Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting
- Corresponding author: Jihoon Lee, jihoonlee@kw.ac.kr
Citation:
Sumiya Akter Dristy, Md Ahasan Habib, Shusen Lin, Mehedi Hasan Joni, Rutuja Mandavkar, Young-Uk Chung, Md Najibullah, Jihoon Lee. Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting[J]. Acta Physico-Chimica Sinica,
;2025, 41(7): 100079.
doi:
10.1016/j.actphy.2025.100079
A.Z. Arsad, M.A. Hannan, A.Q. Al-Shetwi, R.A. Begum, M.J. Hossain, P.J. Ker, T.M.I. Mahlia, Int. J. Hydrogen Energy 48 (2023) 27841, https://doi.org/10.1016/j.ijhydene.2023.04.014.
doi: 10.1016/j.ijhydene.2023.04.014
A.E. Yüzbaşıoğlu, C. Avşar, A.O. Gezerman, Curr. Res. Green Sustain. Chem. 5 (2022) 100307, https://doi.org/10.1016/j.crgsc.2022.100307.
doi: 10.1016/j.crgsc.2022.100307
M. Amin, H.H. Shah, A.G. Fareed, W.U. Khan, E. Chung, A. Zia, Z.U.R. Farooqi, C. Lee, Int. J. Hydrogen Energy 47 (2022) 33112, https://doi.org/10.1016/j.ijhydene.2022.07.172.
doi: 10.1016/j.ijhydene.2022.07.172
U.Y. Qazi, Energies 15 (2022) 4741, https://doi.org/10.3390/en15134741.
doi: 10.3390/en15134741
W.-J. Jiang, T. Tang, Y. Zhang, J.-S. Hu, Acc. Chem. Res. 53 (2020) 1111, https://doi.org/10.1021/acs.accounts.0c00127.
doi: 10.1021/acs.accounts.0c00127
R. Santhosh Kumar, S.C. Karthikeyan, S. Ramakrishnan, S. Vijayapradeep, A. Rhan Kim, J.-S. Kim, D. Jin Yoo, Chem. Eng. J. 451 (2023) 138471, https://doi.org/10.1016/j.cej.2022.138471.
doi: 10.1016/j.cej.2022.138471
S.D. Bhoyate, J. Kim, F.M. de Souza, J. Lin, E. Lee, A. Kumar, R.K. Gupta, Coord. Chem. Rev. 474 (2023) 214854, https://doi.org/10.1016/j.ccr.2022.214854.
doi: 10.1016/j.ccr.2022.214854
R. Zheng, C. Zhao, J. Xiong, X. Teng, W. Chen, Z. Hu, Z. Chen, Sustain. Energy Fuels 5 (2021) 4023, https://doi.org/10.1039/D1SE00697E.
doi: 10.1039/D1SE00697E
P.J. Chirik, K.M. Engle, E.M. Simmons, S.R. Wisniewski, Org. Process Res. Dev. 27 (2023) 1160, https://doi.org/10.1021/acs.oprd.3c00025.
doi: 10.1021/acs.oprd.3c00025
S. Bulakhe, N. Shinde, J.S. Kim, R.S. Mane, R. Deokate, Int. J. Energy Res. 46 (2022) 17829, https://doi.org/10.1002/er.8458.
doi: 10.1002/er.8458
M.N. Lakhan, A. Hanan, A. Hussain, I. Ali Soomro, Y. Wang, M. Ahmed, U. Aftab, H. Sun, H. Arandiyan, Chem. Commun. 60 (2024) 5104, https://doi.org/10.1039/D3CC06015B.
doi: 10.1039/D3CC06015B
H. Su, J. Jiang, S. Song, B. An, N. Li, Y. Gao, L. Ge, Chinese J. Catal. 44 (2023) 7–49, https://doi.org/10.1016/S1872-2067(22)64149-4.
doi: 10.1016/S1872-2067(22)64149-4
Y. Xin, Q. Hua, C. Li, H. Zhu, L. Gao, X. Ren, P. Yang, A. Liu, J. Mater. Chem. A 12 (2024) 23147, https://doi.org/10.1039/D4TA03393K.
doi: 10.1039/D4TA03393K
L. Huo, C. Jin, K. Jiang, Q. Bao, Z. Hu, J. Chu, Adv. Energy Sustain. Res. 3 (2022) 2100189, https://doi.org/10.1002/aesr.202100189.
doi: 10.1002/aesr.202100189
X. Deng, R. Zhang, Q. Li, W. Gu, L. Hao, ChemistrySelect 7 (2022) e202200091, https://doi.org/10.1002/slct.202200091.
doi: 10.1002/slct.202200091
G. Anandha babu, S. Perumal, M.K.A. Mohammed, M. Govindasamy, A.A. Alothman, M. Ouladsmane, R. Ganesan, Int. J. Hydrogen Energy 54 (2024) 652, https://doi.org/10.1016/j.ijhydene.2023.06.063.
doi: 10.1016/j.ijhydene.2023.06.063
S. Lin, R. Mandavkar, M.A. Habib, S.A. Dristy, M.H. Joni, J.-H. Jeong, J. Lee, J. Colloid Interface Sci. 677 (2024) 587, https://doi.org/10.1016/j.jcis.2024.08.009.
doi: 10.1016/j.jcis.2024.08.009
W. Li, Y. Deng, L. Luo, Y. Du, X. Cheng, Q. Wu, J. Colloid Interface Sci. 639 (2023) 416, https://doi.org/10.1016/j.jcis.2023.02.071.
doi: 10.1016/j.jcis.2023.02.071
P. Ye, K. Fang, H. Wang, Y. Wang, H. Huang, C. Mo, J. Ning, Y. Hu, Nat. Commun. 15 (2024) 1012, https://doi.org/10.1038/s41467-024-45320-0.
doi: 10.1038/s41467-024-45320-0
L. Huang, R. Yao, X. Wang, S. Sun, X. Zhu, X. Liu, M.G. Kim, J. Lian, F. Liu, Y. Li, H. Zong, S. Han, X. Ding, Energy Environ. Sci. 15 (2022) 2425, https://doi.org/10.1039/D1EE02764F.
doi: 10.1039/D1EE02764F
J. Du, Z. Zou, C. Xu, Electrochem. Sci. Adv. 1 (2021) e2000038, https://doi.org/10.1002/elsa.202000038.
doi: 10.1002/elsa.202000038
M. Ahasan Habib, R. Mandavkar, S. Lin, S. Burse, T. Khalid, M. Hasan Joni, J.H. Jeong, J. Lee, Chem. Eng. J. 462 (2023) 142177, https://doi.org/10.1016/j.cej.2023.142177.
doi: 10.1016/j.cej.2023.142177
S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 6 (2016) 8069, https://doi.org/10.1021/acscatal.6b02479.
doi: 10.1021/acscatal.6b02479
M.K. Sikdar, A. Singh, S. Bhakta, M. Sahoo, S.N. Jha, D.K. Shukla, D. Kanjilal, P.K. Sahoo, Phys. Chem. Chem. Phys. 24 (2022) 18255, https://doi.org/10.1039/D2CP02514K.
doi: 10.1039/D2CP02514K
X. Zhao, Z. Li, S. Wu, M. Lu, X. Xie, D. Zhan, J. Yan, Adv. Electron. Mater. 10 (2024) 2300610, https://doi.org/10.1002/aelm.202300610.
doi: 10.1002/aelm.202300610
S. Guo, Z. Du, S. Dai, Phys. Status Solidi 246 (2009) 2329, https://doi.org/10.1002/pssb.200945192.
doi: 10.1002/pssb.200945192
C. Huang, B. Zhang, Y. Wu, Q. Ruan, L. Liu, J. Su, Y. Tang, R. Liu, P.K. Chu, Appl. Catal. B-Environ. 297 (2021) 120461, https://doi.org/10.1016/j.apcatb.2021.120461.
doi: 10.1016/j.apcatb.2021.120461
A. Mitra, M. Mallik, S. Sengupta, S. Banthia, K. Das, S. Das, Cryst. Growth Des. 17 (2017) 1539, https://doi.org/10.1021/acs.cgd.6b01420.
doi: 10.1021/acs.cgd.6b01420
M.A. Habib, S. Lin, M.H. Joni, S.A. Dristy, R. Mandavkar, J.-H. Jeong, J. Lee, J. Energy Chem. 100 (2025) 397, https://doi.org/10.1016/j.jechem.2024.08.060.
doi: 10.1016/j.jechem.2024.08.060
M. Batool, A. Hameed, M.A. Nadeem, Coord. Chem. Rev. 480 (2023) 215029, https://doi.org/10.1016/j.ccr.2023.215029.
doi: 10.1016/j.ccr.2023.215029
Y. Hong, J. Choi, E. Lee, Y.J. Hwang, Nanoscale 16 (2024) 11564, https://doi.org/10.1039/D4NR01186D.
doi: 10.1039/D4NR01186D
H. Pan, R. Hao, L. Wang, Y. Yu, N. Yang, ChemSusChem 18 (2024) e202400900, https://doi.org/10.1002/cssc.202400900.
doi: 10.1002/cssc.202400900
Y. Wei, X. Wang, M. Sun, M. Ma, J. Tian, M. Shao, ENERGY Environ. Mater. 7 (2024) e12630, https://doi.org/10.1002/eem2.12630.
doi: 10.1002/eem2.12630
J. Cao, Z. Jiao, R. Zhu, H. Long, Y. Zheng, J. Pan, J. Wang, F. Luo, C. Li, Q. Wei, J. Alloys Compd. 914 (2022) 165362, https://doi.org/10.1016/j.jallcom.2022.165362.
doi: 10.1016/j.jallcom.2022.165362
S.-Y. Lu, L. Wang, C. Wu, J. Zhang, W. Dou, T. Hu, R. Wang, Y. Liu, Q. Yang, H. Yi, ACS Sustain. Chem. Eng. 12 (2024) 6376, https://doi.org/10.1021/acssuschemeng.4c00479.
doi: 10.1021/acssuschemeng.4c00479
R. Mandavkar, M.A. Habib, S. Lin, R. Kulkarni, S. Burse, J.-H. Jeong, J. Lee, Appl. Mater. Today 29 (2022) 101579, https://doi.org/10.1016/j.apmt.2022.101579.
doi: 10.1016/j.apmt.2022.101579
D. Briggs, Handb. Adhes, second ed., 2005, p. 621,
D. Rathore, A. Banerjee, S. Pande, ACS Appl. Nano Mater. 5 (2022) 2664, https://doi.org/10.1021/acsanm.1c04359.
doi: 10.1021/acsanm.1c04359
G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang, X.-Z. Fu, J. Zhang, J.-L. Luo, J. Liu, Nano-Micro Lett. 14 (2022) 200, https://doi.org/10.1007/s40820-022-00940-3.
doi: 10.1007/s40820-022-00940-3
P. Krishnamurthy, T. Maiyalagan, G. Panomsuwan, Z. Jiang, M. Rahaman, Catalysts 13 (2023) 1095, https://doi.org/10.3390/catal13071095.
doi: 10.3390/catal13071095
H. Li, Y. Wang, C. Liu, S. Zhang, H. Zhang, Z. Zhu, Int. J. Hydrogen Energy 47 (2022) 20718, https://doi.org/10.1016/j.ijhydene.2022.04.200.
doi: 10.1016/j.ijhydene.2022.04.200
M.A. Ashraf, Y. Yang, D. Zhang, B.T. Pham, J. Colloid Interface Sci. 577 (2020) 265, https://doi.org/10.1016/j.jcis.2020.05.060.
doi: 10.1016/j.jcis.2020.05.060
C.M. Coaty, A.A. Corrao, V. Petrova, P.G. Khalifah, P. Liu, J. Phys. Chem. C 123 (2019) 17873, https://doi.org/10.1021/acs.jpcc.9b04172.
doi: 10.1021/acs.jpcc.9b04172
[M.A. Habib, S. Burse, S. Lin, R. Mandavkar, M.H. Joni, J. Jeong, S. Lee, J. Lee, Small (2023) 2307533,
C. Prakash, P. Sahoo, R. Yadav, A. Pandey, V.K. Singh, A. Dixit, Int. J. Hydrogen Energy 48 (2023) 21969, https://doi.org/10.1016/j.ijhydene.2023.03.093.
doi: 10.1016/j.ijhydene.2023.03.093
L. Jiang, R. Wang, Z. Xiang, X. Wang, Int. J. Hydrogen Energy 51 (2024) 898, https://doi.org/10.1016/j.ijhydene.2023.10.238.
doi: 10.1016/j.ijhydene.2023.10.238
S. Burse, R. Kulkarni, R. Mandavkar, M.A. Habib, S. Lin, Y.-U. Chung, J.-H. Jeong, J. Lee, Nanomaterials 12 (2022) 3283, https://doi.org/10.3390/nano12193283.
doi: 10.3390/nano12193283
L. Quan, H. Jiang, G. Mei, Y. Sun, B. You, Chem. Rev. 124 (2024) 3694, https://doi.org/10.1021/acs.chemrev.3c00332.
doi: 10.1021/acs.chemrev.3c00332
J. Jayabharathi, B. Karthikeyan, B. Vishnu, S. Sriram, Phys. Chem. Chem. Phys. 25 (2023) 8992, https://doi.org/10.1039/D2CP05522H.
doi: 10.1039/D2CP05522H
S.Y. Lim, S. Park, S.W. Im, H. Ha, H. Seo, K.T. Nam, ACS Catal. 10 (2020) 235, https://doi.org/10.1021/acscatal.9b03544.
doi: 10.1021/acscatal.9b03544
M.A. Habib, R. Mandavkar, S. Burse, S. Lin, R. Kulkarni, C.S. Patil, J.H. Jeong, J. Lee, Mater. Today Energy 26 (2022) 101021, https://doi.org/10.1016/j.mtener.2022.101021.
doi: 10.1016/j.mtener.2022.101021
T. Zhao, B. Gong, G. Xu, J. Jiang, L. Zhang, Chinese J. Catal. 61 (2024) 269, https://doi.org/10.1016/S1872-2067(24)60037-9.
doi: 10.1016/S1872-2067(24)60037-9
R. Srivastava, H. Chaudhary, A. Kumar, F.M. de Souza, S.R. Mishra, F. Perez, R.K. Gupta, Discov. Nano 18 (2023) 148, https://doi.org/10.1186/s11671-023-03937-y.
doi: 10.1186/s11671-023-03937-y
H. Liu, X. Li, L. Chen, X. Zhu, P. Dong, M.O.L. Chee, M. Ye, Y. Guo, J. Shen, Adv. Funct. Mater. 32 (2022) 1, https://doi.org/10.1002/adfm.202107308.
doi: 10.1002/adfm.202107308
B. Han, X. Du, J. Li, H. Wang, G. Liu, J. Li, Appl. Surf. Sci. 604 (2022), https://doi.org/10.1016/j.apsusc.2022.154617.
doi: 10.1016/j.apsusc.2022.154617
S. Lin, M.A. Habib, R. Mandavkar, R. Kulkarni, S. Burse, Y.-U. Chung, C. Liu, Z. Wang, S. Lin, J.-H. Jeong, J. Lee, Adv. Sustain. Syst. 6 (2022) 2200213, https://doi.org/10.1002/adsu.202200213.
doi: 10.1002/adsu.202200213
E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W.D. Lou, Sci. 11 (2018) 872, https://doi.org/10.1039/C8EE00076J.
doi: 10.1039/C8EE00076J
Y. Qi, Q. Zhang, S. Meng, D. Li, W. Wei, D. Jiang, M. Chen, Electrochim. Acta 334 (2020), https://doi.org/10.1016/j.electacta.2020.135633.
doi: 10.1016/j.electacta.2020.135633
P. Zhou, X. Lv, D. Xing, F. Ma, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai, B. Huang, Appl. Catal. B-Environ. 263 (2020) 118330, https://doi.org/10.1016/j.apcatb.2019.118330.
doi: 10.1016/j.apcatb.2019.118330
E. Hatami, A. Toghraei, G. Barati Darband, Int. J. Hydrogen Energy 46 (2021) 9394, https://doi.org/10.1016/j.ijhydene.2020.12.110.
doi: 10.1016/j.ijhydene.2020.12.110
Y. Liu, J. Cao, Y. Chen, M. Wei, X. Liu, X. Li, Q. Wu, B. Feng, Y. Zhang, L. Yang, CrystEngComm 24 (2022) 1704, https://doi.org/10.1039/d1ce01555a.
doi: 10.1039/d1ce01555a
S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang, Q. Chen, ACS Catal. 10 (2020) 1152, https://doi.org/10.1021/acscatal.9b04922.
doi: 10.1021/acscatal.9b04922
Q. Ma, R. Dong, H. Liu, A. Zhu, L. Qiao, Y. Ma, J. Wang, J. Xie, J. Pan, J. Alloys Compd. 820 (2020) 153438, https://doi.org/10.1016/j.jallcom.2019.153438.
doi: 10.1016/j.jallcom.2019.153438
Y. Teng, X.D. Wang, J.F. Liao, W.G. Li, H.Y. Chen, Y.J. Dong, D. Bin Kuang, Adv. Funct. Mater. 28 (2018), https://doi.org/10.1002/adfm.201802463.
doi: 10.1002/adfm.201802463
D. Wang, L. Gu, X. Luo, R. Su, Y. Shang, Y. Wang, S. Hao, Y. Yang, J. Electroanal. Chem. 924 (2022) 116875, https://doi.org/10.1016/j.jelechem.2022.116875.
doi: 10.1016/j.jelechem.2022.116875
X. Lin, J. Xu, Z. Peng, Sustain. Times 3 (2024) 100023, https://doi.org/10.1016/j.nxsust.2023.100023.
doi: 10.1016/j.nxsust.2023.100023
Y. Hao, X. Cao, C. Lei, Z. Chen, X. Yang, M. Gong, Mater. Today Catal 2 (2023) 100012, https://doi.org/10.1016/j.mtcata.2023.100012.
doi: 10.1016/j.mtcata.2023.100012
C. Linder, S.G. Rao, R.D. Boyd, A. le Febvrier, P. Eklund, S. Munktell, E.M. Björk, ACS Appl. Energy Mater. 5 (2022) 10838, https://doi.org/10.1021/acsaem.2c01499.
doi: 10.1021/acsaem.2c01499
W. Zhang, M. Liu, X. Gu, Y. Shi, Z. Deng, N. Cai, Chem. Rev. 123 (2023) 7119, https://doi.org/10.1021/acs.chemrev.2c00573.
doi: 10.1021/acs.chemrev.2c00573
P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao, B. Zhang, S. Cao, Y. Zhang, Z. Li, Z. Fan, C. Wang, X. Zhang, J.T. Miller, L. Sun, J. Hou, Nat. Commun. 12 (2021) 1, https://doi.org/10.1038/s41467-021-24828-9.
doi: 10.1038/s41467-021-24828-9
L. Ye, Y. Zhang, B. Guo, D. Cao, Y. Gong, Dalt. Trans. 50 (2021) 13951, https://doi.org/10.1039/d1dt02341a.
doi: 10.1039/d1dt02341a
Q.-N. Ha, N. Susanto Gultom, C.-H. Yeh, D.-H. Kuo, Chem. Eng. J. 472 (2023) 144931, https://doi.org/10.1016/j.cej.2023.144931.
doi: 10.1016/j.cej.2023.144931
C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, J. Wang, Nano Energy 48 (2018) 73, https://doi.org/10.1016/j.nanoen.2018.03.034.
doi: 10.1016/j.nanoen.2018.03.034
Q. Che, N. Bai, Q. Li, X. Chen, Y. Tan, X. Xu, Nanoscale 10 (2018) 15238, https://doi.org/10.1039/c8nr03944e.
doi: 10.1039/c8nr03944e
G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu, C. Liu, J. Zhang, Nanoscale 10 (2018) 17347, https://doi.org/10.1039/C8NR05494K.
doi: 10.1039/C8NR05494K
X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang, Z. Li, X. Zhang, L. Lei, C. Yuan, Y. Hou, J. Mater. Chem. A 7 (2019) 965, https://doi.org/10.1039/c8ta11223a.
doi: 10.1039/c8ta11223a
Y. Dong, Z. Deng, H. Zhang, G. Liu, X. Wang, Nano Lett. 23 (2023) 9087, https://doi.org/10.1021/acs.nanolett.3c02940.
doi: 10.1021/acs.nanolett.3c02940
X. Li, T. Wu, N. Li, S. Zhang, W. Chang, J. Chi, X. Liu, L. Wang, Adv. Funct. Mater. 34 (2024) 2400734, https://doi.org/10.1002/adfm.202400734.
doi: 10.1002/adfm.202400734
J. Chen, L. Zhang, J. Li, X. He, Y. Zheng, S. Sun, X. Fang, D. Zheng, Y. Luo, Y. Wang, J. Zhang, L. Xie, Z. Cai, Y. Sun, A.A. Alshehri, Q. Kong, C. Tang, X. Sun, J. Mater. Chem. A 11 (2023) 1116, https://doi.org/10.1039/D2TA08568B.
doi: 10.1039/D2TA08568B
Y. Hu, H. Yu, L. Qi, J. Dong, P. Yan, T.T. Isimjan, X. Yang, ChemSusChem 14 (2021) 1565, https://doi.org/10.1002/cssc.202002873.
doi: 10.1002/cssc.202002873
H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.-P. Li, M. Du, Adv. Funct. Mater. 30 (2020) 1910596, https://doi.org/10.1002/adfm.201910596.
doi: 10.1002/adfm.201910596
Y. Liu, X. Gu, W. Jiang, H. Li, Y. Ma, C. Liu, Y. Wu, G. Che, Dalt. Trans. 51 (2022) 9486, https://doi.org/10.1039/D2DT01098D.
doi: 10.1039/D2DT01098D
H. Mao, X. Liu, S. Wu, G. Sun, G. Zhou, J. Chi, L. Wang, Adv. Energy Mater. 13 (2023) 2302251, https://doi.org/10.1002/aenm.202302251.
doi: 10.1002/aenm.202302251
M. Ning, F. Zhang, L. Wu, X. Xing, D. Wang, S. Song, Q. Zhou, L. Yu, J. Bao, S. Chen, Energy Environ. Sci. 15 (2022) 3945, https://doi.org/10.1039/D2EE01094A.
doi: 10.1039/D2EE01094A
X. Hou, C. Yu, T. Ni, S. Zhang, J. Zhou, S. Dai, L. Chu, M. Huang, Chinese J. Catal. 61 (2024) 192, https://doi.org/10.1016/S1872-2067(24)60030-6.
doi: 10.1016/S1872-2067(24)60030-6
Q. Lv, J. Han, X. Tan, W. Wang, L. Cao, B. Dong, ACS Appl. Energy Mater. 2 (2019) 3910, https://doi.org/10.1021/acsaem.9b00599.
doi: 10.1021/acsaem.9b00599
X. Luo, X. Tan, P. Ji, L. Chen, J. Yu, S. Mu, EnergyChem 5 (2023) 100091, https://doi.org/10.1016/j.enchem.2022.100091
doi: 10.1016/j.enchem.2022.100091
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
Qi Wang , Yuqing Liu , Jiefei Wang , Yuan-Yuan Ma , Jing Du , Zhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Xian-Wei Lv , Xinyuan Ding , Jiaxing Gong , Xuhuan Yan , Dayong Huang , Jianxin Geng , Zhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
Hailang JIA , Yujie LU , Pengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
Chengyan Ge , Jiawei Hu , Xingyu Liu , Yuxi Song , Chao Liu , Zhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154
Ying Chen , Ronghua Yan , Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015