Research progress on orbital hybridization in photocatalysis and electrocatalysis
- Corresponding author: Xian-Wei Lv, xianweilv@tiangong.edu.cn Jianxin Geng, jianxingeng@tiangong.edu.cn Zhong-Yong Yuan, zyyuan@nankai.edu.cn
Citation:
Xian-Wei Lv, Xinyuan Ding, Jiaxing Gong, Xuhuan Yan, Dayong Huang, Jianxin Geng, Zhong-Yong Yuan. Research progress on orbital hybridization in photocatalysis and electrocatalysis[J]. Acta Physico-Chimica Sinica,
;2026, 42(2): 100151.
doi:
10.1016/j.actphy.2025.100151
S. Li, Y. Zhou, X. Fu, J. B. Pedersen, M. Saccoccio, S. Z. Andersen, K. Enemark-Rasmussen, P. J. Kempen, C. D. Damsgaard, A. Xu, Nature 629 (2024) 92, https://doi.org/10.1038/s41586-024-07276-5.
doi: 10.1038/s41586-024-07276-5
M. Chung, J. H. Maalouf, J. S. Adams, C. Jiang, Y. Román-Leshkov, K. Manthiram, Science 383 (2024) 49, https://www.science.org/doi/10.1126/science.adh4355.
doi: 10.1126/science.adh4355
W. Fang, W. Guo, R. Lu, Y. Yan, X. Liu, D. Wu, F. M. Li, Y. Zhou, C. He, C. Xia, Nature 626 (2024) 86, https://doi.org/10.1038/s41586-023-06917-5.
doi: 10.1038/s41586-023-06917-5
M. A. Hoque, J. B. Gerken, S. S. Stahl, Science 383 (2024) 173, https://www.science.org/doi/10.1126/science.adk5097.
doi: 10.1126/science.adk5097
A. E. Thorarinsdottir, D. P. Erdosy, C. Costentin, J. A. Mason, D. G. Nocera, Nature Catal. 6 (2023) 425, https://doi.org/10.1038/s41929-023-00958-9.
doi: 10.1038/s41929-023-00958-9
R. Zeng, H. Li, Z. Shi, L. Xu, J. Meng, W. Xu, H. Wang, Q. Li, C. J. Pollock, T. Lian, Nat. Mater. 23 (2024) 1695, https://doi.org/10.1038/s41563-024-01998-7.
doi: 10.1038/s41563-024-01998-7
W. Shi, T. Shen, C. Xing, K. Sun, Q. Yan, W. Niu, X. Yang, J. Li, C. Wei, R. Wang, Science 387 (2025) 791, https://www.science.org/doi/10.1126/science.adr3149.
doi: 10.1126/science.adr3149
H. Zhao, Z. Y. Yuan, Smart Mater. Devices 1 (2025) 202521, https://doi.org/10.70401/smd.2025.0013.
doi: 10.70401/smd.2025.0013
X. W. Lv, J. Gong, S. Wang, X. Yan, C. Sun, X. Hu, Z. Lai, Y. Liu, H. Wang, Z. Y. Yuan, Adv. Energy Mater. (2025) 2501129, https://doi.org/10.1002/aenm.202501129.
doi: 10.1002/aenm.202501129
L. Chen, J. Xia, Z. Lai, D. Wu, J. Zhou, S. Chen, X. Meng, Z. Wang, H. Wang, L. Zheng, L. Xu, X. W. Lv, C. W. Bielawski, J. Geng, ACS Nano 18 (2024) 31123, https://doi.org/10.1021/acsnano.4c08728.
doi: 10.1021/acsnano.4c08728
T. Wang, X. Cao, L. Jiao, Angew. Chem. Int. Ed. 134 (2022) e202213328, https://doi.org/10.1002/anie.202213328.
doi: 10.1002/anie.202213328
H. Sun, X. Xu, L. Fei, W. Zhou, Z. Shao, Adv. Energy Mater. 14 (2024) 2401242, https://doi.org/10.1002/aenm.202401242.
doi: 10.1002/aenm.202401242
X. W. Lv, Z. Wang, Z. Lai, Y. Liu, T. Ma, J. Geng, Z. Y. Yuan, Small 20 (2024) 2306396, https://doi.org/10.1002/smll.202306396.
doi: 10.1002/smll.202306396
X. Ai, X. Zou, H. Chen, Y. Su, X. Feng, Q. Li, Y. Liu, Y. Zhang, X. Zou, Angew. Chem. Int. Ed. 59 (2020) 3961, https://doi.org/10.1002/anie.201915663.
doi: 10.1002/anie.201915663
S. Niu, J. Cai, G. Wang, Nano Res. 14 (2021) 1985, https://doi.org/10.1007/s12274-020-3249-z.
doi: 10.1007/s12274-020-3249-z
L. Wang, Z. Mei, Q. An, X. Sheng, Q. Jing, W. Huang, X. Wang, X. Zou, H. Guo, Chem Catal. 3 (2023) 100758, https://doi.org/10.1016/j.checat.2023.100758.
doi: 10.1016/j.checat.2023.100758
Y. Zhang, , D. Chen, S. Yu, Y. Feng, C. Zhang, J. Hu, Adv. Funct. Mater. (2025) e13626, https://doi.org/10.1002/adfm.202513626.
doi: 10.1002/adfm.202513626
J. Tian, Y. Rao, S. Xu, X. Xu, Y. Sun, T. Shi, H. Zhou, S. Guo, Nano Lett. 25 (2025) 6918, https://doi.org/10.1021/acs.nanolett.5c00128.
doi: 10.1021/acs.nanolett.5c00128
W. Li, J. Luo, J. Feng, Y. Li, B. Liu, Y. Zhang, J. Zhao, C. Wang, Rare Met. (2025) 1, https://doi.org/10.1007/s12598-025-03307-w.
doi: 10.1007/s12598-025-03307-w
L. Zhao, Z. Zhu, J. Wang, J. Zuo, H. Chen, X. Qi, X. Niu, J. S. Chen, R. Wu, Z. Wei, Angew. Chem. Int. Ed. (2025) e202501805, https://doi.org/10.1002/anie.202501805.
doi: 10.1002/anie.202501805
Y. Zhou, Q. Gu, K. Yin, L. Tao, Y. Li, H. Tan, Y. Yang, S. Guo, Proc. Natl. Acad Sci. 120 (2023) e2301439120, https://doi.org/10.1073/pnas.2301439120.
doi: 10.1073/pnas.2301439120
G. Zhou, X. Liu, Y. Xu, S. Feng, Z. Lu, Z. Q. Liu, Angew. Chem. Int. Ed. 63 (2024) e202411794, https://doi.org/10.1002/anie.202411794.
doi: 10.1002/anie.202411794
X. Zhao, X. Li, L. An, K. Iputera, J. Zhu, P. Gao, R.-S. Liu, Z. Peng, J. Yang, D. Wang, Energy Environ. Sci. 15 (2022) 1234, https://doi.org/10.1039/D1EE03482K.
doi: 10.1039/D1EE03482K
J. Guo, H. Zhao, Z. Yang, L. Wang, A. Wang, J. Zhang, L. Ding, L. Wang, H. Liu, X. Yu, Adv. Funct. Mater. 34 (2024) 2315714, https://doi.org/10.1002/adfm.202315714.
doi: 10.1002/adfm.202315714
J. Liu, J. Zhu, H. Xu, D. Cheng, ACS Catal. 14 (2024) 6952.https://doi.org/10.1021/acscatal.4c01377.
doi: 10.1021/acscatal.4c01377
B. Peng, H. She, Z. Wei, Z. Sun, Z. Deng, Z. Sun, W. Chen, Nat. Commun. 16 (2025) 2217, https://doi.org/10.1038/s41467-025-57573-4.
doi: 10.1038/s41467-025-57573-4
L. Qi, J. Guan, Sci. Bull. 70 (2025) 1856, https://doi.org/10.1016/j.scib.2025.04.009.
doi: 10.1016/j.scib.2025.04.009
B. Shao, T. Liu, D. Li, L. Meng, J. Wang, W. Zhai, L. Li, Adv. Mater. 37 (2025) 2504135, https://doi.org/10.1002/adma.202504135.
doi: 10.1002/adma.202504135
Q. Wang, Z. Zhang, C. Cai, M. Wang, Z. L. Zhao, M. Li, X. Huang, S. Han, H. Zhou, Z. Feng, J. Am. Chem. Soc. 143 (2021) 13605, https://doi.org/10.1021/jacs.1c04682
doi: 10.1021/jacs.1c04682
M. Xia, B. Chong, X. Gong, H. Xiao, H. Li, H. Ou, B. Zhang, G. Yang, ACS Catal. 13 (2023) 12350, https://doi.org/10.1021/acscatal.3c02198.
doi: 10.1021/acscatal.3c02198
S. Zhao, X. Tang, J. Li, J. Zhang, D. Yuan, D. Ma, L. Ju, Nanomaterials 12 (2022) 2793, https://doi.org/10.3390/nano12162793.
doi: 10.3390/nano12162793
R. Biswas, S. Dastider, I. Ahmed, S. Barua, K. Mondal, K. Haldar, J. Phys. Chem. Lett. 14 (2023) 3146, https://doi.org/10.1021/acs.jpclett.3c00011.
doi: 10.1021/acs.jpclett.3c00011
D. Deng, S. Wu, H. Li, H. Li, L. Xu, Small, 19 (2023) 2205469, https://doi.org/10.1002/smll.202205469.
doi: 10.1002/smll.202205469
X. Liu, Z. Zhang, X. Zhang, L. Wu, Electrochim. Acta 477 (2024) 143793, https://doi.org/10.1016/j.electacta.2024.143793.
doi: 10.1016/j.electacta.2024.143793
L. Guan, H. Fu, T. Zhu, C. Chen, Z. Zhang, Y. Pi, N. Zhang, T. Liu, Chem. Mater. 36 (2024) 9741, https://doi.org/10.1021/acs.chemmater.4c01878.
doi: 10.1021/acs.chemmater.4c01878
G. Wu, W. Zhang, R. Yu, Y. Yang, J. Jiang, M. Sun, A. Du, W. He, L. Dai, X. Mao, Angew. Chem. Int. Ed. 136 (2024) e202410251, https://doi.org/10.1002/anie.202410251.
doi: 10.1002/anie.202410251
B. Tang, Y. Zhou, Q. Ji, Z. Zhuang, L. Zhang, C. Wang, H. Hu, H. Wang, B. Mei, F. Song, Nat. Synth. 3 (2024) 878, https://doi.org/10.1038/s44160-024-00545-1.
doi: 10.1038/s44160-024-00545-1
X. Li, X. Gao, E. Guo, M. Wei, C. Si, Q. Lu, Y. Pang, Inorg. Chem. 62 (2023) 9713, https://doi.org/10.1021/acs.inorgchem.3c01318.
doi: 10.1021/acs.inorgchem.3c01318
J. Liu, C. Tang, Z. Ke, R. Chen, H. Wang, W. Li, C. Jiang, D. He, G. Wang, X. Xiao, Adv. Energy Mater. 12 (2022) 2103301, https://doi.org/10.1002/aenm.202103301.
doi: 10.1002/aenm.202103301
B. Fan, H. Zhang, B. Gu, F. Qiu, Q. Cao, W. Fang, J. Energy Chem. 100 (2025) 234, https://doi.org/10.1016/j.jechem.2024.08.041.
doi: 10.1016/j.jechem.2024.08.041
X.-W. Lv, X.-L. Liu, Y.-J. Suo, Y.-P. Liu, Z.-Y. Yuan, ACS Nano 15 (2021) 12109, https://doi.org/10.1021/acsnano.1c03465.
doi: 10.1021/acsnano.1c03465
F. Yu, G. Zhang, M. Shu, H. Wang, Angew. Chem. Int. Ed. 64 (2025) e202416467, https://doi.org/10.1002/anie.202416467.
doi: 10.1002/anie.202416467
R. Cheng, X. He, M. Jiang, X. Shao, W. Tang, B. Ran, H. Li, C. Fu, Adv. Funct. Mater. (2025) 2425138, https://doi.org/10.1002/adfm.202425138.
doi: 10.1002/adfm.202425138
H. Chen, Q. Wu, Y. Wang, Q. Zhao, X. Ai, Y. Shen, X. Zou, Chem. Commun. 58 (2022) 7730, https://doi.org/10.1039/D2CC02299K.
doi: 10.1039/D2CC02299K
J. Wu, J. Liu, W. Xia, Y. Y. Ren, F. Wang, Acta Phys.-Chim. Sin. 37 (2021) 2008043, https://doi.org//10.3866/PKU.WHXB202008043.
doi: 10.3866/PKU.WHXB202008043
H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x.
doi: 10.1038/s41467-025-56306-x
Y. Luo, X. Zhou, J. Zhang, Y. Qi, Z. Li, F. Zhang, C. Li, J. Energy Chem. 63 (2021) 385, https://doi.org/10.1016/j.jechem.2021.07.028.
doi: 10.1016/j.jechem.2021.07.028
C. Feng, M. Hu, S. Zuo, J. Luo, P. Castaño, Y. Ren, H. Zhang, Adv. Mater. 37 (2025) 2411813, https://doi.org/10.1002/adma.202411813.
doi: 10.1002/adma.202411813
J. Wang, H. Zhang, Y. Nian, Y. Chen, H. Cheng, C. Yang, T. Yu, Adv. Funct. Mater. 34 (2024) 2406549, https://doi.org/10.1002/adfm.202406549.
doi: 10.1002/adfm.202406549
Y. Zhao, J. Shen, J. Yuan, H. Mao, X. Cheng, Z. Xu, Z. Bian, Nano Energy, (2024) 109499, https://doi.org/10.1016/j.nanoen.2024.109499.
doi: 10.1016/j.nanoen.2024.109499
P. Li, Y. Gao, A. G. Borthwick, P. Li, H. Zhang, F. Chen, L. Chen, F. Li, W. Liu, Angew. Chem. Int. Ed. (2025) e202503097, https://doi.org/10.1002/ange.202503097.
doi: 10.1002/ange.202503097
W. Feng, B. Chang, Y. Ren, D. Kong, H. B. Tao, L. Zhi, M. A. Khan, R. Aleisa, M. Rueping, H. Zhang, Adv. Mater. 37 (2025) 2416012, https://doi.org/10.1002/adma.202416012.
X. Wang, W. Pi, S. Hu, H. Bao, N. Yao, W. Luo, Nano-Micro Lett. 17 (2025) 11, https://doi.org/10.1007/s40820-024-01528-9.
doi: 10.1007/s40820-024-01528-9
P. Huang, M. Meng, G. Zhou, P. Wang, W. Wei, H. Li, R. Huang, F. Liu, L. Liu, Proc. Natl. Acad Sci. 120 (2023) e2219661120, https://doi.org/10.1073/pnas.2219661120.
doi: 10.1073/pnas.2219661120
X.-W. Lv, L. Wang, G. Wang, R. Hao, J.-T. Ren, X. Liu, P. N. Duchesne, Y. Liu, W. Li, Z.-Y. Yuan, J. Mater. Chem. A 8 (2020) 8868, https://doi.org/10.1039/d0ta02832k.
doi: 10.1039/d0ta02832k
Y. Shan, X. Sun, Y. Wang, Y. Zhu, T. Li, Phys. Status Solidi-R 17 (2023) 2200445, https://doi.org/10.1002/pssr.202200445.
doi: 10.1002/pssr.202200445
C. Zhou, L. Li, Z. Dong, F. Lv, H. Guo, K. Wang, M. Li, Z. Qian, N. Ye, Z. Lin, Nat. Commun. 15 (2024) 9774, https://www.nature.com/articles/s41467-024-53905-y.
L. Gao, X. Li, Z. Yao, H. Bai, Y. Lu, C. Ma, S. Lu, Z. Peng, J. Yang, A. Pan, J. Am. Chem. Soc. 141 (2019) 18083, https://doi.org/10.1021/jacs.9b07238.
doi: 10.1021/jacs.9b07238
J. Nie, Z. Li, W. Liu, Z. Sang, D. a. Yang, L. Wang, F. Hou, J. Liang, Adv. Mater. (2025) 2420236, https://doi.org/10.1002/adma.202420236.
doi: 10.1002/adma.202420236
J. Du, G. Han, W. Zhang, L. Li, Y. Yan, Y. Shi, X. Zhang, L. Geng, Z. Wang, Y. Xiong, Nat. Commun. 14 (2023) 4766, https://www.nature.com/articles/s41467-023-40467-8.
Z. Yang, G. Hou, N. Gao, Y. Li, X. Li, Z. Chen, H. Jin, M. Zhao, D. Wang, K. Chen, Angew. Chem. Int. Ed. (2025) e202501836, https://doi.org/10.1002/ange.202501836.
doi: 10.1002/ange.202501836
Y. Lei, Z. Wang, A. Bao, X. Tang, X. Huang, H. Yi, S. Zhao, T. Sun, J. Wang, F. Gao, Chem. Eng. J. 453 (2023) 139663, https://doi.org/10.1016/j.cej.2022.139663.
doi: 10.1016/j.cej.2022.139663
G. Tian, Z. Li, D. Liao, C. Zhang, H.-j. Peng, X. Liu, K. Shen, H. Meng, N. Wang, H. Xiong, Nat. Sustain. (2025) 1, https://doi.org/10.1038/s41893-025-01551-7.
doi: 10.1038/s41893-025-01551-7
S. Xu, X. W. Lv, Y. Zhao, T. Ren, Z. Y. Yuan, J. Energy Chem. 52 (2021) 139, https://doi.org/10.1016/j.jechem.2020.04.054.
doi: 10.1016/j.jechem.2020.04.054
X. Cao, Y. Tian, J. Ma, W. Guo, W. Cai, J. Zhang, Adv. Mater. 36 (2024) 2309648, https://doi.org/10.1002/adma.202309648.
doi: 10.1002/adma.202309648
Y. Cui, C. Ren, Q. Li, C. Ling, J. Wang, J. Am. Chem. Soc. 146 (2024) 15640, https://doi.org/10.1021/jacs.4c05630.
doi: 10.1021/jacs.4c05630
Q. Wang, T. Luo, X. Cao, Y. Gong, Y. Liu, Y. Xiao, H. Li, F. Gröbmeyer, Y.-R. Lu, T.-S. Chan, Nat. Commun. 16 (2025) 2985, https://www.nature.com/articles/s41467-025-57464-8.
C. Fan, X. Wang, X. Wu, Y. Chen, Z. Wang, M. Li, D. Sun, Y. Tang, G. Fu, Adv. Energy Mater. 13 (2023) 2203244, https://doi.org/10.1002/aenm.202203244.
doi: 10.1002/aenm.202203244
X. Wang, L. Shi, W. Ren, J. Li, Y. Liu, W. Fu, S. Wang, S. Yao, Y. Ji, K. Ji, J. Energy Chem. 99 (2024) 409, https://doi.org/10.1016/j.jechem.2024.07.053.
doi: 10.1016/j.jechem.2024.07.053
J. Kim, H. Kim, G. Han, S. Hong, J. Park, J. Bang, S. Kim, A. Ahn, Exploration 2 (2022) 20210077, https://doi.org/10.1002/exp.20210077.
doi: 10.1002/exp.20210077
J. Mi, H. Liu, S. Yang, F. Huang, Z. Qian, J. Yuan, J. Qing, C. Sun, C. Wang, J. Chen, J. Li, Environ. Sci. Technol. 59 (2025) 11321, https://doi.org/10.1021/acs.est.4c14210.
doi: 10.1021/acs.est.4c14210
Y. Tan, J. Fu, T. Luo, K. Liu, M. Liu, J. Am Chem Soc. 147 (2025) 4937, https://doi.org/10.1021/jacs.4c14021.
doi: 10.1021/jacs.4c14021
Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou, H. M. Cheng, Adv. Mater. 33 (2021) 2105947, https://doi.org/10.1002/adma.202105947.
doi: 10.1002/adma.202105947
G. Wu, T. Liu, Z. Lao, Y. Cheng, T. Wang, J. Mao, H. Zhang, E. Liu, C. Shi, G. Zhou, Angew. Chem. Int. Ed. 64 (2025) e202422208, https://doi.org/10.1002/anie.202422208.
doi: 10.1002/anie.202422208
G. Liu, W. Wang, P. Zeng, C. Yuan, L. Wang, H. Li, H. Zhang, X. Sun, K. Dai, J. Mao, Nano Lett. 22 (2022) 6366, https://doi.org/10.1021/acs.nanolett.2c02183.
doi: 10.1021/acs.nanolett.2c02183
N. Sun, Z. Zheng, Z. Lai, J. Wang, P. Du, T. Ying, H. Wang, J. Xu, R. Yu, Z. Hu, Adv. Mater. 36 (2024) 2404772, https://doi.org/10.1002/adma.202404772.
doi: 10.1002/adma.202404772
B. Zhu, S. Huang, O. Seo, M. Cao, D. Matsumura, H. Gu, D. Wu, J. Am. Chem. Soc. 147 (2025) 11250, https://doi.org/10.1021/jacs.4c18109
doi: 10.1021/jacs.4c18109
L. Meng, C. W. Kao, Z. Wang, J. Ma, P. Huang, N. Zhao, Y. Tan, Nat. Commun. 15 (2024) 5999, https://doi.org/10.1038/s41467-024-50499-3
doi: 10.1038/s41467-024-50499-3
J. Yuan, P. Wang, N. Song, Y. Wang, J. Ma, S. Xiong, X. Li, J. Feng, B. Xi, Angew. Chem. Int. Ed. 64 (2025) e202420866, https://doi.org/10.1002/anie.202420866.
doi: 10.1002/anie.202420866
X. Ma, Y. Zhou, S. Zhang, W. Lei, Y. Zhao, C. Shan, Small (2025) 2411394, https://doi.org/10.1002/smll.202411394.
doi: 10.1002/smll.202411394
J. Tong, H. Wu, P. Tan, H. Liao, Y. F. Tang, X. Wang, J. Xie, J. Pan, Nano Energy (2025) 111133, https://doi.org/10.1016/j.nanoen.2025.111133.
doi: 10.1016/j.nanoen.2025.111133
X. Lv, J. Ren, Y. Wang, Y. Liu, Z. Y. Yuan, ACS Sustain. Chem. Engineering 7 (2019) 8993, https://doi.org/10.1021/acssuschemeng.9b01263.
doi: 10.1021/acssuschemeng.9b01263
X.-W. Lv, Y. Liu, R. Hao, W. Tian, Z.-Y. Yuan, ACS Appl. Mater. Interfaces 12 (2020) 17502, https://doi.org/10.1021/acsami.0c00647.
doi: 10.1021/acsami.0c00647
S. You, J. Xiao, S. Liang, W. Xie, T. Zhang, M. Li, Z. Zhong, Q. Wang, H. He, Energy Environ. Sci. 17 (2024) 5795, https://doi.org/10.1039/d4ee01325e.
doi: 10.1039/d4ee01325e
X. W. Lv, W. W. Tian, Z. Y. Yuan, Electrochem. Energy Rev. 6 (2023) 23, https://doi.org/10.1007/s41918-022-00159-1.
doi: 10.1007/s41918-022-00159-1
X. W. Lv, W. S. Xu, W. W. Tian, H. Y. Wang, Z. Y. Yuan, Small 17 (2021) 2101856 https://doi.org/10.1002/smll.202101856.
doi: 10.1002/smll.202101856
R. Wang, X. Y. Dong, J. Du, J. Y. Zhao, S. Q. Zang, Adv. Mater. 30 (2018) 1703711, https://doi.org/10.1002/adma.201703711.
doi: 10.1002/adma.201703711
X.-W. Lv, Y. Liu, Y.-S. Wang, X.-L. Liu, Z.-Y. Yuan, Appl. Catal. B: Environ. 280 (2021) 119434, https://doi.org/10.1016/j.apcatb.2020.119434.
doi: 10.1016/j.apcatb.2020.119434
J. Kim, J. Guo, N. Shan, J. Yoo, P. Farinazzo Bergamo Dias Martins, J. Noh, M. Jung, P. Zapol, B. S. Mun, R. Klie, J. Am. Chem. Soc. 147 (2025) 16340, https://doi.org/10.1021/jacs.5c02001.
doi: 10.1021/jacs.5c02001
X. W. Lv, X. L. Liu, L. J. Gao, Y. P. Liu, Z. Y. Yuan, J. Mater. Chem. A 9 (2021) 4026, https://doi.org/10.1039/d0ta11244e.
doi: 10.1039/d0ta11244e
H. Ye, J. Su, G. Yang, L. Zhou, Y. Xie, X. Zhan, J. Tian, X. Tong, Mater. Today Commun. 45 (2025) 112365, https://doi.org/10.1016/j.mtcomm.2025.112365.
doi: 10.1016/j.mtcomm.2025.112365
X.-W. Lv, Y. Liu, W. Tian, L. Gao, Z.-Y. Yuan, J. Energy Chem. 50 (2020) 324, https://doi.org/10.1016/j.jechem.2020.02.055.
doi: 10.1016/j.jechem.2020.02.055
X. Lv, W. Tian, Y. Liu, Z.-Y. Yuan, Mater. Chem. Front. 3 (2019) 2428, https://doi.org/10.1039/c9qm00449a.
doi: 10.1039/c9qm00449a
T. Zhai, X. Gao, H. Wang, Y. Cheng, J. Gao, J. Pan, E. C. Tse, C. Shang, Z. Guo, Matter 8 (2025) 102141, https://doi.org/10.1016/j.matt.2025.102141.
doi: 10.1016/j.matt.2025.102141
X. W. Lv, Z. Hu, J. T. Ren, Y. Liu, Z. Wang, Z. Y. Yuan, Inorg. Chem. Front. 6 (2019) 74, https://doi.org/10.1039/c8qi01026a.
doi: 10.1039/c8qi01026a
J. W. Zhang, X. W. Lv, T. Z. Ren, Z. Wang, T. J. Bandosz, Z. Y. Yuan, Green Energy Environ. 7 (2022) 1024, https://doi.org/10.1016/j.gee.2020.12.009.
doi: 10.1016/j.gee.2020.12.009
M. Yu, D. Li, G. Sui, D. Guo, D. Chu, Y. Li, D. F. Chai, J. Li, Adv. Funct. Mater. 35 (2025) 2416963, https://doi.org/10.1002/adfm.202416963.
doi: 10.1002/adfm.202416963
B. Li, C. Guo, X. Wang, W. Dong, B. Xu, X. Xing, D. Zhou, X. Xue, Q. Luan, W. Tang, C. Hou, Mater. Today Nano. 21 (2023) 100281, https://doi.org/10.1016/j.mtnano.2022.100281.
doi: 10.1016/j.mtnano.2022.100281
Q. Jing, Z. Mei, X. Sheng, X. Zou, Q. Xu, L. Wang, H. Guo, Adv. Funct. Mater. 34 (2024) 2307002, https://doi.org/10.1002/adfm.202307002.
doi: 10.1002/adfm.202307002
C. Li, B. Ye, B. Ouyang, T. Zhang, T. Tang, Z. Qiu, S. Li, Y. Li, R. Chen, W. Wen. M. Song, B. Mei, X. Xia, Y. Zhang, Adv. Mater. (2025) 2501381, https://doi.org/10.1002/adma.202501381.
doi: 10.1002/adma.202501381
J. Liu, J. Yin, Y. Lin, M. Pang, H. Pang, S. Zhang, L. Xu, J. Yang, Y. Tang, Nano Res. 18 (2025) 94907016, https://doi.org/10.26599/nr.2025.94907016.
doi: 10.26599/nr.2025.94907016
Y. Qin, W. Zhang, F. Wang, J. Li, J. Ye, X. Sheng, C. Li, X. Liang, P. Liu, X. Wang, Angew. Chem. Int. Ed. 61 (2022) e202200899, https://doi.org/10.1002/ange.202200899.
doi: 10.1002/ange.202200899
C. Yin, F. Zhou, J. Wu, X. Zhang, J. Wen, R. Zhu, M. Ma, S. Yoriya, P. He, Q. Fang, Adv. Funct. Mater. 34 (2024) 2410429, https://doi.org/10.1002/adfm.202410429.
doi: 10.1002/adfm.202410429
D. D. Alemayehu, M. C. Tsai, M. H. Tsai, C. C. Yang, C. C. Chang, C. Y. Chang, E. A. Moges, K. Lakshmanan, Y. Nikodimos, W. N. Su, J. Am. Chem. Soc. 147 (2025) 16047, https://doi.org/10.1021/jacs.4c17747.
doi: 10.1021/jacs.4c17747
D. Zu, Y. Ying, Q. Wei, P. Xiong, M. Ahmed, Z. Lin, M. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (2024) e202405756, https://doi.org/10.1002/anie.202405756.
doi: 10.1002/anie.202405756
Q. Zhang, W. Zhang, J. Zhu, X. Zhou, G. R. Xu, D. Chen, Z. Wu, L. Wang, Adv. Energy Mater. 14 (2024) 2304546, https://doi.org/10.1002/aenm.202304546.
doi: 10.1002/aenm.202304546
J. Zhang, H. B. Yang, D. Zhou, B. Liu, ACS Nano 122 (2022) 17028, https://doi.org/10.1021/acsnano.5c05595.
doi: 10.1021/acsnano.5c05595
Z. Wang, C. Song, H. Shen, S. Ma, G. Li, Y. Li, Adv. Mater. 36 (2024) 2307786 https://doi.org/10.1002/adma.202307786.
doi: 10.1002/adma.202307786
L. Qi, Y. Gao, Y. Gao, Z. Zheng, X. Luan, S. Zhao, Z. Chen, H. Liu, Y. Xue, Y. Li, J. Am. Chem. Soc. 146 (2024) 5669, https://doi.org/10.1021/jacs.3c14742.
doi: 10.1021/jacs.3c14742
X. Wang, Y. Zhang, S. Wang, Y. Li, Y. Feng, Z. Dai, Y. Chen, X. Meng, J. Xia, G. Zhang, Angew. Chem. Int. Ed. 136 (2024) e202407665, https://doi.org/10.1002/anie.202407665.
doi: 10.1002/anie.202407665
K. Wu, C. Lyu, J. Cheng, W. Ding, J. Wu, Q. Wang, W. M. Lau, J. Zheng, Carbon Energy 6 (2024) e485, https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cey2.485.
doi: 10.1002/cey2.485
S. Liang, H. Hu, J. Liu, H. Shen, Q. Li, N. Qiu, H. Guo, X. Guo, S. Du, Y. Zhu, Appl. Catal. B: Environ. 337 (2023) 123008, https://doi.org/10.1016/j.apcatb.2023.123008.
doi: 10.1016/j.apcatb.2023.123008
M. Liu, Y. Li, L. Yang, P. Zhao, J. Li, L. Tian, D. Cao, Z. Chen, Angew. Chem. Int. Ed. (2025) e202505268, https://doi.org/10.1002/anie.202505268.
doi: 10.1002/anie.202505268
X. F. Wu, Z. Y. Li, H. Wang, J. C. Wang, G. Q. Xi, X. J. Zhao, C. X. Zhang, W. G. Liao, J. C. Ho, Adv. Sci. (2025) 2502244, https://doi.org/10.1002/advs.202502244.
doi: 10.1002/advs.202502244
F. Ye, L. Gong, Y. Long, S. N. Talapaneni, L. Zhang, Y. Xiao, D. Liu, C. Hu, L. Dai, Adv. Energy Mater. 11 (2021) 2101390, https://doi.org/10.1002/aenm.202101390.
doi: 10.1002/aenm.202101390
L. Gong, F. Xia, J. Zhu, X. Mu, D. Chen, H. Zhao, L. Chen, S. Mu, Angew. Chem. Int. Ed. 63 (2024) e202411125, https://doi.org/10.1002/anie.202411125.
doi: 10.1002/anie.202411125
X. Yao, Y. Zhu, T. Xia, Z. Han, C. Du, L. Yang, J. Tian, X. Ma, J. Hou, C. Cao, Small 19 (2023) 2301075, https://doi.org/10.1002/smll.202301075.
doi: 10.1002/smll.202301075
H. Tian, A. Song, P. Zhang, K. Sun, J. Wang, B. Sun, Q. Fan, G. Shao, C. Chen, H. Liu, Adv. Mater. 35 (2023) 2210714, https://doi.org/10.1002/adma.202210714.
doi: 10.1002/adma.202210714
Y. Qin, G. Zhan, C. Tang, D. Yang, X. Wang, J. Yang, C. Mao, Z. Hao, S. Wang, Y. Qin, Nano Lett. 23 (2023) 9227, https://doi.org/10.1021/acs.nanolett.3c01905.
doi: 10.1021/acs.nanolett.3c01905
H. Zang, Y. Zhao, C. Liu, H. Lu, N. Yu, B. Geng, (2025) 2504400,
Q. Li, L. Luo, X. Guo, R. Wang, J. Liu, W. Fan, Z. Feng, F. Zhang, J. Am. Chem. Soc. 147 (2024) 1884, https://doi.org/10.1021/jacs.4c14498.
doi: 10.1021/jacs.4c14498
L. Geng, Q. Zhang, X. Wang, H. Han, Y.-Z. Zhang, C. Li, Z. Li, D.-S. Zhang, X. Zhang, A. Appl. Catal. B: Environ. 343 (2024) 123575, https://doi.org/10.1016/j.apcatb.2023.123575.
doi: 10.1016/j.apcatb.2023.123575
S. Zhang, B. Sun, K. Liao, X. Wang, Z. Chen, J. Wang, W. Hu, X. Han, Adv. Funct. Mater. (2025) 2425640, https://doi.org/10.1002/adfm.202425640.
doi: 10.1002/adfm.202425640
L. Li, S. Huang, R. Cao, K. Yuan, C. Lu, B. Huang, X. Tang, T. Hu, X. Zhuang, Y. Chen, Small 18 (2022) 2105387, https://doi.org/10.1002/smll.202105387.
doi: 10.1002/smll.202105387
P. Wu, L.-L. Shen, W. Zhao, H. Yu, J. Wang, Y. Xu, X. Li, Y. Wang, G.-R. Zhang, D. Mei, Appl. Catal. B: Environ. and Energy (2025) 125408, https://doi.org/10.1016/j.apcatb.2025.125408.
doi: 10.1016/j.apcatb.2025.125408
S. Ji, Y. Mou, H. Liu, X. Lu, Y. Zhang, C. Guo, K. Sun, D. Liu, J. H. Horton, C. Wang, Adv. Mater. 36 (2024) 2410121, https://doi.org/10.1002/adma.202410121.
doi: 10.1002/adma.202410121
S. Lu, Z. Zhang, C. Cheng, B. Zhang, Y. Shi, Angew. Chem. Int. Ed. 137 (2025) e202413308, https://doi.org/10.1002/ange.202413308.
doi: 10.1002/ange.202413308
T. Zhao, J. Wang, Y. Wei, Z. Zhuang, Y. Dou, J. Yang, W.-H. Li, D. Wang, Energy Environ. Sci. 18 (2025) 3462, https://doi.org/10.1039/d5ee00074b.
doi: 10.1039/d5ee00074b
Y. Zhao, Z. Gao, S. Zhang, X. Guan, W. Xu, Y. Liang, H. Jiang, Z. Li, S. Wu, Z. Cui, Adv. Funct. Mater. (2025) 2504260, https://doi.org/10.1002/adfm.202504260.
doi: 10.1002/adfm.202504260
Z. Li, X. Chen, G. Yao, L. Wei, Q. Chen, Q. Luo, F. Zheng, H. Wang, Adv. Funct. Mater. 34 (2024) 2400859, https://doi.org/10.1002/adfm.202400859.
doi: 10.1002/adfm.202400859
B. Lu, Q. Liu, S. Chen, ACS Catal. 10 (2020) 7584, https://doi.org/10.1021/acscatal.0c01950.
doi: 10.1021/acscatal.0c01950
G. M. Tomboc, T. Kim, S. Jung, H. J. Yoon, K. Lee, Small 18 (2022) 2105680, https://doi.org/10.1002/smll.202105680.
doi: 10.1002/smll.202105680
C. Dong, C. Ma, C. Zhou, Y. Yu, J. Wang, K. Yu, C. Shen, J. Gu, K. Yan, A. Zheng, Adv. Mater. 36 (2024) 2407070, https://doi.org/10.1002/adma.202407070.
doi: 10.1002/adma.202407070
G. Zhang, J. Pei, Y. Wang, G. Wang, Y. Wang, W. Liu, J. Xu, P. An, H. Huang, L. Zheng, Angew. Chem. Int. Ed. 63 (2024) e202407509, https://doi.org/10.1002/anie.202407509.
doi: 10.1002/anie.202407509
Y. Dai, B. Liu, Z. Zhang, P. Guo, C. Liu, Y. Zhang, L. Zhao, Z. Wang, Adv. Mater. 35 (2023) 2210757, https://doi.org/10.1002/adma.202210757.
doi: 10.1002/adma.202210757
C. Lan, Y. Chu, S. Wang, C. Liu, J. Ge, W. Xing, Acta Phys.-Chim. Sin 39 (2023) 2210036, https://doi.org/10.3866/pku.whxb202210036.
doi: 10.3866/pku.whxb202210036
C. Qi, H. Yang, Z. Sun, H. Wang, N. Xu, G. Zhu, L. Wang, W. Jiang, X. Yu, X. Li, Angew. Chem. Int. Ed. 62 (2023) e202308344, https://doi.org/10.1002/anie.202308344.
doi: 10.1002/anie.202308344
Qi Wang , Yuqing Liu , Jiefei Wang , Yuan-Yuan Ma , Jing Du , Zhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Sumiya Akter Dristy , Md Ahasan Habib , Shusen Lin , Mehedi Hasan Joni , Rutuja Mandavkar , Young-Uk Chung , Md Najibullah , Jihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Yu Liu , Pengfei Li , Yize Liu , Zaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088