Citation: Xue Wu, Yupeng Liu, Bingzhe Wang, Lingyun Li, Zhenjian Li, Qingcheng Wang, Quansheng Cheng, Guichuan Xing, Songnan Qu. Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100109. doi: 10.1016/j.actphy.2025.100109 shu

Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy

  • Corresponding author: Songnan Qu, songnanqu@um.edu.mo
  • Received Date: 29 April 2025
    Revised Date: 23 May 2025
    Accepted Date: 29 May 2025

    Fund Project: the Science and Technology Development Fund of Macau SAR 0139/2022/A3the Science and Technology Development Fund of Macau SAR 0002/2024/TFPthe Science and Technology Development Fund of Macau SAR 0007/2021/AKPthe University of Macau – Dr. Stanley Ho Medical Development Foundation "Set Sail for New Horizons, Create the Future" Grant 2025 SHMDF-OIRFS/2025/001the National Natural Science Foundation of China 62205384

  • Carbon dots (CDs) have emerged as promising photothermal agents for near-infrared (NIR)-mediated tumor therapy due to their excellent biocompatibility and tunable optical properties. However, it is still unclear how to precisely control their assembly behavior to enhance NIR absorption and photothermal conversion efficiency. In this work, we present a hyper-assembled electron donor/acceptor CDs complex (S-d/a-CDs), constructed by integrating electron-donating CDs (d-CDs) with electron-withdrawing CDs (a-CDs). This configuration significantly enhances the NIR absorption capacity of S-d/a-CDs. Under 740 nm laser irradiation, S-d/a-CDs achieve a remarkable photothermal conversion efficiency (PTCE) of 65.8%. S-d/a-CDs exhibit negligible cytotoxicity and effective tumor accumulation capacity through intravenous administration, enabling complete tumor elimination after NIR laser irradiation. To our knowledge, this study is the first to exploit synergistic assembles of two types of CDs for photo-physical property engineering, establishing a groundbreaking paradigm for the development of advanced NIR-triggered photothermal materials.
  • 加载中
    1. [1]

      Y. Liu, Z. Huang, X. Wang, Y. Hao, J. Yang, H. Wang, S. Qu, Adv. Funct. Mater. 35 (2025) 2420587, https://doi.org/10.1002/adfm.202420587.  doi: 10.1002/adfm.202420587

    2. [2]

      B. Wang, H. Cai, G. Waterhouse, X. Qu, B. Yang, S. Lu, Small Sci. 2 (2022) 2200012, https://doi.org/10.1002/smsc.202200012.  doi: 10.1002/smsc.202200012

    3. [3]

      M. Yang, Y. Han, A. Bianco, D. Ji, ACS Nano 18 (2024) 11560, https://doi.org/10.1021/acsnano.4c00820.  doi: 10.1021/acsnano.4c00820

    4. [4]

      D. Felsher, Nat. Rev. Cancer 3 (2003) 375, https://doi.org/10.1038/nrc1070.  doi: 10.1038/nrc1070

    5. [5]

      H. Tang, X. Xu, Y. Chen, H. Xin, T. Wan, B. Li, H. Pan, D. Li, Y. Ping, Adv. Mater. 33 (2021) 2006003, https://doi.org/10.1002/adma.202006003.  doi: 10.1002/adma.202006003

    6. [6]

      C. Feng, X. Deng X. Ni, W. Li, Acta Phys. -Chim. Sin. 31 (2015) 2349, https://doi.org/10.3866/PKU.WHXB201510281.  doi: 10.3866/PKU.WHXB201510281

    7. [7]

      X. Wang, Q. Han, J. Li, R. Yang, G. Diao, C. Wang, Acta Phys. -Chim. Sin 30 (2014) 1363, https://doi.org/10.3866/PKU.WHXB201405063.  doi: 10.3866/PKU.WHXB201405063

    8. [8]

      S. Wang, C. Zhang, F. Fang, Y. Fan, J. Yang, J. Zhang, J. Mater. Chem. B 11 (2023) 8315, https://doi.org/10.1039/D3TB00668A.  doi: 10.1039/D3TB00668A

    9. [9]

      L. Li, J. Yang, J. Wei, C. Jiang, Z. Liu, B. Yang, B. Zhao, W. Song, Light Sci. Appl. 11 (2022) 286, https://doi.org/10.1038/s41377-022-00968-5.  doi: 10.1038/s41377-022-00968-5

    10. [10]

      X. Li, L. Yu, M. He, C. Chen, Z. Yu, S. Jiang, Y. Wang, L. Li, B. Li, G. Wang, A. Shen, J. Fan, BMEMat 1 (2023) e12045, https://doi.org/10.1002/bmm2.12045.  doi: 10.1002/bmm2.12045

    11. [11]

      G. Nocito, G. Calabrese, S. Forte, S. Petralia, C. Puglisi, M. Campolo, E. Esposito, S. Conoci, Cancers 13 (2021) 1991, https://doi.org/10.3390/cancers13091991.  doi: 10.3390/cancers13091991

    12. [12]

      A. Lv, Q. Chen, C. Zhao, S. Li, S. Sun, J. Dong, Z. Li, H. Lin, Chin. Chem. Lett. 32 (2021) 3653. https://doi.org/10.1016/j.cclet.2021.06.020.  doi: 10.1016/j.cclet.2021.06.020

    13. [13]

      C. Li, F. Jiao, L. Dong, J. Hu, X. Ma, Q. Lou, X. Chen, W. Xu, Y. Zhu, J. Zhu, Adv. Mater. (2025) 2502522. https://doi.org/10.1002/adma.202502522.  doi: 10.1002/adma.202502522

    14. [14]

      J. Zhu, C. Li, Y. Zhu, J. Hu, Y. Nan, X. Chen, K. Liu, H. Wang, C. Shan, W. Xu, Q. Lou, Nano Lett. 24 (2024) 13307, https://doi.org/10.1021/acs.nanolett.4c03687.  doi: 10.1021/acs.nanolett.4c03687

    15. [15]

      T. Zhang, J. Wu, Z. Tang, S. Qu, Mater. Chem. Front. 7 (2023) 2359, https://doi.org/10.1039/D3QM00043E.  doi: 10.1039/D3QM00043E

    16. [16]

      Y. Liu, H. Wang, S. Qu, Chin. Chem. Lett. 36 (2025) 110618, https://doi.org/10.1016/j.cclet.2024.110618.  doi: 10.1016/j.cclet.2024.110618

    17. [17]

      X. Bao, Y. Yuan, J. Chen, B. Zhang, D. Li, D. Zhou, P. Jing, G. Xu, Y. Wang, K. Holá, D. Shen, C. Wu, L. Song, C. Liu, R. Zboril, S. Qu, Light Sci. Appl. 7 (2018) 91, https://doi.org/10.1038/s41377-018-0090-1.  doi: 10.1038/s41377-018-0090-1

    18. [18]

      B. Geng, D. Yang, D. Pan, L. Wang, F. Zheng, W. Shen, C. Zhang, X. Li, Carbon 134 (2018) 153, https://doi.org/10.1016/j.carbon.2018.03.084.  doi: 10.1016/j.carbon.2018.03.084

    19. [19]

      Y. Liu, J. Lei, G. Wang, Z. Zhang, J. Wu, B. Zhang, H. Zhang, E. Liu, L. Wang, T. Liu, G. Xing, D. Ouyang, C. Deng, Z. Tang, S. Qu, Adv. Sci. 9 (2022) 2202283, https://doi.org/10.1002/advs.202202283.  doi: 10.1002/advs.202202283

    20. [20]

      C. Hu, Y. Mu, M. Li, J. Qiu, Acta Phys.-Chim. Sin 35 (2019) 572. https://doi.org/10.3866/PKU.WHXB201806060.  doi: 10.3866/PKU.WHXB201806060

    21. [21]

      Q. Wang, T. Zhang, Q. Cheng, B. Wang, Y. Liu, G. Xing, Z. Tang, S. Qu, Adv. Funct. Mater. 34 (2024) 2402976, https://doi.org/10.1002/adfm.202402976.  doi: 10.1002/adfm.202402976

    22. [22]

      J. Wu, J. Lei, He. B, C. Deng, Z. Tang, S. Qu, Aggregate 2 (2021) e139, https://doi.org/10.1002/agt2.139.  doi: 10.1002/agt2.139

    23. [23]

      W. Zhao, D. Chen, K. Liu, T. Wang, R. Zhou, S. Song, K. Li, L. Sui, Q. Lou, L. Hou, C. Shan, Chem. Eng. J. 452 (2023) 139231, https://doi.org/10.1016/j.cej.2022.139231.  doi: 10.1016/j.cej.2022.139231

    24. [24]

      Z. He, Y. Wang, J. An, M. Rong, Q. Liu, L. Niu, Anal. Chem. 96 (2024) 19047, https://doi.org/10.1021/acs.analchem.4c04015.  doi: 10.1021/acs.analchem.4c04015

    25. [25]

      Y. Shen, C. Luo, C. Chen, X. Zhang, M. Shi, Z. Gu, R. Su, Y. Wang, L. Li, L. Wang, S. Zhang, F. Huo, W. Zhang, Adv. Mater. 37 (2025) 2407811, https://doi.org/10.1002/adma.202407811.  doi: 10.1002/adma.202407811

    26. [26]

      H. Song, M. Wu, Z. Tang, J. Tse, B. Yang, S. Lu, Angew. Chem. Int. Ed. 60 (2021) 7234, https://doi.org/10.1002/anie.202017102.  doi: 10.1002/anie.202017102

    27. [27]

      D. Li, D. Han, S. Qu, L. Liu, P. Jing, S. Zhou, W. Ji, X. Wang, T. Zhang, D. Shen, Light-Sci. Appl. 5 (2016) e16120, https://doi.org/10.1038/lsa.2016.120.  doi: 10.1038/lsa.2016.120

    28. [28]

      V. Strauss, H. Wang, S. Delacroix, M. Ledendecker, P. Wessig, Chem. Sci. 11 (2020) 8256, https://doi.org/10.1039/D0SC01605E.  doi: 10.1039/D0SC01605E

    29. [29]

      C. Ji, F. Zeng, W. Xu, M. Zhu, H. Yu, H. Yang, Z. Peng, Adv. Mater. 37 (2025) 2414450, https://doi.org/10.1002/adma.202414450.  doi: 10.1002/adma.202414450

    30. [30]

      Y. Ru, G. Waterhouse, S. Lu, Aggregate 3 (2022) e296, https://doi.org/10.1002/agt2.296.  doi: 10.1002/agt2.296

    31. [31]

      N. Hazra, S. Paul, S. Hazra, A. Banerjee, ChemistrySelect 8 (2023) e202301260, https://doi.org/10.1002/slct.202301260.  doi: 10.1002/slct.202301260

    32. [32]

      B. Tian, S. Liu, L. Feng, S. Liu, S. Gai, Y. Dai, L. Xie, B. Liu, P. Yang, Y. Zhao, Adv. Funct. Mater. 31 (2021) 2100549, https://doi.org/10.1002/adfm.202100549.  doi: 10.1002/adfm.202100549

    33. [33]

      K. Mintz, M. Bartoli, M. Rovere, Y. Zhou, S. Hettiarachchi, S. Paudyal, J. Chen, J. Domena, P. Liyanage, R. Sampson, D. Khadka, R. Pandey, S. Huang, C. Chusuei, A. Tagliaferro, R. Leblanc, Carbon 173 (2021) 433, https://doi.org/10.1016/j.carbon.2020.11.017.  doi: 10.1016/j.carbon.2020.11.017

    34. [34]

      Y. Xian, K. Li, Adv. Mater. 34 (2022) 2201031, https://doi.org/10.1002/adma.202201031.  doi: 10.1002/adma.202201031

    35. [35]

      Y. Liu, D. Cheng, B. Wang, J. Yang, Y. Hao, J. Tan, Q. Li, S. Qu, Adv. Mater. 36 (2024) 2403775, https://doi.org/10.1002/adma.202403775.  doi: 10.1002/adma.202403775

    36. [36]

      C. Ji, F. Zeng, W. Xu, M. Zhu, H. Yu, H. Yang, Z. Peng, Adv. Mater. 37 (2025) 2414450, https://doi.org/10.1002/adma.202414450.  doi: 10.1002/adma.202414450

    37. [37]

      L. Ai, Z. Song, M. Nie, J. Yu, F. Liu, H. Song, B. Zhang, G. Waterhouse, S. Lu, Angew. Chem. Int. Ed. 62 (2023) e202217822, https://doi.org/10.1002/anie.202217822.  doi: 10.1002/anie.202217822

    38. [38]

      H.Zhang, Y. Liu, S. Qu, Responsive Mater. 2 (2024) e20240012. https://doi.org/10.1002/rpm.20240012.  doi: 10.1002/rpm.20240012

    39. [39]

      Y. Zhang, L. Wang, Y. Hu, L. Sui, L. Cheng, S. Lu, Small 19 (2023) 2207983, https://doi.org/10.1002/smll.202207983.  doi: 10.1002/smll.202207983

    40. [40]

      S. Deshmukh, A. Deore, S. Mondal, ACS Appl. Nano Mater. 4 (2021) 7587, https://doi.org/10.1021/acsanm.1c01880.

    41. [41]

      B. Zhang, B. Wang, E. Ushakova, B. He, G. Xing, Z. Tang, A. Rogach, S. Qu, Small 19 (2023) 2204158, https://doi.org/10.1002/smll.202204158.  doi: 10.1002/smll.202204158

    42. [42]

      Q. Zhang, F. Wang, R. Wang, J. Liu, Y. Ma, X. Qin, X. Zhong, Adv. Sci. 10 (2023) 2207566, https://doi.org/10.1002/advs.202207566.  doi: 10.1002/advs.202207566

    43. [43]

      S. Lu, G. Xiao, L. Sui, T. Feng, X. Yong, S. Zhu, B. Li, Z. Liu, B. Zou, M. Jin, J. Tse, H. Yan, B. Yang, Angew. Chem. Int. Ed. 56 (2017) 6187, https://doi.org/10.1002/anie.201700757.  doi: 10.1002/anie.201700757

    44. [44]

      N. Li, J. Wei, X. Ran, J. Li, L. Shen, F. Zhang, Q. Dai, W. Wang, K. Li, X. Wan, Angew. Chem. Int. Ed. (2025) e202503036, https://doi.org/10.1002/anie.202503036.  doi: 10.1002/anie.202503036

    45. [45]

      Z. Shi, H. Bai, J. Wu, X. Miao, J. Gao, X. Xu, Y. Liu, J. Jiang, J. Yang, J. Zhang, T. Shao, B. Peng, H. Ma, D. Zhu, G. Chen, W. Hu, L. Li, W. Huang, Research (Wash D C) 6 (2023) 0169, https://doi.org/10.34133/research.0169.  doi: 10.34133/research.0169

    46. [46]

      P. Changenet, T. Gustavsson, I. Lampre, Chem. Educ. 97 (2020) 4482, https://doi.org/10.1021/acs.jchemed.0c01056.  doi: 10.1021/acs.jchemed.0c01056

    47. [47]

      Z. Yan, W. Wang, L. Du, J. Zhu, D. Phillips, J. Xu, Appl. Catal. B-Environ. 275 (2020) 119151, https://doi.org/10.1016/j.apcatb.2020.119151.  doi: 10.1016/j.apcatb.2020.119151

    48. [48]

      Y. Zhao, W. Jiang, S. Zhuo, B. Wu, P. Luo, W. Chen, M. Zheng, J. Hu, K. Zhang, Z. Wang, L. Liao, M. Zhuo, Sci. Adv. 9 (2023) eadh8917, https://doi.org/10.1126/sciadv.adh8917.  doi: 10.1126/sciadv.adh8917

    49. [49]

      J. Dai, L. Fang, X. Wang, J. Hua, Y. Tu, S. Li, K. He, L. Hang, Y. Xu, J. Fang, L. Wang, J. Wang, P. Ma, G. Jiang, Angew. Chem. Int. Ed. 64 (2025) e202417871, https://doi.org/10.1002/anie.202417871.  doi: 10.1002/anie.202417871

    50. [50]

      Y. Fu, J. Chi, Y. Wu, J. Li, M. Tan, C. Li, H. Du, D. Hao, H. Zhu, Q. Wang, Q. Li, Appl. Surf. Sci. 692 (2025) 162711. https://doi.org/10.1016/j.apsusc.2025.162711.  doi: 10.1016/j.apsusc.2025.162711

    51. [51]

      Q. Li, Q. Zhou, Y. Wu, Y. Shi, Y. Liu, H. Deng, S. Chen, Z. Li, E. Wang, H. Zhu, Q. Wang, J. Environ. Sci. 155 (2025) 111, https://doi.org/10.1016/j.jes.2024.12.014.  doi: 10.1016/j.jes.2024.12.014

    52. [52]

      I. Srivastava, J. Khamo, S. Pandit, P. Fathi, X. Huang, A. Cao, R. Haasch, S. Nie, K. Zhang, D. Pan, Adv. Funct. Mater. 29 (2019) 1902466, https://doi.org/10.1002/adfm.201902466.  doi: 10.1002/adfm.201902466

    53. [53]

      Y. Liu, B. Wang, Y. Zhang, J. Guo, X. Wu, D. Ouyang, S. Chen, Y. Chen, S. Wang, G. Xing, Z, Tang, S. Qu, Adv. Funct. Mater. 34 (2024) 2401353, https://doi.org/10.1002/adfm.202401353.  doi: 10.1002/adfm.202401353

    54. [54]

      X. Peng, R. Wang, T. Wang, W. Yang, H. Wang, W. Gu, L. Ye, ACS Appl. Mater. Interfaces 10 (2018) 1084, https://doi.org/10.1021/acsami.7b14972.  doi: 10.1021/acsami.7b14972

    55. [55]

      Y. Li, G. Bai, S. Zeng, J. Hao, ACS Appl. Mater. Interfaces 11 (2019) 4737, https://doi.org/10.1021/acsami.8b14877.  doi: 10.1021/acsami.8b14877

    56. [56]

      J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. Yu, Y. Zhao, H. Zhang, H. Wang, P. Chu, Nat. Commun. 7 (2016) 12967, https://doi.org/10.1038/ncomms12967.  doi: 10.1038/ncomms12967

  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    3. [3]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    4. [4]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    5. [5]

      Ting LiXiao ZengYuzhuo YangXinyi WenShurong DingLinlin ShiYongqiang ZhangSiyu Lu . Towards practical circularly polarized luminescence: carbon dots-based circularly polarized lasers. Acta Physico-Chimica Sinica, 2026, 42(4): 100191-0. doi: 10.1016/j.actphy.2025.100191

    6. [6]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    7. [7]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    8. [8]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    9. [9]

      Yinghao ZhangHuaxin LiuHanrui DingZhi ZhengWentao DengGuoqiang ZouLaiqiang XuHongshuai HouXiaobo Ji . The application of carbon dots in electrolytes of advanced batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100170-0. doi: 10.1016/j.actphy.2025.100170

    10. [10]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    11. [11]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    12. [12]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    13. [13]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    14. [14]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    15. [15]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    16. [16]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    17. [17]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    18. [18]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    19. [19]

      Qi WANGYing CHENGYuyan WANGYibing XIAOHaozhe LUYansong ZHANGShengling LIJiazi TANTAINa SUNLifeng DINGJinqin GUOPeng JIN . "Shining dot" in vinegar—Extraction of carbon quantum dots and the fluorescence properties analysis. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 87-96. doi: 10.11862/CJIC.20250127

    20. [20]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

Metrics
  • PDF Downloads(4)
  • Abstract views(1458)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return