Citation: Fengying Zhang, Yanglin Mei, Yuman Jiang, Shenshen Zheng, Kaibo Zheng, Ying Zhou. Research progress of transient absorption spectroscopy in solar energy conversion and utilization[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100118. doi: 10.1016/j.actphy.2025.100118 shu

Research progress of transient absorption spectroscopy in solar energy conversion and utilization

  • Corresponding author: Ying Zhou, yzhou@swpu.edu.cn
  • Received Date: 24 April 2025
    Revised Date: 9 June 2025
    Accepted Date: 10 June 2025

    Fund Project: the National Key R&D Project of China 2020YFA0710000the National Natural Science Foundation of China 52325401the National Natural Science Foundation of China 22309152the National Natural Science Foundation of China 22311530118the Provincial Key Research and Development Project of Sichuan 2024YFHZ0040the High-end Foreign Experts Recruitment Program Sichuan 2025HJRC0018the International Science and Technology Cooperation Project of Chengdu 2021-GH02-00052-HZ

  • With the development of ultrafast laser technology, time-resolved spectroscopy has become an essential tool to study the microscopic photophysical mechanisms on ultrafast time scales in the field of solar energy conversion and utilization. Transient absorption spectroscopy (TAS), as an essential technology for studying photoinduced ultrafast electron transfer and photo-induced carrier dynamics, has the unique advantage of revealing key dynamic processes, such as the generation, separation, transport, and recombination of photogenerated carriers. Focusing on light-to-chemical and light-to-electrical energy conversion, this review summarizes TAS applications in two primary solar energy conversion systems: photocatalysis and solar cells. Firstly, according to the different requirements of photocatalysis (emphasizing migration for surface reactions) and solar cells (highlighting interfacial carrier separation efficiency), we summarize design strategies and recent advances for enhancing carrier utilization from three perspectives: electron manipulation, hole manipulation and surface interfacial processes. Subsequently, special attention is given to how in situ spectroscopy elucidates the influence mechanisms of microscopic energy conversion processes and device performance under complex application scenarios involving photo-electro-thermal couplings. Finally, the forward-looking development direction of basic research in solar energy conversion and utilization is summarized, which provides theoretical support for rational design and performance optimization of solar energy conversion materials, reactions, and devices.
  • 加载中
    1. [1]

      S. Yu, Y. Li, A. Jiang, Y. Chen, Y. Duan, J. Ye, Y. Zhou, Adv. Energy Mater. 14 (15) (2024) 2304362, https://doi.org/10.1002/aenm.202304362.  doi: 10.1002/aenm.202304362

    2. [2]

      W. Song, X. Zhang, W. Li, B. Li, B. Li, Chem 11 (2) (2025) 1, https://doi.org/10.1016/j.chempr.2024.10.018.  doi: 10.1016/j.chempr.2024.10.018

    3. [3]

      T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang, E. Cho, R. Konefal, Y. Puttisong, K. Terado, L. Kobera, M.Y. Chen, M. Yang, S. Bai, B.W. Yang, J.J. Suo, S.C. Yang, X.J. Liu, F. Fu, H. Yoshida, W.M.M. Chen, J. Brus, V. Coropceanu, A. Hagfeldt, J.L. Brédas, M. Fahlman, D.S. Kim, Z.J. Hu, F. Gao, Science 377 (6605) (2022) 495, https://doi.org/10.1126/science.abo2757.  doi: 10.1126/science.abo2757

    4. [4]

      J. Wang, Z. Huang, Y. Wang, J. Wu, Z. Rao, F. Wang, Y. Zhou, Chin. Chem. Lett. 33 (10) (2022) 4687, https://doi.org/10.1016/j.cclet.2021.12.060.  doi: 10.1016/j.cclet.2021.12.060

    5. [5]

      S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, Y. Cao, Nat. Photonics 14 (5) (2020) 300, https://doi.org/10.1038/s41566-019-0573-5.  doi: 10.1038/s41566-019-0573-5

    6. [6]

      Q. Liang, Y. Chang, C. Liang, H. Zhu, Z. Guo, J. Liu, Acta Phys. -Chim. Sin. 39 (7) (2023) 2212006, https://doi.org/10.3866/PKU.WHXB202212006.  doi: 10.3866/PKU.WHXB202212006

    7. [7]

      Z. Wang, J. Wang, J. Zhang, K. Dai, Acta Phys. -Chim. Sin. 39 (6) (2023) 2209037, https://doi.org/10.3866/pku.Whxb202209037.  doi: 10.3866/pku.Whxb202209037

    8. [8]

      Q. Wang, K. Guo, S. Gu, W. Huang, H. Peng, W. Wu, J. Ding, Prog. Photovolt: Res. Appl. 32 (12) (2024) 889, https://doi.org/10.1002/pip.3839.  doi: 10.1002/pip.3839

    9. [9]

      P. Zhou, I. A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Nature 613 (7942) (2023) 66, https://doi.org/10.1038/s41586-022-05399-1.  doi: 10.1038/s41586-022-05399-1

    10. [10]

      D. Gunawan, J. Zhang, Q. Li, C. Y. Toe, J. Scott, M. Antonietti, J. Guo, R. Amal, Adv. Mater. 36 (42) (2024) 2404618, https://doi.org/10.1002/adma.202404618.  doi: 10.1002/adma.202404618

    11. [11]

      Z. Cai, H. Liu, J. Dai, B. Li, L. Yang, J. Wang, H. Zhu, Nat. Commun. 16 (1) (2025) 2601, https://doi.org/10.1038/s41467-025-57742-5.  doi: 10.1038/s41467-025-57742-5

    12. [12]

      Q. Li, C. Ni, J. Cui, C. Li, F. Fan, J. Am. Chem. Soc. 147 (11) (2025) 9103, https://doi.org/10.1021/jacs.4c10300.  doi: 10.1021/jacs.4c10300

    13. [13]

      A. Shu, C. Qin, M. Li, L. Zhao, Z. Shangguan, Z. Shu, X. Yuan, M. Zhu, Y. Wu, H. Wang, Energy Environ. Sci. 17 (14) (2024) 4907, https://doi.org/10.1039/D4EE01379D.  doi: 10.1039/D4EE01379D

    14. [14]

      F. Zhao, Y. Feng, Y. Wang, X. Zhang, X. Liang, Z. Li, F. Zhang, T. Wang, J. Gong, W. Feng, Nat. Commun. 11 (1) (2020) 1443, https://doi.org/10.1038/s41467-020-15262-4.  doi: 10.1038/s41467-020-15262-4

    15. [15]

      Y. Liu, Y. Zhou, M. Abdellah, W. Lin, J. Meng, Q. Zhao, S. Yu, Z. Xie, Q. Pan, F. Zhang, T. Pullerits, K.B. Zheng, Sci. China Mater. 65 (9) (2022) 2529, https://doi.org/10.1007/s40843-021-1992-3.  doi: 10.1007/s40843-021-1992-3

    16. [16]

      Y. Xu, Z. Wang, Y. Weng, J. Phys. Chem. C 128 (39) (2024) 16275, https://doi.org/10.1021/acs.jpcc.4c03688.  doi: 10.1021/acs.jpcc.4c03688

    17. [17]

      F. Wang, S. Zhang, F. Yu, Y. Liu, L. Guo, Chin. J. Chem. Eng. 74 (1) (2023) 29, https://doi.org/10.11949/0438-1157.20221120.  doi: 10.11949/0438-1157.20221120

    18. [18]

      J. Y. Xu, X. Tong, P. Yu, G. E. Wenya, T. McGrath, M. J. Fong, J. Wu, Z. M. Wang, Adv. Sci. 5 (12) (2018) 1800221, https://doi.org/10.1002/advs.201800221.  doi: 10.1002/advs.201800221

    19. [19]

      F. Zhang, Y. Jiang, J. Liu, A. Jiang, Y. Cao, S. Yu, K. Zheng, Y. Zhou, Fundam. Res. (2024), https://doi.org/10.1016/j.fmre.2024.04.003.  doi: 10.1016/j.fmre.2024.04.003

    20. [20]

      R. G. W. Norrish, G. Porter, Nature 164 (4172) (1949) 658, https://doi.org/10.1038/164658a0.  doi: 10.1038/164658a0

    21. [21]

      J. Van Houten, J. Chem. Educ. 79 (5) (2002) 548, https://doi.org/10.1021/ed079p548.  doi: 10.1021/ed079p548

    22. [22]

      A. H. Zewail, J. Phys. Chem. A 104 (24) (2000) 5660, https://doi.org/10.1021/jp001460h.  doi: 10.1021/jp001460h

    23. [23]

      P. Waleska, S. Rupp, C. Hess, J. Phys. Chem. C 122 (6) (2018) 3386, https://doi.org/10.1021/acs.jpcc.7b10518.  doi: 10.1021/acs.jpcc.7b10518

    24. [24]

      S. Tschierlei, M. Karnahl, N. Rockstroh, H. Junge, M. Beller, S. Lochbrunner, ChemPhysChem 15 (17) (2014) 3709, https://doi.org/10.1002/cphc.201402585.  doi: 10.1002/cphc.201402585

    25. [25]

      Z. Chen, Y. Hu, J. Wang, Q. Shen, Y. Zhang, C. Ding, Y. Bai, G. Jiang, Z. Li, N. Gaponik, Chem. Mater. 32 (4) (2020) 1517, https://doi.org/10.1021/acs.chemmater.9b04582.  doi: 10.1021/acs.chemmater.9b04582

    26. [26]

      X. Li, C. Wang, J. Tang, Nat. Rev. Mater. 7 (8) (2022) 617, https://doi.org/10.1038/s41578-022-00422-3.  doi: 10.1038/s41578-022-00422-3

    27. [27]

      R. Godin, Y. Wang, M. A. Zwijnenburg, J. Tang, J. R. Durrant, J. Am. Chem. Soc. 139 (14) (2017) 5216, https://doi.org/10.1021/jacs.7b01547.  doi: 10.1021/jacs.7b01547

    28. [28]

      M. Abdellah, A. M. El-Zohry, L. J. Antila, C. D. Windle, E. Reisner, L. Hammarström, J. Am. Chem. Soc. 139 (3) (2017) 1226, https://doi.org/10.1021/jacs.6b11308.  doi: 10.1021/jacs.6b11308

    29. [29]

      N. J. J. Van Hoof, S. E. T. Ter Huurne, J. G. Rivas, A. Halpin, Opt. Express 26 (24) (2018) 32118, https://doi.org/10.1364/oe.26.032118.  doi: 10.1364/oe.26.032118

    30. [30]

      Y. Hu, C. Gao, Y. Xiong, Sol. RRL 5 (6) (2021) 2000468, https://doi.org/10.1002/solr.202000468.  doi: 10.1002/solr.202000468

    31. [31]

      J. Zhang, B. Zhu, L. Zhang, J. Yu, Chem. Commun. 59 (6) (2023) 688, https://doi.org/10.1039/d2cc06300j.  doi: 10.1039/d2cc06300j

    32. [32]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (5) (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    33. [33]

      K. Kobbekaduwa, E. Liu, Q. Zhao, J. S. Bains, J. Zhang, Y. Shi, H. Zheng, D. Li, T. Cai, O. Chen, A.M. Rao, M.C. Beard, J.M. Luther, J.B. Gao, ACS Nano 17 (14) (2023) 13997, https://doi.org/10.1021/acsnano.3c03989.  doi: 10.1021/acsnano.3c03989

    34. [34]

      G. Bao, R. Deng, D. Jin, X. Liu, Nat. Rev. Mater. 10 (1) (2025) 28, https://doi.org/10.1038/s41578-024-00704-y.  doi: 10.1038/s41578-024-00704-y

    35. [35]

      L. Sun, Z. Zhang, J. Bian, F. Bai, H. Su, Z. Li, J. Xie, R. Xu, J. Sun, L. Bai, C.L. Chen, Y. Han, J.W. Tang, L.Q. Jing, Adv. Mater. 35 (21) (2023) 2300064, https://doi.org/10.1002/adma.202300064.  doi: 10.1002/adma.202300064

    36. [36]

      M. Ghasemi, J. Lu, B. Jia, X. Wen, Chem. Soc. Rev. 54 (4) (2025) 1644, https://doi.org/10.1039/D4CS00985A.  doi: 10.1039/D4CS00985A

    37. [37]

      J. Ma, T. J. Miao, J. Tang, Chem. Soc. Rev. 51 (14) (2022) 5777, https://doi.org/10.1039/d1cs01164b.  doi: 10.1039/d1cs01164b

    38. [38]

      P. Changenet, T. Gustavsson, I. Lampre, J. Chem. Educ. 97 (12) (2020) 4482, https://doi.org/10.1021/acs.jchemed.0c01056.  doi: 10.1021/acs.jchemed.0c01056

    39. [39]

      X. Liu, P. Zeng, S. Chen, T. A. Smith, M. Liu, Laser Photonics Rev. 16 (12) (2022) 2200280, https://doi.org/10.1002/lpor.202200280.  doi: 10.1002/lpor.202200280

    40. [40]

      J. Liu, X. Chen, K. Chen, W. Tian, Y. Sheng, B. She, Y. Jiang, D. Zhang, Y. Liu, J. Qi, K. Chen, Y. Ma, Z. Qiu, C. Wang, Y. Yin, S. Zhao, J. Leng, S. Jin, W. Zhao, Y. Qin, Y. Su, X. Li, X. Li, Y. Zhou, Y. Zhou, F. Ling, A. Mei, H. Han, Science 383 (6688) (2024) 1198, https://doi.org/10.1126/science.adk9089.  doi: 10.1126/science.adk9089

    41. [41]

      S. L. Meng, C. Ye, X. B. Li, C.-H. Tung, L. Z. Wu, J. Am. Chem. Soc. 144 (36) (2022) 16219, https://doi.org/10.1021/jacs.2c02341.  doi: 10.1021/jacs.2c02341

    42. [42]

      Y. Li, S. Li, D. Chen, C. A. Kocoj, A. Yang, B. T. Diroll, P. Guo, Sci. Adv. 10 (50) (2024) eadk2778, https://doi.org/10.1126/sciadv.adk2778.  doi: 10.1126/sciadv.adk2778

    43. [43]

      W. K. Zhang, Chin. J. Chem. Phys. 29 (1) (2016) 1, https://doi.org/10.1063/1674-0068/29/cjcp1512246.  doi: 10.1063/1674-0068/29/cjcp1512246

    44. [44]

      L. J. Sun, H. W. Su, Q. Q. Liu, J. Hu, L. L. Wang, H. Tang, Rare Met. 41 (7) (2022) 2387, https://doi.org/10.1007/s12598-022-01966-7.  doi: 10.1007/s12598-022-01966-7

    45. [45]

      J. Teng, W. Li, Z. Wei, D. Hao, L. Jing, Y. Liu, H. Dai, Y. Zhu, T. Ma, J. Deng, Angew. Chem. Int. Ed. 63 (50) (2024) e202416039, https://doi.org/10.1002/anie.202416039.  doi: 10.1002/anie.202416039

    46. [46]

      Y. Wu, J. Li, W.-K. Chong, Z. Pan, Q. Wang, Chin. J. Catal. 68 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60152-X.  doi: 10.1016/S1872-2067(24)60152-X

    47. [47]

      E. Gong, S. Ali, C. B. Hiragond, H. S. Kim, N. S. Powar, D. Kim, H. Kim, S.-I. In, Energy Environ. Sci. 15 (3) (2022) 880, https://doi.org/10.1039/D1EE02714J.  doi: 10.1039/D1EE02714J

    48. [48]

      H. He, W. Zhai, P. Liu, J. Wang, Mater. Today 83 (2025) 382, https://doi.org/10.1016/j.mattod.2024.12.019.  doi: 10.1016/j.mattod.2024.12.019

    49. [49]

      H. Shen, M. Yang, L. Hao, J. Wang, J. Strunk, Z. Sun, Nano Res. 15 (4) (2022) 2773, https://doi.org/10.1007/s12274-021-3725-0.  doi: 10.1007/s12274-021-3725-0

    50. [50]

      B. Sun, S. Lu, Y. Qian, X. Zhang, J. Tian, Carbon Energy 5 (3) (2023) e305, https://doi.org/10.1002/cey2.305.  doi: 10.1002/cey2.305

    51. [51]

      L. Zhang, Y. Wu, N. Tsubaki, Z. Jin, Acta Phys. -Chim. Sin. 39 (12) (2023) 2302051, https://doi.org/10.3866/PKU.WHXB202302051.  doi: 10.3866/PKU.WHXB202302051

    52. [52]

      Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (1) (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029.  doi: 10.3866/PKU.WHXB202303029

    53. [53]

      S. Lin, H. Huang, T. Ma, Y. Zhang, Adv. Sci. 8 (1) (2021) 2002458, https://doi.org/10.1002/advs.202002458.  doi: 10.1002/advs.202002458

    54. [54]

      B. Weng, M. Zhang, Y. Lin, J. Yang, J. Lv, N. Han, J. Xie, H. Jia, B. L. Su, M. Roeffaers, J. Hofkens, Y. Zhu, S. Wang, W. Choi, Y. Zheng, Nat. Rev. Clean Technol. 1 (3) (2025) 201, https://doi.org/10.1038/s44359-025-00037-1.  doi: 10.1038/s44359-025-00037-1

    55. [55]

      Y. Xu, S. Li, X. Ma, X. Liu, J. Ding, Y. Wang, Prog. Chem. 35 (4) (2023) 509, https://doi.org/10.7536/PC220939.  doi: 10.7536/PC220939

    56. [56]

      X. Gao, J. Chen, H. Che, H. B. Yang, B. Liu, Y. Ao, J. Am. Chem. Soc. 146 (44) (2024) 30455, https://doi.org/10.1021/jacs.4c11123.  doi: 10.1021/jacs.4c11123

    57. [57]

      Z. He, Y. Liu, Z. Li, S. Xu, Z. Li, J. Bian, L. Jing, Appl. Catal. B 355 (2024) 124207, https://doi.org/10.1016/j.apcatb.2024.124207.  doi: 10.1016/j.apcatb.2024.124207

    58. [58]

      D. Zeng, Y. Li, Appl. Catal. B 342 (2024) 123393, https://doi.org/10.1016/j.apcatb.2023.123393.  doi: 10.1016/j.apcatb.2023.123393

    59. [59]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M. S. Ahmed, Z. Lin, M. M.-J. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (31) (2024) e202405756, https://doi.org/10.1002/anie.202405756.  doi: 10.1002/anie.202405756

    60. [60]

      A. Jiang, H. Guo, S. Yu, F. Zhang, T. Shuai, Y. Ke, P. Yang, Y. Zhou, Appl. Catal. B 332 (2023) 122747, https://doi.org/10.1016/j.apcatb.2023.122747.  doi: 10.1016/j.apcatb.2023.122747

    61. [61]

      C. Du, J. Sheng, F. Zhong, Y. He, H. Liu, Y. Sun, F. Dong, Proc. Natl. Acad. Sci. 121 (9) (2024) e2315956121, https://doi.org/10.1073/pnas.2315956121.  doi: 10.1073/pnas.2315956121

    62. [62]

      Q. Zhao, M. Abdellah, Y. Cao, J. Meng, X. Zou, K. Ene-mark-Rasmussen, W. Lin, Y. Li, Y. Chen, H. Duan, Q. Pan, Y. Zhou, T. Pullerits, H. Xu, S. Canton, Y. Niu, K. Zheng, Adv. Funct. Mater. 34 (30) (2024) 2315734, https://doi.org/10.1002/adfm.202315734.  doi: 10.1002/adfm.202315734

    63. [63]

      X. Cheng, R. Guan, Z. Wu, Y. Sun, W. Che, Q. Shang, Infomat 6 (4) (2024) e12535, https://doi.org/10.1002/inf2.12535.  doi: 10.1002/inf2.12535

    64. [64]

      Y. Jiang, F. Zhang, Y. Mei, T. Li, Y. Li, K. Zheng, H. Guo, G. Yang, Y. Zhou, Small 20 (48) (2024) 2405512, https://doi.org/10.1002/smll.202405512.  doi: 10.1002/smll.202405512

    65. [65]

      Y. Li, S. Yu, Y. Cao, Y. Huang, Q. Wang, Y. Duan, L. Li, K. Zheng, Y. Zhou, J. Mater. Sci. Technol. 193 (2024) 73, https://doi.org/10.1016/j.jmst.2024.01.021.  doi: 10.1016/j.jmst.2024.01.021

    66. [66]

      P. Xia, X. Pan, S. Jiang, J. Yu, B. He, P. M. Ismail, W. Bai, J. Yang, L. Yang, H. Zhang, M. Cheng, H. Li, Q. Zhang, C. Xiao, Y. Xie, Adv. Mater. 34 (28) (2022) 2200563, https://doi.org/10.1002/adma.202200563.  doi: 10.1002/adma.202200563

    67. [67]

      J. Tian, Y. Zhang, Z. Shi, Z. Liu, Z. Zhao, J. Li, N. Li, H. Huang, Angew. Chem. Int. Ed. 64 (6) (2025) e202418496, https://doi.org/10.1002/anie.202418496.  doi: 10.1002/anie.202418496

    68. [68]

      Q. Pan, M. Abdellah, Y. Cao, W. Lin, Y. Liu, J. Meng, Q. Zhou, Q. Zhao, X. Yan, Z. Li, H. Cui, H. Cao, W. Fang, D. Tanner, M. Abdel-Hafiez, Y. Zhou, T. Pullerits, S. Canton, H. Xu, K. Zheng, Nat. Commun. 13 (1) (2022) 845, https://doi.org/10.1038/s41467-022-28409-2.  doi: 10.1038/s41467-022-28409-2

    69. [69]

      C. Choi, F. Zhao, J. L. Hart, Y. Gao, F. Menges, C. L. Rooney, N. J. Harmon, B. Shang, Z. Xu, S. Suo, Q. Sam, J. Cha, T. Lian, H. Wang, Angew. Chem. Int. Ed. 62 (23) (2023) e202302152, https://doi.org/10.1002/anie.202302152.  doi: 10.1002/anie.202302152

    70. [70]

      Y. Huang, M. Shen, H. Yan, Y. He, J. Xu, F. Zhu, X. Yang, Y. X. Ye, G. Ouyang, Nat. Commun. 15 (1) (2024) 5406, https://doi.org/10.1038/s41467-024-49373-z.  doi: 10.1038/s41467-024-49373-z

    71. [71]

      Y. Feng, S. Gong, Y. Wang, C. Ban, X. Qu, J. Ma, Y. Duan, C. Lin, D. Yu, L. Xia, X. Chen, X. Tao, L. Gan, X. Zhou, Adv. Mater. 37 (6) (2025) 2412965, https://doi.org/10.1002/adma.202412965.  doi: 10.1002/adma.202412965

    72. [72]

      C. Zhang, Z. C. Shao, X. L. Zhang, G. Q. Liu, Y. Z. Zhang, L. Wu, C. Y. Liu, Y. Pan, F. H. Su, M. R. Gao, Y. Li, S. Yu, Angew. Chem. Int. Ed. 62 (33) (2023) e202305571, https://doi.org/10.1002/anie.202305571.  doi: 10.1002/anie.202305571

    73. [73]

      R. Sun, X. Cao, J. Ma, H.-C. Chen, C. Chen, Q. Peng, Y. Li, Nat. Synth. (2025) https://doi.org/10.1038/s44160-025-00782-y.  doi: 10.1038/s44160-025-00782-y

    74. [74]

      Y. Li, S. Yu, J. Xiang, F. Zhang, A. Jiang, Y. Duan, C. Tang, Y. Cao, H. Guo, Y. Zhou, ACS Catal. 13 (12) (2023) 8281, https://doi.org/10.1021/acscatal.3c01210.  doi: 10.1021/acscatal.3c01210

    75. [75]

      Q. Zhang, S. Yuan, H. Yin, J. Yang, Z. Guan, J. Mater. Chem. A 12 (29) (2024) 18204, https://doi.org/10.1039/D4TA02620A.  doi: 10.1039/D4TA02620A

    76. [76]

      S. Yu, X. B. Fan, X. Wang, J. Li, Q. Zhang, A. Xia, S. Wei, L. Z. Wu, Y. Zhou, G. R. Patzke, Nat. Commun. 9 (1) (2018) 4009, https://doi.org/10.1038/s41467-018-06294-y.  doi: 10.1038/s41467-018-06294-y

    77. [77]

      X. B. Fan, S. Yu, X. Wang, Z. J. Li, F. Zhan, J. X. Li, Y. J. Gao, A. D. Xia, Y. Tao, X. B. Li, L. Zhang, C. Tung, L. Wu, Adv. Mater. 31 (7) (2019) 1804872, https://doi.org/10.1002/adma.201804872.  doi: 10.1002/adma.201804872

    78. [78]

      Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang, Y. Lu, S. Liu, C. Wang, A. Yamakata, C. Su, B. Liu, T. Ohno, Nat. Catal. 4 (5) (2021) 374, https://doi.org/10.1038/s41929-021-00605-1.  doi: 10.1038/s41929-021-00605-1

    79. [79]

      W. Kang, R. Wei, H. Yin, D. Li, Z. Chen, Q. Huang, P. Zhang, H. Jing, X. Wang, C. Li, J. Am. Chem. Soc. 145 (6) (2023) 3470, https://doi.org/10.1021/jacs.2c11508.  doi: 10.1021/jacs.2c11508

    80. [80]

      K. Wu, H. Zhu, Z. Liu, W. Rodríguez-Córdoba, T. Lian, J. Am. Chem. Soc. 134 (25) (2012) 10337, https://doi.org/10.1021/ja303306u.  doi: 10.1021/ja303306u

    81. [81]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2) (2025) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    82. [82]

      X. Wang, H. Zhang, Y. Huang, L. Gao, Y. Zhang, J. Meng, Y. Liao, B. Zong, W. Dai, H. Li, Adv. Funct. Mater. (2025) 2421847, https://doi.org/10.1002/adfm.202421847.  doi: 10.1002/adfm.202421847

    83. [83]

      Y. Ou, B. Wang, N. Xu, Q. Song, T. Liu, H. Xu, F. Wang, S. Li, Y. Wang, Adv. Mater. 36 (30) (2024) 2403215, https://doi.org/10.1002/adma.202403215.  doi: 10.1002/adma.202403215

    84. [84]

      Y. Cao, W. Yu, Y. Li, J. Meng, K. Zheng, C. Huang, X. Yang, Y. Yang, F. Dong, Y. Zhou, Adv. Energy Mater. 15 (6) (2025) 2404871, https://doi.org/10.1002/aenm.202404871.  doi: 10.1002/aenm.202404871

    85. [85]

      M. Dan, S. Yu, W. Lin, M. Abdellah, Z. Guo, Z. Q. Liu, T. Pullerits, K. Zheng, Y. Zhou, Adv. Mater. 37 (4) (2025) 2415138, https://doi.org/10.1002/adma.202415138.  doi: 10.1002/adma.202415138

    86. [86]

      H. Huang, Y. Yang, B. Liu, Z. Lan, M. Wang, H. Yan, S. Qu, F. Yang, Q. Zhang, P. Cui, M. Li, Small 21 (12) (2025) 2412129, https://doi.org/10.1002/smll.202412129.  doi: 10.1002/smll.202412129

    87. [87]

      M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 136 (51) (2014) 17802, https://doi.org/10.1021/ja509551m.  doi: 10.1021/ja509551m

    88. [88]

      O. Voznyy, B. R. Sutherland, A. H. Ip, D. Zhitomirsky, E. H. Sargent, Nat. Rev. Mater. 2 (6) (2017) 17026, https://doi.org/10.1038/natrevmats.2017.26.  doi: 10.1038/natrevmats.2017.26

    89. [89]

      H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, J. Durrant, J. Am. Chem. Soc. 130 (10) (2008) 3030, https://doi.org/10.1021/ja076568q.  doi: 10.1021/ja076568q

    90. [90]

      J. Behrends, A. Sperlich, A. Schnegg, T. Biskup, C. Teutloff, K. Lips, V. Dyakonov, R. Bittl, Phys. Rev. B 85 (12) (2012) 125206, https://doi.org/10.1103/PhysRevB.85.125206.  doi: 10.1103/PhysRevB.85.125206

    91. [91]

      Y. Kobori, R. Noji, S. Tsuganezawa, J. Phys. Chem. C 117 (4) (2013) 1589, https://doi.org/10.1021/jp309421s.  doi: 10.1021/jp309421s

    92. [92]

      J. Tao, C. Zhao, Z. Wang, Y. Chen, L. Zang, G. Yang, Y. Bai, J. Chu, Energy Environ. Sci. 18 (2) (2025) 509, https://doi.org/10.1039/D4EE02917H.  doi: 10.1039/D4EE02917H

    93. [93]

      R. Zeng, M. Zhang, X. Wang, L. Zhu, B. Hao, W. Zhong, G. Zhou, J. Deng, S. Tan, J. Zhuang, F. Han, A. Zhang, Z. Zhou, X. Xue, S. Xu, J. Xu, Y. Liu, H. Lu, X. Wu, C. Wang, Z. Fink, T. Russell, H. Jing, Y. Zhang, Z. Bo, F. Liu, Nat. Energy 9 (9) (2024) 1117, https://doi.org/10.1038/s41560-024-01564-0.  doi: 10.1038/s41560-024-01564-0

    94. [94]

      M. Li, B. Jiao, Y. Peng, J. Zhou, L. Tan, N. Ren, Y. Ye, Y. Liu, Y. Yang, Y. Chen, L. Ding, C. Yi, Adv. Mater. 36 (38) (2024) 2406532, https://doi.org/10.1002/adma.202406532.  doi: 10.1002/adma.202406532

    95. [95]

      C. Qiu, X. Lin, Y. Wang, G. Feng, C. Ling, J. Liu, J. Du, X. Xiao, X. Wang, P. Zeng, M. Liu, W. Liang, Y. Hu, H. Han, Adv. Energy Mater. 12 (47) (2022) 2202813, https://doi.org/10.1002/aenm.202202813.  doi: 10.1002/aenm.202202813

    96. [96]

      W. Lin, S. E. Canton, K. Zheng, T. Pullerits, ACS Energy Lett. 9 (1) (2024) 298, https://doi.org/10.1021/acsenergylett.3c02359.  doi: 10.1021/acsenergylett.3c02359

    97. [97]

      C. Luo, F. Gao, X. Wang, C. Zhan, X. Zhang, G. Zheng, X. Zhang, X. Gao, Z. He, Q. Zhao, Sci. Adv. 10 (39) (2024) eadp0790, https://doi.org/10.1126/sciadv.adp0790.  doi: 10.1126/sciadv.adp0790

    98. [98]

      Z. Huang, J. Meng, F. Huang, B. Yu, J. Wang, Y. Yang, J. Ning, K. Zheng, J. Tian, Sci. China Mater. 67 (1) (2024) 134, https://doi.org/10.1007/s40843-023-2690-3.  doi: 10.1007/s40843-023-2690-3

    99. [99]

      Q. A. Alsulami, B. Murali, Y. Alsinan, M. R. Parida, S. M. Aly, O. F. Mohammed, Adv. Energy Mater. 6 (11) (2016) 1502356, https://doi.org/10.1002/aenm.201502356.  doi: 10.1002/aenm.201502356

    100. [100]

      T. D. Raju, V. Murugadoss, K. A. Nirmal, T. D. Dongale, A. V. Kesavan, T. G. Kim, Adv. Powder Mater. 4 (2) (2025) 100275, https://doi.org/10.1016/j.apmate.2025.100275.  doi: 10.1016/j.apmate.2025.100275

    101. [101]

      X. Sun, C. Zhang, D. Gao, S. Zhang, B. Li, J. Gong, S. Li, S. Xiao, Z. Zhu, Z. A. Li, Adv. Funct. Mater. 34 (25) (2024) 2315157, https://doi.org/10.1002/adfm.202315157.  doi: 10.1002/adfm.202315157

    102. [102]

      P. Zhang, C. Zhu, W. Su, S. Wang, Z. Xu, S. Wang, M. Qi, X. Bao, F. Kang, T. Hao, Q. Chen, Y. Bai, X. Liu, G. Tang, W. Zhang, Adv. Funct. Mater. (2025) 2422783, https://doi.org/10.1002/adfm.202422783.  doi: 10.1002/adfm.202422783

    103. [103]

      M. Deng, X. Xu, W. Qiu, Y. Duan, R. Li, L. Yu, Q. Peng, Angew. Chem. Int. Ed. 63 (35) (2024) e202405243, https://doi.org/10.1002/anie.202405243.  doi: 10.1002/anie.202405243

    104. [104]

      J. Xie, W. Lin, K. Zheng, Z. Liang, Adv. Sci. 11 (31) (2024) 2404135, https://doi.org/10.1002/advs.202404135.  doi: 10.1002/advs.202404135

    105. [105]

      Q. Li, Y. Jiao, Y. Tang, J. Zhou, B. Wu, B. Jiang, H. Fu, J. Am. Chem. Soc. 145 (38) (2023) 20837, https://doi.org/10.1021/jacs.3c05234.  doi: 10.1021/jacs.3c05234

    106. [106]

      S. Liang, Z. Tang, S. Li, X. Guo, S. Jia, X. W. Sun, Adv. Opt. Mater. (2025) 2500034, https://doi.org/10.1002/adom.202500034.  doi: 10.1002/adom.202500034

    107. [107]

      Q. Jiang, X. Yuan, Y. Li, Y. Luo, J. Zhu, F. Zhao, Y. Zhang, W. Wei, H. Feng, H. Li, J. Wu, Z. Ma, Z. Tang, F. Huang, Y. Cao, C. Duan, Angew. Chem. Int. Ed. (2025) e202416883, https://doi.org/10.1002/anie.202416883.  doi: 10.1002/anie.202416883

    108. [108]

      X. Liu, Y. Yan, A. Honarfar, Y. Yao, K. Zheng, Z. Liang, Adv. Sci. 6 (8) (2019) 1802103, https://doi.org/10.1002/advs.201802103.  doi: 10.1002/advs.201802103

    109. [109]

      Z. Wang, J. Ji, W. Lin, Y. Yao, K. Zheng, Z. Liang, Adv. Funct. Mater. 30 (31) (2020) 2001564, https://doi.org/10.1002/adfm.202001564.  doi: 10.1002/adfm.202001564

    110. [110]

      T. Li, K. Wang, G. Cai, Y. Li, H. Liu, Y. Jia, Z. Zhang, X. Lu, Y. Yang, Y. Lin, JACS Au 1 (10) (2021) 1733, https://doi.org/10.1021/jacsau.1c00306.  doi: 10.1021/jacsau.1c00306

    111. [111]

      Y. Hu, F. Zhan, Q. Wang, Y. Sun, C. Yu, X. Zhao, H. Wang, R. Long, G. Zhang, C. Gao, W. Zhang, J. Jiang, Y. Tao, Y. Xiong, J. Am. Chem. Soc. 142 (12) (2020) 5618, https://doi.org/10.1021/jacs.9b12443.  doi: 10.1021/jacs.9b12443

    112. [112]

      T.-H. Lai, K.-i. Katsumata, Y.-J. Hsu, Nanophotonics 10 (2) (2021) 777, https://doi.org/10.1515/nanoph-2020-0472.  doi: 10.1515/nanoph-2020-0472

    113. [113]

      A. J. Cowan, J. Tang, W. Leng, J. R. Durrant, D. R. Klug, J. Phys. Chem. C 114 (9) (2010) 4208, https://doi.org/10.1021/jp909993w.  doi: 10.1021/jp909993w

    114. [114]

      A. Honarfar, H. Mourad, W. Lin, A. Polukeev, A. Rahaman, M. Abdellah, P. Chábera, G. Pankratova, L. Gorton, K. Zheng, et al., ACS Appl. Energy Mater. 3 (12) (2020) 12525, https://doi.org/10.1021/acsaem.0c02478.  doi: 10.1021/acsaem.0c02478

    115. [115]

      A. Honarfar, P. Chabera, W. Lin, J. Meng, H. Mourad, G. Pankratova, L. Gorton, K. Zheng, T. Pullerits, J. Phys. Chem. C 125 (26) (2021) 14332, https://doi.org/10.1021/acs.jpcc.1c02729.  doi: 10.1021/acs.jpcc.1c02729

    116. [116]

      S. Selim, E. Pastor, M. García-Tecedor, M. R. Morris, L. Francàs, M. Sachs, B. Moss, S. Corby, C. A. Mesa, S. Gimenez, A. Kafizas, A. Bakulin, J. Durrantt, J. Am. Chem. Soc. 141 (47) (2019) 18791, https://doi.org/10.1021/jacs.9b09056.  doi: 10.1021/jacs.9b09056

    117. [117]

      S. Selim, L. Francàs, M. García-Tecedor, S. Corby, C. Blackman, S. Gimenez, J. R. Durrant, A. Kafizas, Chem. Sci. 10 (9) (2019) 2643, https://doi.org/10.1039/C8SC04679D.  doi: 10.1039/C8SC04679D

    118. [118]

      J. Ji, J. Xie, J. Tang, K. Zheng, Z. Liang, Sol. RRL 5 (5) (2021) 2100142, https://doi.org/10.1002/solr.202100142.  doi: 10.1002/solr.202100142

    119. [119]

      S. Garcia-Orrit, V. Vega-Mayoral, Q. Chen, G. Serra, M. Guizzardi, V. Romano, S. Dal Conte, G. Cerullo, L. Di Mario, M. Kot, M. Loi, A. Narita, K. Müllen, M. Tommasini, J. Cabanillas-González, J. Phys. Chem. Lett. 15 (41) (2024) 10366, https://doi.org/10.1021/acs.jpclett.4c02712.  doi: 10.1021/acs.jpclett.4c02712

    120. [120]

      D. Li, Y. Li, H. Li, X. Wu, Q. Yu, Y. Weng, Rev. Sci. Instrum. 86 (5) (2015) 053105, https://doi.org/10.1063/1.4921473.  doi: 10.1063/1.4921473

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    7. [7]

      Xin ZhouYiting HuoSongyu YangBowen HeXiaojing WangZhen WuJianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160

    8. [8]

      Yanping QiuJiatong ZhangLinping LiYangqin GaoNing LiLei Ge . MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion. Acta Physico-Chimica Sinica, 2026, 42(4): 100175-0. doi: 10.1016/j.actphy.2025.100175

    9. [9]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Ziyi XiaoXinyi MaLinping WangHaobin HuEnzhou Liu . Efficient photocatalytic conversion H2S over NiS2/twinned-Mn0.5Cd0.5S Schottky/S-scheme homojunction in Na2S/Na2SO3 solution. Acta Physico-Chimica Sinica, 2026, 42(4): 100171-0. doi: 10.1016/j.actphy.2025.100171

    13. [13]

      Lingling LiZhe Chen . Charge transfer mechanism investigation of S-scheme photocatalyst using soft X-ray absorption spectroscopy. Acta Physico-Chimica Sinica, 2026, 42(4): 100215-0. doi: 10.1016/j.actphy.2025.100215

    14. [14]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    15. [15]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    16. [16]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    17. [17]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    18. [18]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

Metrics
  • PDF Downloads(31)
  • Abstract views(2680)
  • HTML views(494)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return