

      X. Chen, Z. Wu, D. Liu, Z. Gao, Nanoscale Res. Lett. 12 (2017) 143, https://doi.org/10.1186/s11671-017-1904-4.  doi: 10.1186/s11671-017-1904-4

    78. [78]

      H. Hakki, M. Sillanpää, Mater. Sci. Semicond. Process. 181 (2024) 108592, https://doi.org/10.1016/j.mssp.2024.108592.  doi: 10.1016/j.mssp.2024.108592

    79. [79]

      L. Yang, S. Dong, J. Sun, J. Feng, Q. Wu, S. Sun, J. Hazard. Mater. 179 (2010) 438, https://doi.org/10.1016/j.jhazmat.2010.03.023.  doi: 10.1016/j.jhazmat.2010.03.023

    80. [80]

      Q. Xiao, T. Liu, Q. Zhou, L. Li, C. Chang, D. Gao, D. Li, F. You, Chem. Res. Chin. Univ. 40 (2024) 484, https://doi.org/10.1007/s40242-024-4022-8.  doi: 10.1007/s40242-024-4022-8

    81. [81]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    82. [82]

      A. Raza, S. Farhan, Z. Yu, Y. Wu, Acta Phys. Chim. Sin. 40 (2024) 2406020, https://doi.org/10.3866/PKU.WHXB202406020.  doi: 10.3866/PKU.WHXB202406020

    83. [83]

      J. Kong, J. Zhang, S. Zhang, J. Xi, M. Shen, Acta Phys. Chim. Sin. 39 (2023) 2212039, https://doi.org/10.3866/PKU.WHXB202212039.  doi: 10.3866/PKU.WHXB202212039

    84. [84]

      X. Wang, Y. Zhang, S. Jiang, J. Su, S. Song, J. Mater. Sci. Technol. 171 (2024) 94, https://doi.org/10.1016/j.jmst.2023.06.041.  doi: 10.1016/j.jmst.2023.06.041

    85. [85]

      B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054.  doi: 10.1016/j.jmst.2023.03.054

    86. [86]

      K. Yu, P. He, N. He, X. Li, C. Dong, B. Jiang, Y. Zou, X. Pei, Y. Li, L. Ma, Sci. China Mater. 66 (2023) 4680, https://doi.org/10.1007/s40843-023-2599-9.  doi: 10.1007/s40843-023-2599-9

    87. [87]

      H. Liu, J. Peng, X. Zhang, K. Zheng, L. Zheng, K. Lv, Q. Li, P. Zhou, Chem. Eng. J. 504 (2025) 158618, https://doi.org/10.1016/j.cej.2024.158618.  doi: 10.1016/j.cej.2024.158618

    88. [88]

      J. Yu, Y. Yu, P. Zhou, W. Xiao, B. Cheng, Appl. Catal. B: Environ. 156–157 (2014) 184, https://doi.org/10.1016/j.apcatb.2014.03.013.  doi: 10.1016/j.apcatb.2014.03.013

    89. [89]

      Y. Chen, W. Zhong, F. Chen, P. Wang, J. Fan, H. Yu, J. Mater. Sci. Technol. 121 (2022) 19, https://doi.org/10.1016/j.jmst.2021.12.051.  doi: 10.1016/j.jmst.2021.12.051

    90. [90]

      I. Ahmad, Y. Zou, J. Yan, Y. Liu, S. Shukrullah, M. Naz, H. Hussain, W. Khan, N. Khalid, Adv. Colloid. Interface. Sci. 311 (2023) 102830, https://doi.org/10.1016/j.cis.2022.102830.  doi: 10.1016/j.cis.2022.102830

    91. [91]

      T. Luo, L. Gilmanova, S. Kaskel, Coord. Chem. Rev. 490 (2023) 215210, https://doi.org/10.1016/j.ccr.2023.215210.  doi: 10.1016/j.ccr.2023.215210

    92. [92]

      B. Wang, G. Biesold, M. Zhang, Z. Lin, Chem. Soc. Rev. 50 (2021) 6914, https://doi.org/10.1039/D0CS01134G.  doi: 10.1039/D0CS01134G

    93. [93]

      G. Lu, F. Chu, X. Huang, Y. Li, K. Liang, G. Wang, Coord. Chem. Rev. 450 (2022) 214240, https://doi.org/10.1016/j.ccr.2021.214240.  doi: 10.1016/j.ccr.2021.214240

    94. [94]

      Y. Chen, D. Jiang, Acc. Chem. Res. 57 (2024) 3182, https://doi.org/10.1021/acs.accounts.4c00517.  doi: 10.1021/acs.accounts.4c00517

    95. [95]

      L. Jiao, J. Seow, W. Skinner, Z. Wang, H. Jiang, Mater. Today 27 (2019) 43, https://doi.org/10.1016/j.mattod.2018.10.038.  doi: 10.1016/j.mattod.2018.10.038

    96. [96]

      M. Usman, S. Mendiratta, K. Lu, Adv. Mater. 29 (2017) 1605071, https://doi.org/10.1002/adma.201605071.  doi: 10.1002/adma.201605071

    97. [97]

      T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277 (1979) 637, https://doi.org/10.1038/277637a0.  doi: 10.1038/277637a0

    98. [98]

      K. Sun, Y. Qian, H. Jiang, Angew. Chem. Int. Ed. 135 (2023) e202217565, https://doi.org/10.1002/ange.202217565.  doi: 10.1002/ange.202217565

    99. [99]

      D. Li, M. Kassymova, X. Cai, S. Zang, H. Jiang, Coord. Chem. Rev. 412 (2020) 213262, https://doi.org/10.1016/j.ccr.2020.213262.  doi: 10.1016/j.ccr.2020.213262

    100. [100]

      N. Vu, S. Kaliaguine, T. Do, Adv. Funct. Mater. 29 (2019) 1901825, https://doi.org/10.1002/adfm.201901825.  doi: 10.1002/adfm.201901825

    101. [101]

      D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Chem. Eur. J. 19 (2013) 14279, https://doi.org/10.1002/chem.201301728.  doi: 10.1002/chem.201301728

    102. [102]

      Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem. Int. Ed. 124 (2012) 3364, https://doi.org/10.1002/anie.201108357.  doi: 10.1002/anie.201108357

    103. [103]

      M. Sun, S. Yan, Y. Sun, X. Yang, Z. Guo, J. Du, D. Chen, P. Chen, H. Xing, Dalton Trans. 47 (2018) 909, https://doi.org/10.1039/C7DT04062H.  doi: 10.1039/C7DT04062H

    104. [104]

      Y. Wei, Y. Liu, F. Guo, X. Dao, W. Sun, Dalton Trans. 48 (2019) 8221, https://doi.org/10.1039/C9DT01767D.  doi: 10.1039/C9DT01767D

    105. [105]

      Y. Du, G. Jie, H. Jia, J. Liu, J. Wu, Y. Fu, F. Zhang, W. Zhu, M. Fan, J. Environ. Sci. 132 (2023) 22, https://doi.org/10.1016/j.jes.2022.10.037.  doi: 10.1016/j.jes.2022.10.037

    106. [106]

      Y. Wei, S. Yang, P. Wang, J. Guo, J. Huang, W. Sun, Dalton Trans. 50 (2021) 384, https://doi.org/10.1039/D0DT03500A.  doi: 10.1039/D0DT03500A

    107. [107]

      Y. Dong, H. Liu, S. Wang, G. Guan, Q. Yang, ACS Catal. 13 (2023) 2547, https://doi.org/10.1021/acscatal.2c04588.  doi: 10.1021/acscatal.2c04588

    108. [108]

      H. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S. Yu, H. Jiang, J. Am. Chem. Soc. 137 (2015) 13440, https://doi.org/10.1021/jacs.5b08773.  doi: 10.1021/jacs.5b08773

    109. [109]

      S. Wang, H. Huang, M. Liu, S. Yao, S. Guo, J. Wang, Z. Zhang, T. Lu, Inorg. Chem. 59 (2020) 6301, https://doi.org/10.1021/acs.inorgchem.0c00407.  doi: 10.1021/acs.inorgchem.0c00407

    110. [110]

      E. Chen, M. Qiu, Y. Zhang, Y. Zhu, L. Liu, Y. Sun, X. Bu, J. Zhang, Q. Lin, Adv. Mater. 30 (2017) 1704388, https://doi.org/10.1002/adma.201704388.  doi: 10.1002/adma.201704388

    111. [111]

      X. Kong, T. He, J. Zhou, C. Zhao, T. Li, X. Wu, K. Wang, J. Li, Small 17 (2021) 2005357, https://doi.org/10.1002/smll.202005357.  doi: 10.1002/smll.202005357

    112. [112]

      Z. Huang, K. Hu, X. Li, Z. Bin, Q. Wu, Z. Zhang, Z. Guo, W. Wu, Z. Chai, L. Mei, W. Shi, J. Am. Chem. Soc. 145 (2023) 18148, https://doi.org/10.1021/jacs.3c07047.  doi: 10.1021/jacs.3c07047

    113. [113]

      J. Zeng, X. Wang, B. Xie, Q. Li, X. Zhang, J. Am. Chem. Soc. 144 (2022) 1218, https://doi.org/10.1021/jacs.1c10110.  doi: 10.1021/jacs.1c10110

    114. [114]

      F. Al-dolaimy, M. Kzar, S. Hussein, H. Bahir, A. Hamoody, A. Dawood, M. Qasim, A. Kareem, A. Alawadi, A. Alsaalamy, R. Riyad, J. Inorg. Organomet. Polym. 34 (2023) 864, https://doi.org/10.1007/s10904-023-02860-0.  doi: 10.1007/s10904-023-02860-0

    115. [115]

      X. Gao, B. Guo, C. Guo, Q. Meng, J. Liang, J. Liu, ACS Appl. Mater. Inter. 12 (2020) 24059, https://doi.org/10.1021/acsami.0c05631.  doi: 10.1021/acsami.0c05631

    116. [116]

      G. Zhai, Y. Liu, Y. Mao, H. Zhang, L. Lin, Y. Li, Z. Wang, H. Cheng, P. Wang, Z. Zheng, Y. Dai, B. Huang, Appl. Catal. B: Environ. 301 (2022) 120793, https://doi.org/10.1016/j.apcatb.2021.120793.  doi: 10.1016/j.apcatb.2021.120793

    117. [117]

      X. He, X. Gao, X. Chen, S. Hu, F. Tan, Y. Xiong, R. Long, M. Liu, E. Tse, F. Wei, H. Yang, J. Hou, C. Song, X. Guo, Appl. Catal. B: Environ. 327 (2023) 122418, https://doi.org/10.1016/j.apcatb.2023.122418.  doi: 10.1016/j.apcatb.2023.122418

    118. [118]

      M. Elcheikh Mahmoud, H. Audi, A. Assoud, T. Ghaddar, M. Hmadeh, J. Am. Chem. Soc. 141 (2019) 7115, https://doi.org/10.1021/jacs.9b01920.  doi: 10.1021/jacs.9b01920

    119. [119]

      X. Wang, J. Li, M. Kou, W. Dou, D. Bai, X. Tang, Y. Tang, W. Liu, Inorg. Chem. 62 (2023) 19015, https://doi.org/10.1021/acs.inorgchem.3c02765.  doi: 10.1021/acs.inorgchem.3c02765

    120. [120]

      H. Yang, C. Lai, M. Wu, S. Wang, Y. Xia, F. Pan, K. Lv, L. Wen, Chem. Eng. J. 455 (2023) 140425, https://doi.org/10.1016/j.cej.2022.140425.  doi: 10.1016/j.cej.2022.140425

    121. [121]

      S. Chen, F. Yang, H. Gao, J. Wang, X. Chen, X. Zhang, J. Li, A. Li, J. CO2 Util. 48 (2021) 101528, https://doi.org/10.1016/j.jcou.2021.101528.  doi: 10.1016/j.jcou.2021.101528

    122. [122]

      W. Xu, G. Zhang, J. Wang, H. Yu, W. Zhang, L. Shen, D. Mei, Adv. Funct. Mater. 34 (2024) 2312691, https://doi.org/10.1002/adfm.202312691.  doi: 10.1002/adfm.202312691

    123. [123]

      L. Xia, W. Zhou, Y. Xu, Z. Xia, X. Wang, Q. Yang, G. Xie, S. Chen, S. Gao, Chem. Eng. J. 451 (2023) 138747, https://doi.org/10.1016/j.cej.2022.138747.  doi: 10.1016/j.cej.2022.138747

    124. [124]

      S. Karmakar, S. Barman, F. Rahimi, D. Rambabu, S. Nath, T. Maji, Nat. Commun. 14 (2023) 4508, https://doi.org/10.1038/s41467-023-40117-z.  doi: 10.1038/s41467-023-40117-z

    125. [125]

      H. Yin, Z. Zhang, T. Lu, Acc. Chem. Res. 56 (2023) 2676, https://doi.org/10.1021/acs.accounts.3c00380.  doi: 10.1021/acs.accounts.3c00380

    126. [126]

      S. Parambil, S. Karmakar, F. Rahimi, T. Maji, ACS Appl. Mater. Inter. 15 (2023) 27821, https://doi.org/10.1021/acsami.3c01153.  doi: 10.1021/acsami.3c01153

    127. [127]

      P. Stanley, C. Thomas, E. Thyrhaug, A. Urstoeger, M. Schuster, J. Hauer, B. Rieger, J. Warnan, R. Fischer, ACS Catal. 11 (2021) 871, https://doi.org/10.1021/acscatal.0c04673.  doi: 10.1021/acscatal.0c04673

    128. [128]

      P. Stanley, J. Haimerl, C. Thomas, A. Urstoeger, M. Schuster, N. Shustova, A. Casini, B. Rieger, J. Warnan, R. Fischer, Angew. Chem. Int. Ed. 60 (2021) 17854, https://doi.org/10.1002/anie.202102729.  doi: 10.1002/anie.202102729

    129. [129]

      M. Li, H. Zhang, C. Li, F. Lang, S. Yao, J. Pang, X. Bu, Precis. Chem. (2025), https://doi.org/10.1021/prechem.5c00009.  doi: 10.1021/prechem.5c00009

    130. [130]

      C. Ezugwu, S. Ghosh, S. Bera, M. Faraldos, M. Mosquera, R. Rosal, Sep. Purif. Technol. 308 (2023) 122868, https://doi.org/10.1016/j.seppur.2022.122868.  doi: 10.1016/j.seppur.2022.122868

    131. [131]

      X. Su, T. Xu, R. Ye, C. Guo, S. Wabaidur, D. Chen, S. Aftab, Y. Zhong, Y. Hu, J. Colloid. Interface Sci. 646 (2023) 129, https://doi.org/10.1016/j.jcis.2023.05.041.  doi: 10.1016/j.jcis.2023.05.041

    132. [132]

      K. Yang, L. Chen, X. Duan, G. Song, J. Sun, A. Chen, X. Xie, Ceram. Int. 49 (2023) 16061, https://doi.org/10.1016/j.ceramint.2023.01.204.  doi: 10.1016/j.ceramint.2023.01.204

    133. [133]

      S. Chen, G. Hai, H. Gao, X. Chen, A. Li, X. Zhang, W. Dong, Chem. Eng. J. 406 (2021) 126886, https://doi.org/10.1016/j.cej.2020.126886.  doi: 10.1016/j.cej.2020.126886

    134. [134]

      H. Dong, X. Zhang, Y. Lu, Y. Yang, Y. Zhang, H. Tang, F. Zhang, Z. Yang, X. Sun, Y. Feng, Appl. Catal. B: Environ. 276 (2020) 119173, https://doi.org/10.1016/j.apcatb.2020.119173.  doi: 10.1016/j.apcatb.2020.119173

    135. [135]

      J. Zhou, J. Li, L. Kan, L. Zhang, Q. Huang, Y. Yan, Y. Chen, J. Liu, S. Li, Y. Lan, Nat. Commun. 13 (2022) 4681, https://doi.org/10.1038/s41467-022-32449-z.  doi: 10.1038/s41467-022-32449-z

    136. [136]

      Z. Fang, B. Bueken, D. DeVos, R. Fischer, Angew. Chem. Int. Ed. 54 (2015) 7234, https://doi.org/10.1002/anie.201411540.  doi: 10.1002/anie.201411540

    137. [137]

      S. Li, W. Han, Q. An, K. Yong, M. Yin, Adv. Funct. Mater. 33 (2023) 2303447, https://doi.org/10.1002/adfm.202303447.  doi: 10.1002/adfm.202303447

    138. [138]

      J. Ren, M. Ledwaba, N. Musyoka, H. Langmi, M. Mathe, S. Liao, W. Pang, Coord. Chem. Rev. 349 (2017) 169, https://doi.org/10.1016/j.ccr.2017.08.017.  doi: 10.1016/j.ccr.2017.08.017

    139. [139]

      X. Niu, Y. Wang, Y. Liu, M. Yuan, J. Zhang, H. Li, K. Wang, Microchim Acta. 191 (2024) 458, https://doi.org/10.1007/s00604-024-06534-7.  doi: 10.1007/s00604-024-06534-7

    140. [140]

      Y. He, C. Li, X. Chen, Z. Shi, S. Feng, ACS Appl. Mater. Inter. 25 (2022) 28977, https://doi.org/10.1021/acsami.2c06993.  doi: 10.1021/acsami.2c06993

    141. [141]

      X. Zhao, M. Xu, X. Song, X. Liu, W. Zhou, H. Wang, P. Huo, Inorg. Chem 61 (2022) 1765, https://doi.org/10.1021/acs.inorgchem.1c03690.  doi: 10.1021/acs.inorgchem.1c03690

    142. [142]

      S. Wang, X. Gu, X. Wang, X. Zhang, X. Dao, X. Cheng, J. Ma, W. Sun, Chem. Eng. J. 429 (2022) 132147, https://doi.org/10.1016/j.cej.2021.132147.  doi: 10.1016/j.cej.2021.132147

    143. [143]

      S. Wang, X. Wang, X. Zhang, X. Cheng, J. Ma, W. Sun, ACS Appl. Mater. Inter. 13 (2021) 61578, https://doi.org/10.1021/acsami.1c21663.  doi: 10.1021/acsami.1c21663

    144. [144]

      Y. Zhou, Z. Wang, L. Huang, S. Zaman, K. Lei, T. Yue, Z. Li, B. You, B. Xia, Adv. Energy Mater. 11 (2021) 2003159, https://doi.org/10.1002/aenm.202003159.  doi: 10.1002/aenm.202003159

    145. [145]

      H. Chang, Y. Zhou, S. Zhang, X. Zheng, Q. Xu, Adv. Mater. Interfaces. 8 (2021) 2100205, https://doi.org/10.1002/admi.202100205.  doi: 10.1002/admi.202100205

    146. [146]

      M. Hu, J. Liu, S. Song, W. Wang, J. Yao, Y. Gong, C. Li, H. Li, Y. Li, X. Yuan, Z. Fang, H. Xu, W. Song, Z. Li, ACS Catal. 12 (2022) 3238, https://doi.org/10.1021/acscatal.1c05984.  doi: 10.1021/acscatal.1c05984

    147. [147]

      Q. Zuo, R. Cui, L. Wang, Y. Wang, C. Yu, L. Wu, Y. Mai, Y. Zhou, Sci. China. Chem. 66 (2023) 570, https://doi.org/10.1007/s11426-022-1498-y.  doi: 10.1007/s11426-022-1498-y

    148. [148]

      J. Liang, H. Yu, J. Shi, B. Li, L. Wu, M. Wang, Adv. Mater. 35 (2023) 2209814, https://doi.org/10.1002/adma.202209814.  doi: 10.1002/adma.202209814

    149. [149]

      W. Yang, H. Wang, R. Liu, J. Wang, C. Zhang, C. Li, D. Zhong, T. Lu, Angew. Chem. Int. Ed. 60 (2020) 409, https://doi.org/10.1002/anie.202011068.  doi: 10.1002/anie.202011068

    150. [150]

      X. Zhang, P. Wang, Y. Zhang, X. Cheng, W. Sun, ACS Appl. Mater. Inter. 15 (2023) 3348, https://doi.org/10.1021/acsami.2c19236.  doi: 10.1021/acsami.2c19236

    151. [151]

      X. Cheng, X. Dao, S. Wang, J. Zhao, W. Sun, ACS Catal. 11 (2020) 650, https://doi.org/10.1021/acscatal.0c04426.  doi: 10.1021/acscatal.0c04426

    152. [152]

      X. Cheng, Y. Gu, X. Zhang, X. Dao, S. Wang, J. Ma, J. Zhao, W. Sun, Appl. Catal. B: Environ. 298 (2021) 120524, https://doi.org/10.1016/j.apcatb.2021.120524.  doi: 10.1016/j.apcatb.2021.120524

    153. [153]

      X. Cheng, X. Zhang, X. Dao, S. Wang, J. Zhao, W. Sun, Chem. Eng. J. 431 (2022) 13412, https://doi.org/10.1016/j.cej.2021.134125.  doi: 10.1016/j.cej.2021.134125

    154. [154]

      F. Guo, M. Yang, R. Li, Z. He, Y. Wang, W. Sun, ACS Catal. 12 (2022) 9486, https://doi.org/10.1021/acscatal.2c02789.  doi: 10.1021/acscatal.2c02789

    155. [155]

      B. He, Y. Wang, X. Bai, H. Bian, Y. Xie, R. Li, J. Li, Chem. Eng. J. 482 (2024) 149000, https://doi.org/10.1016/j.cej.2024.149000.  doi: 10.1016/j.cej.2024.149000

    156. [156]

      Z. Wang, X. Yue, Q. Xiang, Coord. Chem. Rev. 45 (2024) 1011033, https://doi.org/10.1016/j.coche.2024.101033.  doi: 10.1016/j.coche.2024.101033

    157. [157]

      M. Song, X. Song, X. Liu, W. Zhou, P. Huo, Chin. J. Catal. 51 (2023) 180, https://doi.org/10.1016/S1872-2067(23)64480-8.  doi: 10.1016/S1872-2067(23)64480-8

    158. [158]

      Y. Jiao, Y. Chen, L. Liu, X. Yu, G. Tian, Small 20 (2024) 2309094, https://doi.org/10.1002/smll.202309094.  doi: 10.1002/smll.202309094

    159. [159]

      Y. Zou, Y. Huang, D. Si, Q. Yin, Q. Wu, Z. Weng, R. Cao, Angew. Chem. Int. Ed. 60 (2021) 20915, https://doi.org/10.1002/ange.202107156.  doi: 10.1002/ange.202107156

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    3. [3]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    4. [4]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-0. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    10. [10]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    11. [11]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    12. [12]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    13. [13]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    14. [14]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    15. [15]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    16. [16]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    19. [19]

      Yihong ShaoRongchen ShenSong WangShijie LiPeng ZhangXin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176

    20. [20]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return