Citation: Rohit Kumar, Anita Sudhaik, Aftab Asalam Pawaz Khan, Van Huy Neguyen, Archana Singh, Pardeep Singh, Sourbh Thakur, Pankaj Raizada. Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100150. doi: 10.1016/j.actphy.2025.100150 shu

Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications

  • Tandem S-scheme heterojunctions have emerged as a highly promising innovation in photocatalysis, offering an effective solution for environmental remediation. Unlike traditional Z-scheme or type-Ⅱ photocatalysts, the S-scheme architecture selectively retains high-energy photocarriers that actively participate in redox reactions. This unique mechanism enhances charge separation, strengthens internal electric fields, and enhance light absorption. However, the single junction of S-scheme suffers from low quantum efficiency. Therefore, engineering a multicomponent system with S-scheme effectively improve the photocatalytic properties. Tandem S-scheme systems consist of multiple semiconductors/materials with staggered energy band positions to create a stepwise or directional charge transferal mechanism. This stepwise potential gradient is responsible for more enhanced charge separation, light absorption, redox ability, stability, and overall photocatalytic activity. This article provides an in-depth overview of the principles governing tandem S-scheme heterojunctions, discussing the design of tandem S-scheme heterojunctions through semiconductor pairing, co-catalyst addition, and mediator inclusion for maximum charge mobility and minimum recombination. The various synthesis pathways are explored along with the kinetics and thermodynamics of tandem S-scheme heterojunction. A range of advanced characterization tools, including density functional theory (DFT) simulations, in situ X-ray photoelectron spectroscopy (XPS), transient absorption spectroscopy (TAS), photoluminescence (PL), and electrochemical impedance spectroscopy (EIS) studies are discussed, which together offer valuable insight into electronic behaviours and interfacial dynamics. Applications of these heterojunctions are discussed across major domains such as carbon dioxide reduction, H2 evolution, and degradation of organic pollutants. While the potential is clear, challenges such as complex synthesis procedures, material stability, and scalability still need to be addressed. To overcome the limitations, the article suggests future research paths. Overall, tandem S-scheme heterojunctions stand out as an excellent approach for building efficient and sustainable photocatalytic technologies.
  • 加载中
    1. [1]

      X. Chen, J. Zhao, G. Li, D. Zhang, H. Li, Energy Mater. 2 (2022) 200001, http://dx.doi.org/10.20517/energymater.2021.24.  doi: 10.20517/energymater.2021.24

    2. [2]

      H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, Chin. J. Catal. 43 (2022) 178, https://doi.org/10.1016/S1872-2067(21)63910-4.  doi: 10.1016/S1872-2067(21)63910-4

    3. [3]

      J. Li, M. Du, Z. Wu, X. Zhang, W. Xue, H. Huang, C. Zhong, Angew. Chem., Int. Ed. 63 (2024) e202407975, https://doi.org/10.1002/anie.202407975.  doi: 10.1002/anie.202407975

    4. [4]

      T. F. Qahtan, T. O. Owolabi, O. E. Olubi, A. Hazam, Coord. Chem. Rev. 514 (2024) 215839, https://doi.org/10.1016/j.ccr.2024.215839.  doi: 10.1016/j.ccr.2024.215839

    5. [5]

      B. Das, B. Das, N. S. Das, S. Pal, B. K. Das, S. Sarkar, K. K. Chattopadhyay, Appl. Surf. Sci. 515 (2020) 145958, https://doi.org/10.1016/j.apsusc.2020.145958.  doi: 10.1016/j.apsusc.2020.145958

    6. [6]

      M. Li, K. Liang, X. Wei, Y. Zhang, H. Chen, Y. Yang, J. Liu, Y. Tian, Z. Li, L. Duan, Int. J. Hydrogen Energy 81 (2024) 447, https://doi.org/10.1016/j.ijhydene.2024.07.080.  doi: 10.1016/j.ijhydene.2024.07.080

    7. [7]

      J. Low, C. Jiang, B. Cheng, S. Wageh, A. A. Al‐Ghamdi, J. Yu, Small Methods 1 (2017) 1700080, https://doi.org/10.1002/smtd.201700080.  doi: 10.1002/smtd.201700080

    8. [8]

      H. He, Z. Wang, J. Zhang, S. Mamatkulov, O. Ruzimuradov, K. Dai, J. Low, Y. Li, Energy Environ. Sci. 18 (2025) 6191, https://doi.org/10.1039/D5EE01295C.  doi: 10.1039/D5EE01295C

    9. [9]

      W. Lu, T. Ding, N. Lu, J. Zhang, K. Yun, P. Zhang, Z. Zhang, Appl. Surf. Sci. 592 (2022) 153348, https://doi.org/10.1016/j.apsusc.2022.153348.  doi: 10.1016/j.apsusc.2022.153348

    10. [10]

      X. Wu, R. Zhong, X. Lv, Z. Hu, D. Xia, C. Li, B. Song, S. Liu, Appl. Catal. B Environ. 330 (2023) 122666, https://doi.org/10.1016/j.apcatb.2023.122666.  doi: 10.1016/j.apcatb.2023.122666

    11. [11]

      H. Jiang, M. Xu, X. Zhao, H. Wang, Q. Liu, Z. Liu, Q. Liu, G. Yang, P. Huo, Inorg. Chem. 61 (2022) 11207, https://doi.org/10.1021/acs.inorgchem.2c01216.  doi: 10.1021/acs.inorgchem.2c01216

    12. [12]

      H. Jiang, J. Xu, L. Sun, J. Li, L. Wang, W. Wang, Q. Liu, J. Yang, Inorg. Chem. 63 (2024) 14746, https://doi.org/10.1021/acs.inorgchem.4c02428.  doi: 10.1021/acs.inorgchem.4c02428

    13. [13]

      D. Zu, H. Wei, Z. Lin, X. Bai, M. N. A. S. Ivan, Y. H. Tsang, H. Huang, Adv. Funct. Mater. 34 (2024) 2408213, https://doi.org/10.1002/adfm.202408213.  doi: 10.1002/adfm.202408213

    14. [14]

      S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3 (2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183.  doi: 10.1016/j.apmate.2024.100183

    15. [15]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.  doi: 10.3866/PKU.WHXB202307045

    16. [16]

      R. Kumar, A. Sudhaik, A. A. P. Khan, P. Raizada, A. M. Asiri, S. Mohapatra, S. Thakur, V. K. Thakur, P. Singh, J. Ind. Eng. Chem. 106 (2022) 340, https://doi.org/10.1016/j.jiec.2021.11.008.  doi: 10.1016/j.jiec.2021.11.008

    17. [17]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64496-1.  doi: 10.1016/S1872-2067(23)64496-1

    18. [18]

      S. Li, K. Dong, M. Cai, X. Li, X. Chen, EScience 4 (2024) 100208, https://doi.org/10.1016/j.esci.2023.100208.  doi: 10.1016/j.esci.2023.100208

    19. [19]

      J. Li, P. Tu, Q. Yang, Y. Cui, C. Gao, H. Zhou, J. Lu, H. Bian, Sci. Rep. 14 (2024) 10643, https://doi.org/10.1038/s41598-024-60250-z.  doi: 10.1038/s41598-024-60250-z

    20. [20]

      X. Li, H. Sun, Y. Xie, Y. Liang, X. Gong, P. Qin, L. Jiang, J. Guo, C. Liu, Z. Wu, Coord. Chem. Rev. 467 (2022) 214596, https://doi.org/10.1016/j.ccr.2022.214596.  doi: 10.1016/j.ccr.2022.214596

    21. [21]

      Y. Li, J. Wang, Mater. Adv. 5 (2024) 749, https://doi.org/10.1039/D3MA00915G.  doi: 10.1039/D3MA00915G

    22. [22]

      V.-H. Nguyen, P. Singh, A. Sudhaik, P. Raizada, Q. Van Le, E. T. Helmy, Mater. Lett. 313 (2022) 131781, https://doi.org/10.1016/j.matlet.2022.131781.  doi: 10.1016/j.matlet.2022.131781

    23. [23]

      R. He, H. Liu, H. Liu, D. Xu, L. Zhang, J. Mater. Sci. Technol. 52 (2020) 145, https://doi.org/10.1016/j.jmst.2020.03.027.  doi: 10.1016/j.jmst.2020.03.027

    24. [24]

      C. Wang, Y. Zhao, C. Cheng, Q. Li, C. Guo, Y. Hu, Coord. Chem. Rev. 521 (2024) 216177, https://doi.org/10.1016/j.ccr.2024.216177.  doi: 10.1016/j.ccr.2024.216177

    25. [25]

      X. Kong, K. Wang, Z. Jin, Sol. RRL 8 (2024) 2400222, https://doi.org/10.1002/solr.202400222.  doi: 10.1002/solr.202400222

    26. [26]

      Z. Dong, Z. Zhang, T. Wang, D. Zeng, Z. Cheng, Y. Wang, X. Cao, Y. Wang, Y. Liu, X. Fan, Sep. Purif. Technol. 286 (2022) 120418, https://doi.org/10.1016/j.seppur.2021.120418.  doi: 10.1016/j.seppur.2021.120418

    27. [27]

      W. A. Mohamed, A. Alhodaib, H. A. Mousa, H. T. Handal, H. R. Galal, H. H. Abd El-Gawad, B. A. Elsayed, A. A. Labib, M. S. Abdel-Mottaleb, Nanotechnol. Rev. 14 (2025) 20250159, https://doi.org/10.1515/ntrev-2025-0159.  doi: 10.1515/ntrev-2025-0159

    28. [28]

      C. Chang, H. Lu, Y. Liu, G. Long, X. Guo, X. Ji, Z. Jin, J. Mater. Chem. A 12 (2024) 4204, https://doi.org/10.1039/D3TA06906K.  doi: 10.1039/D3TA06906K

    29. [29]

      Z. Jin, T. Li, L. Zhang, X. Wang, G. Wang, X. Hao, J. Mater. Chem. A 10 (2022) 1976, https://doi.org/10.1039/D1TA09347A.  doi: 10.1039/D1TA09347A

    30. [30]

      F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Appl. Surf. Sci. 488 (2019) 151, https://doi.org/10.1016/j.apsusc.2019.05.257.  doi: 10.1016/j.apsusc.2019.05.257

    31. [31]

      J. Wang, Q. Zhang, F. Deng, X. Luo, D. D. Dionysiou, Chem. Eng. J. 379 (2020) 122264, https://doi.org/10.1016/j.cej.2019.122264.  doi: 10.1016/j.cej.2019.122264

    32. [32]

      X. Zou, C. Yuan, Y. Cui, Y. Dong, D. Chen, H. Ge, J. Ke, Sep. Purif. Technol. 266 (2021) 118545, https://doi.org/10.1016/j.seppur.2021.118545.  doi: 10.1016/j.seppur.2021.118545

    33. [33]

      Y. Yuan, R.-t. Guo, L.-F. Hong, Z.-D. Lin, X.-Y. Ji, W.-G. Pan, Chemosphere 287 (2022) 132241, https://doi.org/10.1016/j.chemosphere.2021.132241.  doi: 10.1016/j.chemosphere.2021.132241

    34. [34]

      H. Wang, Q. Liu, M. Xu, C. Yan, X. Song, X. Liu, H. Wang, W. Zhou, P. Huo, Appl. Surf. Sci. 640 (2023) 158420, https://doi.org/10.1016/j.apsusc.2023.158420.  doi: 10.1016/j.apsusc.2023.158420

    35. [35]

      F. Yi, Y. Liu, Y. Chen, J. Zhu, Q. He, C. Yang, D. Ma, J. Liu, Chin. Chem. Lett. 36 (2025) 110544, https://doi.org/10.1016/j.cclet.2024.110544.  doi: 10.1016/j.cclet.2024.110544

    36. [36]

      J. Ye, Y. Wan, Y. Li, S. Xu, X. Li, Q. Chen, X. Li, Appl. Surf. Sci. 684 (2025) 161862, https://doi.org/10.1016/j.apsusc.2024.161862.  doi: 10.1016/j.apsusc.2024.161862

    37. [37]

      C. You, X. Zhang, Y. Zhao, R. Yan, Y. Shen, Q. Xue, W. Li, T. Liu, J. Jiang, X. Chen, J. Mater. Sci. Technol. 242 (2026) 64, https://doi.org/10.1016/j.jmst.2025.05.002.  doi: 10.1016/j.jmst.2025.05.002

    38. [38]

      Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem, 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010.  doi: 10.1016/j.chempr.2020.06.010

    39. [39]

      C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang, J. Mater. Sci. Technol. 169 (2024) 182, https://doi.org/10.1016/j.jmst.2023.06.011.  doi: 10.1016/j.jmst.2023.06.011

    40. [40]

      Y. Bian, H. He, G. Dawson, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, https://doi.org/10.1007/s40843-023-2725-y.  doi: 10.1007/s40843-023-2725-y

    41. [41]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D.  doi: 10.1039/D4CS01091D

    42. [42]

      C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys.-Chim. Sin. 40 (2024) 2407014, https://doi.org/10.3866/PKU.WHXB202407014.  doi: 10.3866/PKU.WHXB202407014

    43. [43]

      J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B Environ. 243 (2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011.  doi: 10.1016/j.apcatb.2018.11.011

    44. [44]

      S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, Chin. J Catal. 51 (2023) 101, https://doi.org/10.1016/S1872-2067(23)64479-1.  doi: 10.1016/S1872-2067(23)64479-1

    45. [45]

      J. Li, S. Yan, J. Wu, Q. Cheng, K. Wang, Acta Phys. Chim. Sin. 41 (2025) 100104, https://doi.org/10.1016/j.actphy.2025.100104.  doi: 10.1016/j.actphy.2025.100104

    46. [46]

      H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024) 2315426, https://doi.org/10.1002/adfm.202315426.  doi: 10.1002/adfm.202315426

    47. [47]

      M. Dai, Z. He, P. Zhang, X. Li, S. Wang, J. Mater. Sci. Technol. 122 (2022) 231, https://doi.org/10.1016/j.jmst.2022.02.014.  doi: 10.1016/j.jmst.2022.02.014

    48. [48]

      B. Sun, W. Zhou, H. Li, L. Ren, P. Qiao, W. Li, H. Fu, Adv. Mater. 30 (2018) 1804282, https://doi.org/10.1002/adma.201804282.  doi: 10.1002/adma.201804282

    49. [49]

      Z. Li, D. Yang, W. Zhou, Handbook of Green and Sustainable Nanotechnology. Springer, Cham (2023) 2181, https://doi.org/10.1007/978-3-031-16101-8_53.

    50. [50]

      S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, J. Mater. Sci. Technol. 164 (2023) 59, https://doi.org/10.1016/j.jmst.2023.05.009.  doi: 10.1016/j.jmst.2023.05.009

    51. [51]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys.-Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.  doi: 10.3866/PKU.WHXB202403005

    52. [52]

      C. Wang, K. Rong, Y. Liu, F. Yang, S. Li, Sci. China. Mater. 67 (2024) 562, https://doi.org/10.1007/s40843-023-2764-8.  doi: 10.1007/s40843-023-2764-8

    53. [53]

      X. Ruan, C. Huang, H. Cheng, Z. Zhang, Y. Cui, Z. Li, T. Xie, K. Ba, H. Zhang, L. Zhang, Adv. Mater. 35 (2023) 2209141, https://doi.org/10.1002/adma.202209141.  doi: 10.1002/adma.202209141

    54. [54]

      Y. Xiao, Z. Wang, M. Li, Q. Liu, X. Liu, Y. Wang, Small 20 (2024) 2306692, https://doi.org/10.1002/smll.202306692.  doi: 10.1002/smll.202306692

    55. [55]

      H. Han, M. R. Khan, I. Ahmad, A. Al-Qattan, I. Ali, M. R. Karim, H. Bayahia, F. S. Khan, Z. Ahmad, S. Ullah, J. Water Process. Eng. 61 (2024) 105346, https://doi.org/10.1016/j.jwpe.2024.105346.  doi: 10.1016/j.jwpe.2024.105346

    56. [56]

      D. A. Sabit, S. E. Ebrahim, Mater. Sci. Semicond. Proc. 163 (2023) 107559, https://doi.org/10.1016/j.mssp.2023.107559.  doi: 10.1016/j.mssp.2023.107559

    57. [57]

      A. Wang, W. Wang, J. Ni, D. Liu, D. Liu, J. Ma, X. Jia, Appl. Catal. B: Environ. 328 (2023) 122492, https://doi.org/10.1016/j.apcatb.2023.122492.  doi: 10.1016/j.apcatb.2023.122492

    58. [58]

      J. Wang, Z. Wang, K. Dai, J. Zhang, J. Mater. Sci. Technol. 165 (2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067.  doi: 10.1016/j.jmst.2023.03.067

    59. [59]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.  doi: 10.1016/j.jmst.2024.12.094

    60. [60]

      Q. Wang, G. Wang, J. Wang, J. Li, K. Wang, S. Zhou, Y. Su, Adv. Sustain. Syst. 7 (2023) 2200027, https://doi.org/10.1002/adsu.202200027.  doi: 10.1002/adsu.202200027

    61. [61]

      J. Ding, C. Li, H. Yin, Y. Zhou, S. Wang, K. Liu, M. a. Li, J. Wang, Environ. Pollut. 327 (2023) 121550, https://doi.org/10.1016/j.envpol.2023.121550.  doi: 10.1016/j.envpol.2023.121550

    62. [62]

      Y. Wang, H. Wang, X. Li, L. Gao, Y. Li, J. Huo, W. Kang, C. Zou, L. Jia, Appl. Surf. Sci. 616 (2023) 156501, https://doi.org/10.1016/j.apsusc.2023.156501.  doi: 10.1016/j.apsusc.2023.156501

    63. [63]

      Z. Chen, T. Ma, Z. Li, W. Zhu, L. Li, J. Mater. Sci. Technol. 179 (2024) 198, https://doi.org/10.1016/j.jmst.2023.07.029.  doi: 10.1016/j.jmst.2023.07.029

    64. [64]

      Z. Mei, G. Wang, S. Yan, J. Wang, Acta Phys. Chim. Sin, 37 (2021) 2009097, http://dx.doi.org/10.3866/PKU.WHXB202009097.  doi: 10.3866/PKU.WHXB202009097

    65. [65]

      S. Yuan, X. Liang, Y. Zheng, Y. Chu, X. Ren, Z. Zeng, G. Nan, Y. Wu, Y. He, J. Colloid Interface Sci. 670 (2024) 373, https://doi.org/10.1016/j.jcis.2024.05.120.  doi: 10.1016/j.jcis.2024.05.120

    66. [66]

      X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo, L. Han, J. Huang, Z. Feng, Z. Chen, J. Xu, Nano Energy 81 (2021) 105671, https://doi.org/10.1016/j.nanoen.2020.105671.  doi: 10.1016/j.nanoen.2020.105671

    67. [67]

      Y. Sun, R. Xiong, X. Ke, J. Liao, Y. Xiao, B. Cheng, S. Lei, Sep. Purif. Technol. 345 (2024) 127253, https://doi.org/10.1016/j.seppur.2024.127253.  doi: 10.1016/j.seppur.2024.127253

    68. [68]

      D. Dastan, Appl. Phys. A 123 (2017) 1, https://doi.org/10.1007/s00339-017-1309-3.  doi: 10.1007/s00339-017-1309-3

    69. [69]

      Y. Fu, Y. Xu, Y. Mao, M. Tan, Q. He, H. Mao, H. Du, D. Hao, Q. Wang, Sep. Purif. Technol. 317 (2023) 123922, https://doi.org/10.1016/j.seppur.2023.123922.  doi: 10.1016/j.seppur.2023.123922

    70. [70]

      S. Wang, X. Du, C. Yao, Y. Cai, H. Ma, B. Jiang, J. Ma, Nano Res. 16 (2023) 2152, https://doi.org/10.1007/s12274-022-4960-8.  doi: 10.1007/s12274-022-4960-8

    71. [71]

      S. A. Ali, S. Majumdar, P. K. Chowdhury, S. M. Alshehri, T. Ahmad, ACS Appl. Energy Mater. 7 (2024) 7325, https://doi.org/10.1021/acsaem.4c01477.  doi: 10.1021/acsaem.4c01477

    72. [72]

      Y. Zhang, C. Liang, K. Zhang, Y. Zeng, Y. Zhou, X. Zhang, L. Yin, J. Crittenden, J. Niu, Sep. Purif. Technol. 348 (2024) 127686, https://doi.org/10.1016/j.seppur.2024.127686.  doi: 10.1016/j.seppur.2024.127686

    73. [73]

      Z. Jin, T. Wang, E. Cui, X. Yang, Chem. Eng. J. 477 (2023) 147210, https://doi.org/10.1016/j.cej.2023.147210.  doi: 10.1016/j.cej.2023.147210

    74. [74]

      H. Huang, H.-L. Wang, W.-F. Jiang, Chemosphere, 318 (2023) 137812, https://doi.org/10.1016/j.chemosphere.2023.137812.  doi: 10.1016/j.chemosphere.2023.137812

    75. [75]

      C.-H. Lu, C.-H. Yeh, Ceram. Int. 26 (2000) 351, https://doi.org/10.1016/S0272-8842(99)00063-2.  doi: 10.1016/S0272-8842(99)00063-2

    76. [76]

      H. Lv, X. Zhao, H. Niu, S. He, Z. Tang, F. Wu, J. P. Giesy, J. Hazard. Mater. 369 (2019) 494, https://doi.org/10.1016/j.jhazmat.2019.02.046.  doi: 10.1016/j.jhazmat.2019.02.046

    77. [77]

      J. Qin, M. Zhao, Y. Zhang, J. Shen, X. Wang, Sep. Purif. Technol. 353 (2025) 128622, https://doi.org/10.1016/j.seppur.2024.128622.  doi: 10.1016/j.seppur.2024.128622

    78. [78]

      K. Dou, C. Peng, R. Wang, H. Cao, C. Yao, J. Qiu, J. Liu, N. Tsidaeva, W. Wang, Chem. Eng. J. 455 (2023) 140813, https://doi.org/10.1016/j.cej.2022.140813.  doi: 10.1016/j.cej.2022.140813

    79. [79]

      Y. Y. Gurkan, E. Kasapbasi, Z. Cinar, Chem. Eng. J. 214 (2013) 34, https://doi.org/10.1016/j.cej.2012.10.025.  doi: 10.1016/j.cej.2012.10.025

    80. [80]

      Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. Zhang, A. Xia, L. Lv, Y. Liu, Appl. Catal. B: Environ. 234 (2018) 37, https://doi.org/10.1016/j.apcatb.2018.04.026.  doi: 10.1016/j.apcatb.2018.04.026

    81. [81]

      Y. Zhang, J. Qiu, B. Zhu, M. Fedin, B. Cheng, J. Yu, L. Zhang, Chem. Eng. J. 444 (2022) 136584, https://doi.org/10.1016/j.cej.2022.136584.  doi: 10.1016/j.cej.2022.136584

    82. [82]

      J. Liu, J. Wan, L. Liu, W. Yang, J. Low, X. Gao, F. Fu, Chem. Eng. J. 430 (2022) 133125, https://doi.org/10.1016/j.cej.2021.133125.  doi: 10.1016/j.cej.2021.133125

    83. [83]

      C.-C. Tang, Y.-F. Fang, X.-Q. Cao, H.-L. Tian, Y.-P. Huang, Res. Chem. Intermed. 46 (2020) 509, https://doi.org/10.1007/s11164-019-03963-5.  doi: 10.1007/s11164-019-03963-5

    84. [84]

      C. Du, S. He, Y. Xing, Q. Zhao, C. Yu, X. Su, J. Feng, J. Sun, S. Dong, Mater. Today Phys. 27 (2022) 100827, https://doi.org/10.1016/j.mtphys.2022.100827.  doi: 10.1016/j.mtphys.2022.100827

    85. [85]

      Y. Wang, X. Zhang, Y. Liu, Y. Zhao, C. Xie, Y. Song, P. Yang, Int. J. Hydrogen Energy 44 (2019) 30151, https://doi.org/10.1016/j.ijhydene.2019.09.181.  doi: 10.1016/j.ijhydene.2019.09.181

    86. [86]

      R. Tsuruta, Y. Mizuno, T. Hosokai, T. Koganezawa, H. Ishii, Y. Nakayama, J. Cryst. Growth 468 (2017) 770, https://doi.org/10.1016/j.jcrysgro.2016.10.031.  doi: 10.1016/j.jcrysgro.2016.10.031

    87. [87]

      J. Choi, W. Jung, S. Gonzalez-Carrero, J. R. Durrant, H. Cha, T. Park, Energy Environ. Sci. 17 (2024) 7999, https://doi.org/10.1039/D4EE01808G.  doi: 10.1039/D4EE01808G

    88. [88]

      X. Li, J. Zhang, Z. Wang, J. Fu, S. Li, K. Dai, M. Liu, Chem. Eur. J. 29 (2023) e202202669, https://doi.org/10.1002/chem.202202669.  doi: 10.1002/chem.202202669

    89. [89]

      F. Zhang, Y. Li, B. Ding, G. Shao, N. Li, P. Zhang, Small 19 (2023) 2303867, https://doi.org/10.1002/smll.202303867.  doi: 10.1002/smll.202303867

    90. [90]

      Y. Shao, X. Hao, W. Deng, Z. Jin, Mater. Today Chem. 38 (2024) 102075, https://doi.org/10.1016/j.mtchem.2024.102075.  doi: 10.1016/j.mtchem.2024.102075

    91. [91]

      L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447, https://doi.org/10.1002/smll.202103447.  doi: 10.1002/smll.202103447

    92. [92]

      T. Wang, Z. Jin, J. Mater. Sci. Technol. 155 (2023) 132, https://doi.org/10.1016/j.jmst.2023.03.002.  doi: 10.1016/j.jmst.2023.03.002

    93. [93]

      F. A. Qaraah, S. A. Mahyoub, A. Hezam, A. Qaraah, F. Xin, G. Xiu, Appl. Catal. B Environ. 315 (2022) 121585, https://doi.org/10.1016/j.apcatb.2022.121585.  doi: 10.1016/j.apcatb.2022.121585

    94. [94]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036.  doi: 10.1016/j.jmst.2025.01.036

    95. [95]

      M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001.  doi: 10.1016/j.jmst.2024.12.001

    96. [96]

      R. Chen, L. Li, Y. Gong, H. Lou, Y. Pang, D. Yang, X. Qiu, J. Mater. Sci. Technol. 202 (2024) 67, https://doi.org/10.1016/j.jmst.2024.02.080.  doi: 10.1016/j.jmst.2024.02.080

    97. [97]

      L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Appl. Surf. Sci. 391 (2017) 202, https://doi.org/10.1016/j.apsusc.2016.07.055.  doi: 10.1016/j.apsusc.2016.07.055

    98. [98]

      Y. Wang, R. Shi, J. Lin, Y. Zhu, Energy Environ. Sci. 4 (2011) 2922, https://doi.org/10.1039/C0EE00825G.  doi: 10.1039/C0EE00825G

    99. [99]

      R. Banyal, P. Raizada, T. Ahamad, S. Kaya, M. M. Maslov, V. Chaudhary, C. M. Hussain, P. Singh, J. Phys. Chem. Solids 195 (2024) 112132, https://doi.org/10.1016/j.jpcs.2024.112132.  doi: 10.1016/j.jpcs.2024.112132

    100. [100]

      C. Liu, S. Mao, H. Wang, Y. Wu, F. Wang, M. Xia, Q. Chen, Chem. Eng. J. 430 (2022) 132806, https://doi.org/10.1016/j.cej.2021.132806.  doi: 10.1016/j.cej.2021.132806

    101. [101]

      K. Liu, J. Zhang, J. Ma, R. Sun, Green Chem. 26 (2024) 2893, https://doi.org/10.1039/D3GC03990K.  doi: 10.1039/D3GC03990K

    102. [102]

      F. Zhao, I. Ahmad, H. Bayahia, S. AlFaify, K. M. Alanezi, M. Q. Alfaifi, M. D. Ali, Y. Y. Ghadi, I. Ali, T. L. Tamang, Int. J. Hydrog. Energy 80 (2024) 659, https://doi.org/10.1016/j.ijhydene.2024.07.156.  doi: 10.1016/j.ijhydene.2024.07.156

    103. [103]

      L. Wang, B. Zhu, J. Zhang, J. B. Ghasemi, M. Mousavi, J. Yu, Matter 5 (2022) 4187, https://doi.org/10.1016/j.matt.2022.09.009.  doi: 10.1016/j.matt.2022.09.009

    104. [104]

      X. Yue, L. Cheng, J. Fan, Q. Xiang, Appl. Catal. B: Environ. 304 (2022) 120979, https://doi.org/10.1016/j.apcatb.2021.120979.  doi: 10.1016/j.apcatb.2021.120979

    105. [105]

      W. Zhou, H. Fu, Inorg. Chem. Front. 5 (2018) 1240, https://doi.org/10.1039/C8QI00122G.  doi: 10.1039/C8QI00122G

    106. [106]

      D. Shi, J. Jiang, D. Wang, M. Huo, S. Dong, J. Environ. Chem. Eng. 12 (2024) 112982, https://doi.org/10.1016/j.jece.2024.112982.  doi: 10.1016/j.jece.2024.112982

    107. [107]

      N. Fang, Y. Ding, C. Liu, Z. Chen, Appl. Surf. Sci. 452 (2018) 49, https://doi.org/10.1016/j.apsusc.2018.04.273.  doi: 10.1016/j.apsusc.2018.04.273

    108. [108]

      H. Yu, L. Xu, P. Wang, X. Wang, J. Yu, Appl. Catal. B: Environ. 144 (2014) 75, https://doi.org/10.1016/j.apcatb.2013.06.023.  doi: 10.1016/j.apcatb.2013.06.023

    109. [109]

      T. Liu, L. Bai, N. Tian, J. Liu, Y. Zhang, H. Huang, Int. J. Hydrog. Energy 48 (2023) 12257, https://doi.org/10.1016/j.ijhydene.2022.12.121.  doi: 10.1016/j.ijhydene.2022.12.121

    110. [110]

      K. A. Stewart, B.-S. Yeh, J. F. Wager, J. Non-Cryst. Solids. 432 (2016) 196, https://doi.org/10.1016/j.jnoncrysol.2015.10.005.  doi: 10.1016/j.jnoncrysol.2015.10.005

    111. [111]

      L. Xie, T. Du, J. Wang, Y. Ma, Y. Ni, Z. Liu, L. Zhang, C. Yang, J. Wang, Chem. Eng. J. 426 (2021) 130617, https://doi.org/10.1016/j.cej.2021.130617.  doi: 10.1016/j.cej.2021.130617

    112. [112]

      F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B: Environ. 272 (2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006.  doi: 10.1016/j.apcatb.2020.119006

    113. [113]

      S. Zhang, Y. Si, B. Li, L. Yang, W. Dai, S. Luo, Small 17 (2021) 2004980, https://doi.org/10.1002/smll.202004980.  doi: 10.1002/smll.202004980

    114. [114]

      Y. Chen, Y. Cheng, J. Zhao, W. Zhang, J. Gao, H. Miao, X. Hu, J. Colloid Interface Sci. 627 (2022) 1047, https://doi.org/10.1016/j.jcis.2022.07.117.  doi: 10.1016/j.jcis.2022.07.117

    115. [115]

      M. Yang, Y. Wu, Y. Zhang, X. Li, Z. Jin, J. Environ. Chem. Eng. 11 (2023) 110795, https://doi.org/10.1016/j.jece.2023.110795.  doi: 10.1016/j.jece.2023.110795

    116. [116]

      M. A. Nazir, T. Najam, M. Altaf, K. Ahmad, I. Hossain, M. A. Assiri, M. S. Javed, A. ur Rehman, S. S. A. Shah, J. Alloys Compd. 990 (2024) 174378, https://doi.org/10.1016/j.jallcom.2024.174378.  doi: 10.1016/j.jallcom.2024.174378

    117. [117]

      B. Han, Y. H. Hu, Energy Sci. Eng. 4 (2016) 285, https://doi.org/10.1002/ese3.128.  doi: 10.1002/ese3.128

    118. [118]

      C. Zuo, Q. Su, X. Yan, Processes 11 (2023) 867, https://doi.org/10.3390/pr11030867.  doi: 10.3390/pr11030867

    119. [119]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.  doi: 10.3866/PKU.WHXB202310013

    120. [120]

      Y. Zhang, M. Gao, S. Chen, H. Wang, P. Huo, Acta Phys. Chim. Sin. 39 (2023) 2211051, https://doi.org/10.3866/PKU.WHXB202211051.  doi: 10.3866/PKU.WHXB202211051

    121. [121]

      V. Dutta, A. Sudhaik, P. Raizada, A. Singh, T. Ahamad, S. Thakur, Q. Van Le, V.-H. Nguyen, P. Singh, J. Mater. Sci. Technol. 162 (2023) 11, https://doi.org/10.1016/j.jmst.2023.03.037.  doi: 10.1016/j.jmst.2023.03.037

    122. [122]

      H. Peng, Z. Xing, W. Kong, C. Wu, B. Fang, Y. Cui, Z. Li, H. Liu, W. Zhou, Fuel 346 (2023) 128368, https://doi.org/10.1016/j.fuel.2023.128368.  doi: 10.1016/j.fuel.2023.128368

    123. [123]

      A. Kumar, Y. Singla, M. Sharma, A. Bhardwaj, V. Krishnan, Chemosphere 308 (2022) 136212, https://doi.org/10.1016/j.chemosphere.2022.136212.  doi: 10.1016/j.chemosphere.2022.136212

    124. [124]

      H. Lv, C. Zhou, Q. Shen, Y. Kong, B. Wan, Z. Suo, G. Wang, G. Wang, Y. Liu, J. Colloid Interface Sci. 677 (2025) 365, https://doi.org/10.1016/j.jcis.2024.08.072.  doi: 10.1016/j.jcis.2024.08.072

    125. [125]

      Z. Xu, W. Shi, Y. Shi, H. Sun, L. Li, F. Guo, H. Wen, Appl. Surf. Sci. 595 (2022) 153482, https://doi.org/10.1016/j.apsusc.2022.153482.  doi: 10.1016/j.apsusc.2022.153482

    126. [126]

      H. Dou, Y. Qin, F. Pan, D. Long, X. Rao, G. Q. Xu, Y. Zhang, Catal. Sci. Technol. 9 (2019) 4898, https://doi.org/10.1039/C9CY01086F.  doi: 10.1039/C9CY01086F

    127. [127]

      Z. Li, H. Li, S. Wang, F. Yang, W. Zhou, Chem. Eng. J. 427 (2022) 131830, https://doi.org/10.1016/j.cej.2021.131830.  doi: 10.1016/j.cej.2021.131830

    128. [128]

      R. Liang, Z. He, Y. Lu, G. Yan, L. Wu, Sep. Purif. Technol. 277 (2021) 119442, https://doi.org/10.1016/j.seppur.2021.119442.  doi: 10.1016/j.seppur.2021.119442

    129. [129]

      Z. Wang, X. Yue, Q. Xiang, Coord. Chem. Rev. 504 (2024) 215674, https://doi.org/10.1016/j.ccr.2024.215674.  doi: 10.1016/j.ccr.2024.215674

    130. [130]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.  doi: 10.1016/j.actphy.2025.100065

    131. [131]

      J. Qin, Y. An, Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002  doi: 10.3866/PKU.WHXB202408002

    132. [132]

      Y. An, W. Liu, Y. Zhang, J. Zhang, Z. Lu, Acta Phys. Chim. Sin. 40 (2024) 2407021, https://doi.org/10.3866/PKU.WHXB202407021.  doi: 10.3866/PKU.WHXB202407021

    133. [133]

      J. Lei, Z. Wang, J. Huo, S. Sang, C. Zhang, E. Zhu, T. Kong, F. Karadas, J. Low, Y. Xiong, Angew. Chem. Int. Ed. 64 (2025) e202422667, https://doi.org/10.1002/anie.202422667.  doi: 10.1002/anie.202422667

    134. [134]

      D.-d. Hu, R.-t. Guo, C.-f. Li, J.-s. Yan, W.-g. Pan, Sep. Purif. Technol. 353 (2025) 128473, https://doi.org/10.1016/j.seppur.2024.128473.  doi: 10.1016/j.seppur.2024.128473

    135. [135]

      H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai, J. Mater. Sci. Technol. 195 (2024) 146, https://doi.org/10.1016/j.jmst.2023.11.081.  doi: 10.1016/j.jmst.2023.11.081

    136. [136]

      A. H. Raza, S. Farhan, Z. Yu, Y. Wu, Acta Phys. Chim. Sin. 40 (2024) 2406020, https://doi.org/10.3866/PKU.WHXB202406020.  doi: 10.3866/PKU.WHXB202406020

    137. [137]

      Q. Zhang, Z. Wang, Y. Song, J. Fan, T. Sun, E. Liu, J. Mater. Sci. Technol. 169 (2024) 148, https://doi.org/10.1016/j.jmst.2023.05.066.  doi: 10.1016/j.jmst.2023.05.066

    138. [138]

      M. Li, J.-Z. Wang, Z.-L. Jin, Rare Metals 43 (2024) 1999, https://doi.org/10.1007/s12598-023-02539-y.  doi: 10.1007/s12598-023-02539-y

    139. [139]

      N. M. Gupta, Renew. Sust. Energy Rev. 71 (2017) 585, https://doi.org/10.1016/j.rser.2016.12.086.  doi: 10.1016/j.rser.2016.12.086

    140. [140]

      F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41 (2020) 9, https://doi.org/10.1016/S1872-2067(19)63382-6.  doi: 10.1016/S1872-2067(19)63382-6

    141. [141]

      J. Xiao, Y. Xie, H. Cao, Chemosphere 121 (2015) 1, https://doi.org/10.1016/j.chemosphere.2014.10.072.  doi: 10.1016/j.chemosphere.2014.10.072

    142. [142]

      M. Zhang, T. Wang, C. Bian, N. Yang, H. Qi, Sep. Purif. Techol. 306 (2023) 122736, https://doi.org/10.1016/j.seppur.2022.122736.  doi: 10.1016/j.seppur.2022.122736

    143. [143]

      J. Wu, Q. Xie, C. Zhang, H. Shi, Acta Phys. Chim. Sin. 41 (2025) 100050, https://doi.org/10.1016/j.actphy.2025.100050.  doi: 10.1016/j.actphy.2025.100050

    144. [144]

      W. Kong, Z. Xing, H. Zhang, B. Fang, Y. Cui, Z. Li, P. Chen, W. Zhou, J. Mater. Chem. C 10 (2022) 18164, https://doi.org/10.1039/D2TC03943E.  doi: 10.1039/D2TC03943E

    145. [145]

      Y. Kumar, K. Sharma, A. Sudhaik, P. Raizada, S. Thakur, V.-H. Nguyen, Q. Van Le, T. Ahamad, S. M. Alshehri, P. Singh, Appl. Nanosci. 13 (2023) 4129, https://doi.org/10.1007/s13204-022-02743-9.  doi: 10.1007/s13204-022-02743-9

  • 加载中
    1. [1]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    3. [3]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    4. [4]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    5. [5]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    8. [8]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    9. [9]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    10. [10]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    11. [11]

      Wenzheng ChenWeiyun ChenBin ChenMingbao Feng . Deciphering the electron-shuttling role of iron(Ⅲ) porphyrin in modulating the reductive UV/S(Ⅳ) system into the oxidative strategy for micropollutant abatement. Chinese Chemical Letters, 2025, 36(10): 110743-. doi: 10.1016/j.cclet.2024.110743

    12. [12]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    13. [13]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    14. [14]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    15. [15]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    16. [16]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    17. [17]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    18. [18]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    19. [19]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    20. [20]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

Metrics
  • PDF Downloads(3)
  • Abstract views(85)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return