Citation: Xian-Wei Lv, Xinyuan Ding, Jiaxing Gong, Xuhuan Yan, Dayong Huang, Jianxin Geng, Zhong-Yong Yuan. Research progress on orbital hybridization in photocatalysis and electrocatalysis[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100151. doi: 10.1016/j.actphy.2025.100151 shu

Research progress on orbital hybridization in photocatalysis and electrocatalysis

  • The conversion efficiency and stability of energy-related devices are significantly influenced by the photocatalysts and electrocatalysts. Orbital hybridization has emerged as a crucial strategy to enhance catalytic performance, with significant advancements made in recent years. This review focuses on the progress, challenges, and future prospects of orbital hybridization in photocatalysis and electrocatalysis. It begins with the fundamentals of orbital hybridization, covering basic principles and three typical classifications (reaction-level, structure-level, and cascaded orbital hybridization). It further introduces the vital roles of orbital hybridization in improving bonding efficiency, intrinsic activity, selectivity, and stability of the catalysts. Subsequently, recent advances in tuning orbital hybridization to enhance various photocatalytic and electrocatalytic reactions (e.g., HER, OER, ORR, and NRR) are highlighted. After that, modulation strategies (e.g., alloying, heteroatom doping, heterostructure construction, defect engineering, and coordination environment modulation) for orbital hybridization are summarized and discussed from both structural and reaction perspectives. Finally, this review presents the challenges faced in utilizing orbital hybridization to improve catalyst performance and outlines future prospects. By summarizing design strategies related to orbital hybridization, it offers new insights for the tailored construction and optimization of high-activity catalysts, advancing efficient and sustainable energy conversion and storage technologies.
  • 加载中
    1. [1]

      S. Li, Y. Zhou, X. Fu, J. B. Pedersen, M. Saccoccio, S. Z. Andersen, K. Enemark-Rasmussen, P. J. Kempen, C. D. Damsgaard, A. Xu, Nature 629 (2024) 92, https://doi.org/10.1038/s41586-024-07276-5.  doi: 10.1038/s41586-024-07276-5

    2. [2]

      M. Chung, J. H. Maalouf, J. S. Adams, C. Jiang, Y. Román-Leshkov, K. Manthiram, Science 383 (2024) 49, https://www.science.org/doi/10.1126/science.adh4355.  doi: 10.1126/science.adh4355

    3. [3]

      W. Fang, W. Guo, R. Lu, Y. Yan, X. Liu, D. Wu, F. M. Li, Y. Zhou, C. He, C. Xia, Nature 626 (2024) 86, https://doi.org/10.1038/s41586-023-06917-5.  doi: 10.1038/s41586-023-06917-5

    4. [4]

      M. A. Hoque, J. B. Gerken, S. S. Stahl, Science 383 (2024) 173, https://www.science.org/doi/10.1126/science.adk5097.  doi: 10.1126/science.adk5097

    5. [5]

      A. E. Thorarinsdottir, D. P. Erdosy, C. Costentin, J. A. Mason, D. G. Nocera, Nature Catal. 6 (2023) 425, https://doi.org/10.1038/s41929-023-00958-9.  doi: 10.1038/s41929-023-00958-9

    6. [6]

      R. Zeng, H. Li, Z. Shi, L. Xu, J. Meng, W. Xu, H. Wang, Q. Li, C. J. Pollock, T. Lian, Nat. Mater. 23 (2024) 1695, https://doi.org/10.1038/s41563-024-01998-7.  doi: 10.1038/s41563-024-01998-7

    7. [7]

      W. Shi, T. Shen, C. Xing, K. Sun, Q. Yan, W. Niu, X. Yang, J. Li, C. Wei, R. Wang, Science 387 (2025) 791, https://www.science.org/doi/10.1126/science.adr3149.  doi: 10.1126/science.adr3149

    8. [8]

      H. Zhao, Z. Y. Yuan, Smart Mater. Devices 1 (2025) 202521, https://doi.org/10.70401/smd.2025.0013.  doi: 10.70401/smd.2025.0013

    9. [9]

      X. W. Lv, J. Gong, S. Wang, X. Yan, C. Sun, X. Hu, Z. Lai, Y. Liu, H. Wang, Z. Y. Yuan, Adv. Energy Mater. (2025) 2501129, https://doi.org/10.1002/aenm.202501129.  doi: 10.1002/aenm.202501129

    10. [10]

      L. Chen, J. Xia, Z. Lai, D. Wu, J. Zhou, S. Chen, X. Meng, Z. Wang, H. Wang, L. Zheng, L. Xu, X. W. Lv, C. W. Bielawski, J. Geng, ACS Nano 18 (2024) 31123, https://doi.org/10.1021/acsnano.4c08728.  doi: 10.1021/acsnano.4c08728

    11. [11]

      T. Wang, X. Cao, L. Jiao, Angew. Chem. Int. Ed. 134 (2022) e202213328, https://doi.org/10.1002/anie.202213328.  doi: 10.1002/anie.202213328

    12. [12]

      H. Sun, X. Xu, L. Fei, W. Zhou, Z. Shao, Adv. Energy Mater. 14 (2024) 2401242, https://doi.org/10.1002/aenm.202401242.  doi: 10.1002/aenm.202401242

    13. [13]

      X. W. Lv, Z. Wang, Z. Lai, Y. Liu, T. Ma, J. Geng, Z. Y. Yuan, Small 20 (2024) 2306396, https://doi.org/10.1002/smll.202306396.  doi: 10.1002/smll.202306396

    14. [14]

      X. Ai, X. Zou, H. Chen, Y. Su, X. Feng, Q. Li, Y. Liu, Y. Zhang, X. Zou, Angew. Chem. Int. Ed. 59 (2020) 3961, https://doi.org/10.1002/anie.201915663.  doi: 10.1002/anie.201915663

    15. [15]

      S. Niu, J. Cai, G. Wang, Nano Res. 14 (2021) 1985, https://doi.org/10.1007/s12274-020-3249-z.  doi: 10.1007/s12274-020-3249-z

    16. [16]

      L. Wang, Z. Mei, Q. An, X. Sheng, Q. Jing, W. Huang, X. Wang, X. Zou, H. Guo, Chem Catal. 3 (2023) 100758, https://doi.org/10.1016/j.checat.2023.100758.  doi: 10.1016/j.checat.2023.100758

    17. [17]

      Y. Zhang, , D. Chen, S. Yu, Y. Feng, C. Zhang, J. Hu, Adv. Funct. Mater. (2025) e13626, https://doi.org/10.1002/adfm.202513626.  doi: 10.1002/adfm.202513626

    18. [18]

      J. Tian, Y. Rao, S. Xu, X. Xu, Y. Sun, T. Shi, H. Zhou, S. Guo, Nano Lett. 25 (2025) 6918, https://doi.org/10.1021/acs.nanolett.5c00128.  doi: 10.1021/acs.nanolett.5c00128

    19. [19]

      W. Li, J. Luo, J. Feng, Y. Li, B. Liu, Y. Zhang, J. Zhao, C. Wang, Rare Met. (2025) 1, https://doi.org/10.1007/s12598-025-03307-w.  doi: 10.1007/s12598-025-03307-w

    20. [20]

      L. Zhao, Z. Zhu, J. Wang, J. Zuo, H. Chen, X. Qi, X. Niu, J. S. Chen, R. Wu, Z. Wei, Angew. Chem. Int. Ed. (2025) e202501805, https://doi.org/10.1002/anie.202501805.  doi: 10.1002/anie.202501805

    21. [21]

      Y. Zhou, Q. Gu, K. Yin, L. Tao, Y. Li, H. Tan, Y. Yang, S. Guo, Proc. Natl. Acad Sci. 120 (2023) e2301439120, https://doi.org/10.1073/pnas.2301439120.  doi: 10.1073/pnas.2301439120

    22. [22]

      G. Zhou, X. Liu, Y. Xu, S. Feng, Z. Lu, Z. Q. Liu, Angew. Chem. Int. Ed. 63 (2024) e202411794, https://doi.org/10.1002/anie.202411794.  doi: 10.1002/anie.202411794

    23. [23]

      X. Zhao, X. Li, L. An, K. Iputera, J. Zhu, P. Gao, R.-S. Liu, Z. Peng, J. Yang, D. Wang, Energy Environ. Sci. 15 (2022) 1234, https://doi.org/10.1039/D1EE03482K.  doi: 10.1039/D1EE03482K

    24. [24]

      J. Guo, H. Zhao, Z. Yang, L. Wang, A. Wang, J. Zhang, L. Ding, L. Wang, H. Liu, X. Yu, Adv. Funct. Mater. 34 (2024) 2315714, https://doi.org/10.1002/adfm.202315714.  doi: 10.1002/adfm.202315714

    25. [25]

      J. Liu, J. Zhu, H. Xu, D. Cheng, ACS Catal. 14 (2024) 6952.https://doi.org/10.1021/acscatal.4c01377.  doi: 10.1021/acscatal.4c01377

    26. [26]

      B. Peng, H. She, Z. Wei, Z. Sun, Z. Deng, Z. Sun, W. Chen, Nat. Commun. 16 (2025) 2217, https://doi.org/10.1038/s41467-025-57573-4.  doi: 10.1038/s41467-025-57573-4

    27. [27]

      L. Qi, J. Guan, Sci. Bull. 70 (2025) 1856, https://doi.org/10.1016/j.scib.2025.04.009.  doi: 10.1016/j.scib.2025.04.009

    28. [28]

      B. Shao, T. Liu, D. Li, L. Meng, J. Wang, W. Zhai, L. Li, Adv. Mater. 37 (2025) 2504135, https://doi.org/10.1002/adma.202504135.  doi: 10.1002/adma.202504135

    29. [29]

      Q. Wang, Z. Zhang, C. Cai, M. Wang, Z. L. Zhao, M. Li, X. Huang, S. Han, H. Zhou, Z. Feng, J. Am. Chem. Soc. 143 (2021) 13605, https://doi.org/10.1021/jacs.1c04682  doi: 10.1021/jacs.1c04682

    30. [30]

      M. Xia, B. Chong, X. Gong, H. Xiao, H. Li, H. Ou, B. Zhang, G. Yang, ACS Catal. 13 (2023) 12350, https://doi.org/10.1021/acscatal.3c02198.  doi: 10.1021/acscatal.3c02198

    31. [31]

      S. Zhao, X. Tang, J. Li, J. Zhang, D. Yuan, D. Ma, L. Ju, Nanomaterials 12 (2022) 2793, https://doi.org/10.3390/nano12162793.  doi: 10.3390/nano12162793

    32. [32]

      R. Biswas, S. Dastider, I. Ahmed, S. Barua, K. Mondal, K. Haldar, J. Phys. Chem. Lett. 14 (2023) 3146, https://doi.org/10.1021/acs.jpclett.3c00011.  doi: 10.1021/acs.jpclett.3c00011

    33. [33]

      D. Deng, S. Wu, H. Li, H. Li, L. Xu, Small, 19 (2023) 2205469, https://doi.org/10.1002/smll.202205469.  doi: 10.1002/smll.202205469

    34. [34]

      X. Liu, Z. Zhang, X. Zhang, L. Wu, Electrochim. Acta 477 (2024) 143793, https://doi.org/10.1016/j.electacta.2024.143793.  doi: 10.1016/j.electacta.2024.143793

    35. [35]

      L. Guan, H. Fu, T. Zhu, C. Chen, Z. Zhang, Y. Pi, N. Zhang, T. Liu, Chem. Mater. 36 (2024) 9741, https://doi.org/10.1021/acs.chemmater.4c01878.  doi: 10.1021/acs.chemmater.4c01878

    36. [36]

      G. Wu, W. Zhang, R. Yu, Y. Yang, J. Jiang, M. Sun, A. Du, W. He, L. Dai, X. Mao, Angew. Chem. Int. Ed. 136 (2024) e202410251, https://doi.org/10.1002/anie.202410251.  doi: 10.1002/anie.202410251

    37. [37]

      B. Tang, Y. Zhou, Q. Ji, Z. Zhuang, L. Zhang, C. Wang, H. Hu, H. Wang, B. Mei, F. Song, Nat. Synth. 3 (2024) 878, https://doi.org/10.1038/s44160-024-00545-1.  doi: 10.1038/s44160-024-00545-1

    38. [38]

      X. Li, X. Gao, E. Guo, M. Wei, C. Si, Q. Lu, Y. Pang, Inorg. Chem. 62 (2023) 9713, https://doi.org/10.1021/acs.inorgchem.3c01318.  doi: 10.1021/acs.inorgchem.3c01318

    39. [39]

      J. Liu, C. Tang, Z. Ke, R. Chen, H. Wang, W. Li, C. Jiang, D. He, G. Wang, X. Xiao, Adv. Energy Mater. 12 (2022) 2103301, https://doi.org/10.1002/aenm.202103301.  doi: 10.1002/aenm.202103301

    40. [40]

      B. Fan, H. Zhang, B. Gu, F. Qiu, Q. Cao, W. Fang, J. Energy Chem. 100 (2025) 234, https://doi.org/10.1016/j.jechem.2024.08.041.  doi: 10.1016/j.jechem.2024.08.041

    41. [41]

      X.-W. Lv, X.-L. Liu, Y.-J. Suo, Y.-P. Liu, Z.-Y. Yuan, ACS Nano 15 (2021) 12109, https://doi.org/10.1021/acsnano.1c03465.  doi: 10.1021/acsnano.1c03465

    42. [42]

      F. Yu, G. Zhang, M. Shu, H. Wang, Angew. Chem. Int. Ed. 64 (2025) e202416467, https://doi.org/10.1002/anie.202416467.  doi: 10.1002/anie.202416467

    43. [43]

      R. Cheng, X. He, M. Jiang, X. Shao, W. Tang, B. Ran, H. Li, C. Fu, Adv. Funct. Mater. (2025) 2425138, https://doi.org/10.1002/adfm.202425138.  doi: 10.1002/adfm.202425138

    44. [44]

      H. Chen, Q. Wu, Y. Wang, Q. Zhao, X. Ai, Y. Shen, X. Zou, Chem. Commun. 58 (2022) 7730, https://doi.org/10.1039/D2CC02299K.  doi: 10.1039/D2CC02299K

    45. [45]

      J. Wu, J. Liu, W. Xia, Y. Y. Ren, F. Wang, Acta Phys.-Chim. Sin. 37 (2021) 2008043, https://doi.org//10.3866/PKU.WHXB202008043.  doi: 10.3866/PKU.WHXB202008043

    46. [46]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x.  doi: 10.1038/s41467-025-56306-x

    47. [47]

      Y. Luo, X. Zhou, J. Zhang, Y. Qi, Z. Li, F. Zhang, C. Li, J. Energy Chem. 63 (2021) 385, https://doi.org/10.1016/j.jechem.2021.07.028.  doi: 10.1016/j.jechem.2021.07.028

    48. [48]

      C. Feng, M. Hu, S. Zuo, J. Luo, P. Castaño, Y. Ren, H. Zhang, Adv. Mater. 37 (2025) 2411813, https://doi.org/10.1002/adma.202411813.  doi: 10.1002/adma.202411813

    49. [49]

      J. Wang, H. Zhang, Y. Nian, Y. Chen, H. Cheng, C. Yang, T. Yu, Adv. Funct. Mater. 34 (2024) 2406549, https://doi.org/10.1002/adfm.202406549.  doi: 10.1002/adfm.202406549

    50. [50]

      Y. Zhao, J. Shen, J. Yuan, H. Mao, X. Cheng, Z. Xu, Z. Bian, Nano Energy, (2024) 109499, https://doi.org/10.1016/j.nanoen.2024.109499.  doi: 10.1016/j.nanoen.2024.109499

    51. [51]

      P. Li, Y. Gao, A. G. Borthwick, P. Li, H. Zhang, F. Chen, L. Chen, F. Li, W. Liu, Angew. Chem. Int. Ed. (2025) e202503097, https://doi.org/10.1002/ange.202503097.  doi: 10.1002/ange.202503097

    52. [52]

      W. Feng, B. Chang, Y. Ren, D. Kong, H. B. Tao, L. Zhi, M. A. Khan, R. Aleisa, M. Rueping, H. Zhang, Adv. Mater. 37 (2025) 2416012, https://doi.org/10.1002/adma.202416012.

    53. [53]

      X. Wang, W. Pi, S. Hu, H. Bao, N. Yao, W. Luo, Nano-Micro Lett. 17 (2025) 11, https://doi.org/10.1007/s40820-024-01528-9.  doi: 10.1007/s40820-024-01528-9

    54. [54]

      P. Huang, M. Meng, G. Zhou, P. Wang, W. Wei, H. Li, R. Huang, F. Liu, L. Liu, Proc. Natl. Acad Sci. 120 (2023) e2219661120, https://doi.org/10.1073/pnas.2219661120.  doi: 10.1073/pnas.2219661120

    55. [55]

      X.-W. Lv, L. Wang, G. Wang, R. Hao, J.-T. Ren, X. Liu, P. N. Duchesne, Y. Liu, W. Li, Z.-Y. Yuan, J. Mater. Chem. A 8 (2020) 8868, https://doi.org/10.1039/d0ta02832k.  doi: 10.1039/d0ta02832k

    56. [56]

      Y. Shan, X. Sun, Y. Wang, Y. Zhu, T. Li, Phys. Status Solidi-R 17 (2023) 2200445, https://doi.org/10.1002/pssr.202200445.  doi: 10.1002/pssr.202200445

    57. [57]

      C. Zhou, L. Li, Z. Dong, F. Lv, H. Guo, K. Wang, M. Li, Z. Qian, N. Ye, Z. Lin, Nat. Commun. 15 (2024) 9774, https://www.nature.com/articles/s41467-024-53905-y.
       

    58. [58]

      L. Gao, X. Li, Z. Yao, H. Bai, Y. Lu, C. Ma, S. Lu, Z. Peng, J. Yang, A. Pan, J. Am. Chem. Soc. 141 (2019) 18083, https://doi.org/10.1021/jacs.9b07238.  doi: 10.1021/jacs.9b07238

    59. [59]

      J. Nie, Z. Li, W. Liu, Z. Sang, D. a. Yang, L. Wang, F. Hou, J. Liang, Adv. Mater. (2025) 2420236, https://doi.org/10.1002/adma.202420236.  doi: 10.1002/adma.202420236

    60. [60]

      J. Du, G. Han, W. Zhang, L. Li, Y. Yan, Y. Shi, X. Zhang, L. Geng, Z. Wang, Y. Xiong, Nat. Commun. 14 (2023) 4766, https://www.nature.com/articles/s41467-023-40467-8.
       

    61. [61]

      Z. Yang, G. Hou, N. Gao, Y. Li, X. Li, Z. Chen, H. Jin, M. Zhao, D. Wang, K. Chen, Angew. Chem. Int. Ed. (2025) e202501836, https://doi.org/10.1002/ange.202501836.  doi: 10.1002/ange.202501836

    62. [62]

      Y. Lei, Z. Wang, A. Bao, X. Tang, X. Huang, H. Yi, S. Zhao, T. Sun, J. Wang, F. Gao, Chem. Eng. J. 453 (2023) 139663, https://doi.org/10.1016/j.cej.2022.139663.  doi: 10.1016/j.cej.2022.139663

    63. [63]

      G. Tian, Z. Li, D. Liao, C. Zhang, H.-j. Peng, X. Liu, K. Shen, H. Meng, N. Wang, H. Xiong, Nat. Sustain. (2025) 1, https://doi.org/10.1038/s41893-025-01551-7.  doi: 10.1038/s41893-025-01551-7

    64. [64]

      S. Xu, X. W. Lv, Y. Zhao, T. Ren, Z. Y. Yuan, J. Energy Chem. 52 (2021) 139, https://doi.org/10.1016/j.jechem.2020.04.054.  doi: 10.1016/j.jechem.2020.04.054

    65. [65]

      X. Cao, Y. Tian, J. Ma, W. Guo, W. Cai, J. Zhang, Adv. Mater. 36 (2024) 2309648, https://doi.org/10.1002/adma.202309648.  doi: 10.1002/adma.202309648

    66. [66]

      Y. Cui, C. Ren, Q. Li, C. Ling, J. Wang, J. Am. Chem. Soc. 146 (2024) 15640, https://doi.org/10.1021/jacs.4c05630.  doi: 10.1021/jacs.4c05630

    67. [67]

      Q. Wang, T. Luo, X. Cao, Y. Gong, Y. Liu, Y. Xiao, H. Li, F. Gröbmeyer, Y.-R. Lu, T.-S. Chan, Nat. Commun. 16 (2025) 2985, https://www.nature.com/articles/s41467-025-57464-8.
       

    68. [68]

      C. Fan, X. Wang, X. Wu, Y. Chen, Z. Wang, M. Li, D. Sun, Y. Tang, G. Fu, Adv. Energy Mater. 13 (2023) 2203244, https://doi.org/10.1002/aenm.202203244.  doi: 10.1002/aenm.202203244

    69. [69]

      X. Wang, L. Shi, W. Ren, J. Li, Y. Liu, W. Fu, S. Wang, S. Yao, Y. Ji, K. Ji, J. Energy Chem. 99 (2024) 409, https://doi.org/10.1016/j.jechem.2024.07.053.  doi: 10.1016/j.jechem.2024.07.053

    70. [70]

      J. Kim, H. Kim, G. Han, S. Hong, J. Park, J. Bang, S. Kim, A. Ahn, Exploration 2 (2022) 20210077, https://doi.org/10.1002/exp.20210077.  doi: 10.1002/exp.20210077

    71. [71]

      J. Mi, H. Liu, S. Yang, F. Huang, Z. Qian, J. Yuan, J. Qing, C. Sun, C. Wang, J. Chen, J. Li, Environ. Sci. Technol. 59 (2025) 11321, https://doi.org/10.1021/acs.est.4c14210.  doi: 10.1021/acs.est.4c14210

    72. [72]

      Y. Tan, J. Fu, T. Luo, K. Liu, M. Liu, J. Am Chem Soc. 147 (2025) 4937, https://doi.org/10.1021/jacs.4c14021.  doi: 10.1021/jacs.4c14021

    73. [73]

      Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou, H. M. Cheng, Adv. Mater. 33 (2021) 2105947, https://doi.org/10.1002/adma.202105947.  doi: 10.1002/adma.202105947

    74. [74]

      G. Wu, T. Liu, Z. Lao, Y. Cheng, T. Wang, J. Mao, H. Zhang, E. Liu, C. Shi, G. Zhou, Angew. Chem. Int. Ed. 64 (2025) e202422208, https://doi.org/10.1002/anie.202422208.  doi: 10.1002/anie.202422208

    75. [75]

      G. Liu, W. Wang, P. Zeng, C. Yuan, L. Wang, H. Li, H. Zhang, X. Sun, K. Dai, J. Mao, Nano Lett. 22 (2022) 6366, https://doi.org/10.1021/acs.nanolett.2c02183.  doi: 10.1021/acs.nanolett.2c02183

    76. [76]

      N. Sun, Z. Zheng, Z. Lai, J. Wang, P. Du, T. Ying, H. Wang, J. Xu, R. Yu, Z. Hu, Adv. Mater. 36 (2024) 2404772, https://doi.org/10.1002/adma.202404772.  doi: 10.1002/adma.202404772

    77. [77]

      B. Zhu, S. Huang, O. Seo, M. Cao, D. Matsumura, H. Gu, D. Wu, J. Am. Chem. Soc. 147 (2025) 11250, https://doi.org/10.1021/jacs.4c18109  doi: 10.1021/jacs.4c18109

    78. [78]

      L. Meng, C. W. Kao, Z. Wang, J. Ma, P. Huang, N. Zhao, Y. Tan, Nat. Commun. 15 (2024) 5999, https://doi.org/10.1038/s41467-024-50499-3  doi: 10.1038/s41467-024-50499-3

    79. [79]

      J. Yuan, P. Wang, N. Song, Y. Wang, J. Ma, S. Xiong, X. Li, J. Feng, B. Xi, Angew. Chem. Int. Ed. 64 (2025) e202420866, https://doi.org/10.1002/anie.202420866.  doi: 10.1002/anie.202420866

    80. [80]

      X. Ma, Y. Zhou, S. Zhang, W. Lei, Y. Zhao, C. Shan, Small (2025) 2411394, https://doi.org/10.1002/smll.202411394.  doi: 10.1002/smll.202411394

    81. [81]

      J. Tong, H. Wu, P. Tan, H. Liao, Y. F. Tang, X. Wang, J. Xie, J. Pan, Nano Energy (2025) 111133, https://doi.org/10.1016/j.nanoen.2025.111133.  doi: 10.1016/j.nanoen.2025.111133

    82. [82]

      X. Lv, J. Ren, Y. Wang, Y. Liu, Z. Y. Yuan, ACS Sustain. Chem. Engineering 7 (2019) 8993, https://doi.org/10.1021/acssuschemeng.9b01263.  doi: 10.1021/acssuschemeng.9b01263

    83. [83]

      X.-W. Lv, Y. Liu, R. Hao, W. Tian, Z.-Y. Yuan, ACS Appl. Mater. Interfaces 12 (2020) 17502, https://doi.org/10.1021/acsami.0c00647.  doi: 10.1021/acsami.0c00647

    84. [84]

      S. You, J. Xiao, S. Liang, W. Xie, T. Zhang, M. Li, Z. Zhong, Q. Wang, H. He, Energy Environ. Sci. 17 (2024) 5795, https://doi.org/10.1039/d4ee01325e.  doi: 10.1039/d4ee01325e

    85. [85]

      X. W. Lv, W. W. Tian, Z. Y. Yuan, Electrochem. Energy Rev. 6 (2023) 23, https://doi.org/10.1007/s41918-022-00159-1.  doi: 10.1007/s41918-022-00159-1

    86. [86]

      X. W. Lv, W. S. Xu, W. W. Tian, H. Y. Wang, Z. Y. Yuan, Small 17 (2021) 2101856 https://doi.org/10.1002/smll.202101856.  doi: 10.1002/smll.202101856

    87. [87]

      R. Wang, X. Y. Dong, J. Du, J. Y. Zhao, S. Q. Zang, Adv. Mater. 30 (2018) 1703711, https://doi.org/10.1002/adma.201703711.  doi: 10.1002/adma.201703711

    88. [88]

      X.-W. Lv, Y. Liu, Y.-S. Wang, X.-L. Liu, Z.-Y. Yuan, Appl. Catal. B: Environ. 280 (2021) 119434, https://doi.org/10.1016/j.apcatb.2020.119434.  doi: 10.1016/j.apcatb.2020.119434

    89. [89]

      J. Kim, J. Guo, N. Shan, J. Yoo, P. Farinazzo Bergamo Dias Martins, J. Noh, M. Jung, P. Zapol, B. S. Mun, R. Klie, J. Am. Chem. Soc. 147 (2025) 16340, https://doi.org/10.1021/jacs.5c02001.  doi: 10.1021/jacs.5c02001

    90. [90]

      X. W. Lv, X. L. Liu, L. J. Gao, Y. P. Liu, Z. Y. Yuan, J. Mater. Chem. A 9 (2021) 4026, https://doi.org/10.1039/d0ta11244e.  doi: 10.1039/d0ta11244e

    91. [91]

      H. Ye, J. Su, G. Yang, L. Zhou, Y. Xie, X. Zhan, J. Tian, X. Tong, Mater. Today Commun. 45 (2025) 112365, https://doi.org/10.1016/j.mtcomm.2025.112365.  doi: 10.1016/j.mtcomm.2025.112365

    92. [92]

      X.-W. Lv, Y. Liu, W. Tian, L. Gao, Z.-Y. Yuan, J. Energy Chem. 50 (2020) 324, https://doi.org/10.1016/j.jechem.2020.02.055.  doi: 10.1016/j.jechem.2020.02.055

    93. [93]

      X. Lv, W. Tian, Y. Liu, Z.-Y. Yuan, Mater. Chem. Front. 3 (2019) 2428, https://doi.org/10.1039/c9qm00449a.  doi: 10.1039/c9qm00449a

    94. [94]

      T. Zhai, X. Gao, H. Wang, Y. Cheng, J. Gao, J. Pan, E. C. Tse, C. Shang, Z. Guo, Matter 8 (2025) 102141, https://doi.org/10.1016/j.matt.2025.102141.  doi: 10.1016/j.matt.2025.102141

    95. [95]

      X. W. Lv, Z. Hu, J. T. Ren, Y. Liu, Z. Wang, Z. Y. Yuan, Inorg. Chem. Front. 6 (2019) 74, https://doi.org/10.1039/c8qi01026a.  doi: 10.1039/c8qi01026a

    96. [96]

      J. W. Zhang, X. W. Lv, T. Z. Ren, Z. Wang, T. J. Bandosz, Z. Y. Yuan, Green Energy Environ. 7 (2022) 1024, https://doi.org/10.1016/j.gee.2020.12.009.  doi: 10.1016/j.gee.2020.12.009

    97. [97]

      M. Yu, D. Li, G. Sui, D. Guo, D. Chu, Y. Li, D. F. Chai, J. Li, Adv. Funct. Mater. 35 (2025) 2416963, https://doi.org/10.1002/adfm.202416963.  doi: 10.1002/adfm.202416963

    98. [98]

      B. Li, C. Guo, X. Wang, W. Dong, B. Xu, X. Xing, D. Zhou, X. Xue, Q. Luan, W. Tang, C. Hou, Mater. Today Nano. 21 (2023) 100281, https://doi.org/10.1016/j.mtnano.2022.100281.  doi: 10.1016/j.mtnano.2022.100281

    99. [99]

      Q. Jing, Z. Mei, X. Sheng, X. Zou, Q. Xu, L. Wang, H. Guo, Adv. Funct. Mater. 34 (2024) 2307002, https://doi.org/10.1002/adfm.202307002.  doi: 10.1002/adfm.202307002

    100. [100]

      C. Li, B. Ye, B. Ouyang, T. Zhang, T. Tang, Z. Qiu, S. Li, Y. Li, R. Chen, W. Wen. M. Song, B. Mei, X. Xia, Y. Zhang, Adv. Mater. (2025) 2501381, https://doi.org/10.1002/adma.202501381.  doi: 10.1002/adma.202501381

    101. [101]

      J. Liu, J. Yin, Y. Lin, M. Pang, H. Pang, S. Zhang, L. Xu, J. Yang, Y. Tang, Nano Res. 18 (2025) 94907016, https://doi.org/10.26599/nr.2025.94907016.  doi: 10.26599/nr.2025.94907016

    102. [102]

      Y. Qin, W. Zhang, F. Wang, J. Li, J. Ye, X. Sheng, C. Li, X. Liang, P. Liu, X. Wang, Angew. Chem. Int. Ed. 61 (2022) e202200899, https://doi.org/10.1002/ange.202200899.  doi: 10.1002/ange.202200899

    103. [103]

      C. Yin, F. Zhou, J. Wu, X. Zhang, J. Wen, R. Zhu, M. Ma, S. Yoriya, P. He, Q. Fang, Adv. Funct. Mater. 34 (2024) 2410429, https://doi.org/10.1002/adfm.202410429.  doi: 10.1002/adfm.202410429

    104. [104]

      D. D. Alemayehu, M. C. Tsai, M. H. Tsai, C. C. Yang, C. C. Chang, C. Y. Chang, E. A. Moges, K. Lakshmanan, Y. Nikodimos, W. N. Su, J. Am. Chem. Soc. 147 (2025) 16047, https://doi.org/10.1021/jacs.4c17747.  doi: 10.1021/jacs.4c17747

    105. [105]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M. Ahmed, Z. Lin, M. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (2024) e202405756, https://doi.org/10.1002/anie.202405756.  doi: 10.1002/anie.202405756

    106. [106]

      Q. Zhang, W. Zhang, J. Zhu, X. Zhou, G. R. Xu, D. Chen, Z. Wu, L. Wang, Adv. Energy Mater. 14 (2024) 2304546, https://doi.org/10.1002/aenm.202304546.  doi: 10.1002/aenm.202304546

    107. [107]

      J. Zhang, H. B. Yang, D. Zhou, B. Liu, ACS Nano 122 (2022) 17028, https://doi.org/10.1021/acsnano.5c05595.  doi: 10.1021/acsnano.5c05595

    108. [108]

      Z. Wang, C. Song, H. Shen, S. Ma, G. Li, Y. Li, Adv. Mater. 36 (2024) 2307786 https://doi.org/10.1002/adma.202307786.  doi: 10.1002/adma.202307786

    109. [109]

      L. Qi, Y. Gao, Y. Gao, Z. Zheng, X. Luan, S. Zhao, Z. Chen, H. Liu, Y. Xue, Y. Li, J. Am. Chem. Soc. 146 (2024) 5669, https://doi.org/10.1021/jacs.3c14742.  doi: 10.1021/jacs.3c14742

    110. [110]

      X. Wang, Y. Zhang, S. Wang, Y. Li, Y. Feng, Z. Dai, Y. Chen, X. Meng, J. Xia, G. Zhang, Angew. Chem. Int. Ed. 136 (2024) e202407665, https://doi.org/10.1002/anie.202407665.  doi: 10.1002/anie.202407665

    111. [111]

      K. Wu, C. Lyu, J. Cheng, W. Ding, J. Wu, Q. Wang, W. M. Lau, J. Zheng, Carbon Energy 6 (2024) e485, https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cey2.485.  doi: 10.1002/cey2.485

    112. [112]

      S. Liang, H. Hu, J. Liu, H. Shen, Q. Li, N. Qiu, H. Guo, X. Guo, S. Du, Y. Zhu, Appl. Catal. B: Environ. 337 (2023) 123008, https://doi.org/10.1016/j.apcatb.2023.123008.  doi: 10.1016/j.apcatb.2023.123008

    113. [113]

      M. Liu, Y. Li, L. Yang, P. Zhao, J. Li, L. Tian, D. Cao, Z. Chen, Angew. Chem. Int. Ed. (2025) e202505268, https://doi.org/10.1002/anie.202505268.  doi: 10.1002/anie.202505268

    114. [114]

      X. F. Wu, Z. Y. Li, H. Wang, J. C. Wang, G. Q. Xi, X. J. Zhao, C. X. Zhang, W. G. Liao, J. C. Ho, Adv. Sci. (2025) 2502244, https://doi.org/10.1002/advs.202502244.  doi: 10.1002/advs.202502244

    115. [115]

      F. Ye, L. Gong, Y. Long, S. N. Talapaneni, L. Zhang, Y. Xiao, D. Liu, C. Hu, L. Dai, Adv. Energy Mater. 11 (2021) 2101390, https://doi.org/10.1002/aenm.202101390.  doi: 10.1002/aenm.202101390

    116. [116]

      L. Gong, F. Xia, J. Zhu, X. Mu, D. Chen, H. Zhao, L. Chen, S. Mu, Angew. Chem. Int. Ed. 63 (2024) e202411125, https://doi.org/10.1002/anie.202411125.  doi: 10.1002/anie.202411125

    117. [117]

      X. Yao, Y. Zhu, T. Xia, Z. Han, C. Du, L. Yang, J. Tian, X. Ma, J. Hou, C. Cao, Small 19 (2023) 2301075, https://doi.org/10.1002/smll.202301075.  doi: 10.1002/smll.202301075

    118. [118]

      H. Tian, A. Song, P. Zhang, K. Sun, J. Wang, B. Sun, Q. Fan, G. Shao, C. Chen, H. Liu, Adv. Mater. 35 (2023) 2210714, https://doi.org/10.1002/adma.202210714.  doi: 10.1002/adma.202210714

    119. [119]

      Y. Qin, G. Zhan, C. Tang, D. Yang, X. Wang, J. Yang, C. Mao, Z. Hao, S. Wang, Y. Qin, Nano Lett. 23 (2023) 9227, https://doi.org/10.1021/acs.nanolett.3c01905.  doi: 10.1021/acs.nanolett.3c01905

    120. [120]

      H. Zang, Y. Zhao, C. Liu, H. Lu, N. Yu, B. Geng, (2025) 2504400, https://doi.org/10.1002/adfm.202504400.

    121. [121]

      Q. Li, L. Luo, X. Guo, R. Wang, J. Liu, W. Fan, Z. Feng, F. Zhang, J. Am. Chem. Soc. 147 (2024) 1884, https://doi.org/10.1021/jacs.4c14498.  doi: 10.1021/jacs.4c14498

    122. [122]

      L. Geng, Q. Zhang, X. Wang, H. Han, Y.-Z. Zhang, C. Li, Z. Li, D.-S. Zhang, X. Zhang, A. Appl. Catal. B: Environ. 343 (2024) 123575, https://doi.org/10.1016/j.apcatb.2023.123575.  doi: 10.1016/j.apcatb.2023.123575

    123. [123]

      S. Zhang, B. Sun, K. Liao, X. Wang, Z. Chen, J. Wang, W. Hu, X. Han, Adv. Funct. Mater. (2025) 2425640, https://doi.org/10.1002/adfm.202425640.  doi: 10.1002/adfm.202425640

    124. [124]

      L. Li, S. Huang, R. Cao, K. Yuan, C. Lu, B. Huang, X. Tang, T. Hu, X. Zhuang, Y. Chen, Small 18 (2022) 2105387, https://doi.org/10.1002/smll.202105387.  doi: 10.1002/smll.202105387

    125. [125]

      P. Wu, L.-L. Shen, W. Zhao, H. Yu, J. Wang, Y. Xu, X. Li, Y. Wang, G.-R. Zhang, D. Mei, Appl. Catal. B: Environ. and Energy (2025) 125408, https://doi.org/10.1016/j.apcatb.2025.125408.  doi: 10.1016/j.apcatb.2025.125408

    126. [126]

      S. Ji, Y. Mou, H. Liu, X. Lu, Y. Zhang, C. Guo, K. Sun, D. Liu, J. H. Horton, C. Wang, Adv. Mater. 36 (2024) 2410121, https://doi.org/10.1002/adma.202410121.  doi: 10.1002/adma.202410121

    127. [127]

      S. Lu, Z. Zhang, C. Cheng, B. Zhang, Y. Shi, Angew. Chem. Int. Ed. 137 (2025) e202413308, https://doi.org/10.1002/ange.202413308.  doi: 10.1002/ange.202413308

    128. [128]

      T. Zhao, J. Wang, Y. Wei, Z. Zhuang, Y. Dou, J. Yang, W.-H. Li, D. Wang, Energy Environ. Sci. 18 (2025) 3462, https://doi.org/10.1039/d5ee00074b.  doi: 10.1039/d5ee00074b

    129. [129]

      Y. Zhao, Z. Gao, S. Zhang, X. Guan, W. Xu, Y. Liang, H. Jiang, Z. Li, S. Wu, Z. Cui, Adv. Funct. Mater. (2025) 2504260, https://doi.org/10.1002/adfm.202504260.  doi: 10.1002/adfm.202504260

    130. [130]

      Z. Li, X. Chen, G. Yao, L. Wei, Q. Chen, Q. Luo, F. Zheng, H. Wang, Adv. Funct. Mater. 34 (2024) 2400859, https://doi.org/10.1002/adfm.202400859.  doi: 10.1002/adfm.202400859

    131. [131]

      B. Lu, Q. Liu, S. Chen, ACS Catal. 10 (2020) 7584, https://doi.org/10.1021/acscatal.0c01950.  doi: 10.1021/acscatal.0c01950

    132. [132]

      G. M. Tomboc, T. Kim, S. Jung, H. J. Yoon, K. Lee, Small 18 (2022) 2105680, https://doi.org/10.1002/smll.202105680.  doi: 10.1002/smll.202105680

    133. [133]

      C. Dong, C. Ma, C. Zhou, Y. Yu, J. Wang, K. Yu, C. Shen, J. Gu, K. Yan, A. Zheng, Adv. Mater. 36 (2024) 2407070, https://doi.org/10.1002/adma.202407070.  doi: 10.1002/adma.202407070

    134. [134]

      G. Zhang, J. Pei, Y. Wang, G. Wang, Y. Wang, W. Liu, J. Xu, P. An, H. Huang, L. Zheng, Angew. Chem. Int. Ed. 63 (2024) e202407509, https://doi.org/10.1002/anie.202407509.  doi: 10.1002/anie.202407509

    135. [135]

      Y. Dai, B. Liu, Z. Zhang, P. Guo, C. Liu, Y. Zhang, L. Zhao, Z. Wang, Adv. Mater. 35 (2023) 2210757, https://doi.org/10.1002/adma.202210757.  doi: 10.1002/adma.202210757

    136. [136]

      C. Lan, Y. Chu, S. Wang, C. Liu, J. Ge, W. Xing, Acta Phys.-Chim. Sin 39 (2023) 2210036, https://doi.org/10.3866/pku.whxb202210036.  doi: 10.3866/pku.whxb202210036

    137. [137]

      C. Qi, H. Yang, Z. Sun, H. Wang, N. Xu, G. Zhu, L. Wang, W. Jiang, X. Yu, X. Li, Angew. Chem. Int. Ed. 62 (2023) e202308344, https://doi.org/10.1002/anie.202308344.  doi: 10.1002/anie.202308344

  • 加载中
    1. [1]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    2. [2]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    3. [3]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    4. [4]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    5. [5]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    11. [11]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    15. [15]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    16. [16]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    19. [19]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return