Citation: Sumiya Akter Dristy, Md Ahasan Habib, Shusen Lin, Mehedi Hasan Joni, Rutuja Mandavkar, Young-Uk Chung, Md Najibullah, Jihoon Lee. Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100079. doi: 10.1016/j.actphy.2025.100079 shu

Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting

  • Corresponding author: Jihoon Lee, jihoonlee@kw.ac.kr
  • Received Date: 19 December 2024
    Revised Date: 7 March 2025
    Accepted Date: 7 March 2025

    Fund Project: the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education RS-2018-NR031063

  • Green hydrogen holds great promise for the future energy ecosystem and designing alternative electrocatalysts is essential for industrial-scale green hydrogen production for high-current water splitting under industrial conditions. Herein, the Zn-doped NiBP microsphere electrocatalyst is fabricated via a multi-step process combining hydrothermal and electrochemical approaches, followed by post-annealing. The optimized Zn/NiBP electrode outperforms the majority of previously reported catalysts, with low overpotentials of 95 mV for HER (hydrogen evolution reaction) and 280 mV for OER (oxygen evolution reaction) at 100 mA∙cm−2 in 1 mol∙L−1 KOH. The bifunctional Zn/NiBP||Zn/NiBP demonstrates a 3.10 V cell voltage at 2000 mA∙cm−2 in 1 mol∙L−1 KOH, surpassing the benchmark Pt/C||RuO2 systems. The Pt/C||Zn/NiBP hybrid system exhibits exceptionally low cell voltages of 2.50 and 2.30 V at 2000 mA∙cm−2 in 1 and 6 mol∙L−1 KOH respectively, demonstrating excellent overall water-splitting performance under challenging industrial conditions. Furthermore, the 2-E system shows remarkable stability over 120 hours at 1000 mA∙cm−2 in 1 and 6 mol∙L−1 KOH, indicating the robust anti-corrosion properties of the Zn/NiBP microspheres. Zn-doped NiBP microspheres exhibit enhanced electrochemical conductivity, active surface area and intrinsic electrocatalytic activity due to synergistic interactions among Zn, Ni, B and P, enabling rapid charge transfer and superior electrocatalytic performance for efficient hydrogen generation.
  • 加载中
    1. [1]

      A.Z. Arsad, M.A. Hannan, A.Q. Al-Shetwi, R.A. Begum, M.J. Hossain, P.J. Ker, T.M.I. Mahlia, Int. J. Hydrogen Energy 48 (2023) 27841, https://doi.org/10.1016/j.ijhydene.2023.04.014.  doi: 10.1016/j.ijhydene.2023.04.014

    2. [2]

      A.E. Yüzbaşıoğlu, C. Avşar, A.O. Gezerman, Curr. Res. Green Sustain. Chem. 5 (2022) 100307, https://doi.org/10.1016/j.crgsc.2022.100307.  doi: 10.1016/j.crgsc.2022.100307

    3. [3]

      M. Amin, H.H. Shah, A.G. Fareed, W.U. Khan, E. Chung, A. Zia, Z.U.R. Farooqi, C. Lee, Int. J. Hydrogen Energy 47 (2022) 33112, https://doi.org/10.1016/j.ijhydene.2022.07.172.  doi: 10.1016/j.ijhydene.2022.07.172

    4. [4]

      U.Y. Qazi, Energies 15 (2022) 4741, https://doi.org/10.3390/en15134741.  doi: 10.3390/en15134741

    5. [5]

      W.-J. Jiang, T. Tang, Y. Zhang, J.-S. Hu, Acc. Chem. Res. 53 (2020) 1111, https://doi.org/10.1021/acs.accounts.0c00127.  doi: 10.1021/acs.accounts.0c00127

    6. [6]

      R. Santhosh Kumar, S.C. Karthikeyan, S. Ramakrishnan, S. Vijayapradeep, A. Rhan Kim, J.-S. Kim, D. Jin Yoo, Chem. Eng. J. 451 (2023) 138471, https://doi.org/10.1016/j.cej.2022.138471.  doi: 10.1016/j.cej.2022.138471

    7. [7]

      S.D. Bhoyate, J. Kim, F.M. de Souza, J. Lin, E. Lee, A. Kumar, R.K. Gupta, Coord. Chem. Rev. 474 (2023) 214854, https://doi.org/10.1016/j.ccr.2022.214854.  doi: 10.1016/j.ccr.2022.214854

    8. [8]

      R. Zheng, C. Zhao, J. Xiong, X. Teng, W. Chen, Z. Hu, Z. Chen, Sustain. Energy Fuels 5 (2021) 4023, https://doi.org/10.1039/D1SE00697E.  doi: 10.1039/D1SE00697E

    9. [9]

      P.J. Chirik, K.M. Engle, E.M. Simmons, S.R. Wisniewski, Org. Process Res. Dev. 27 (2023) 1160, https://doi.org/10.1021/acs.oprd.3c00025.  doi: 10.1021/acs.oprd.3c00025

    10. [10]

      S. Bulakhe, N. Shinde, J.S. Kim, R.S. Mane, R. Deokate, Int. J. Energy Res. 46 (2022) 17829, https://doi.org/10.1002/er.8458.  doi: 10.1002/er.8458

    11. [11]

      M.N. Lakhan, A. Hanan, A. Hussain, I. Ali Soomro, Y. Wang, M. Ahmed, U. Aftab, H. Sun, H. Arandiyan, Chem. Commun. 60 (2024) 5104, https://doi.org/10.1039/D3CC06015B.  doi: 10.1039/D3CC06015B

    12. [12]

      H. Su, J. Jiang, S. Song, B. An, N. Li, Y. Gao, L. Ge, Chinese J. Catal. 44 (2023) 7–49, https://doi.org/10.1016/S1872-2067(22)64149-4.  doi: 10.1016/S1872-2067(22)64149-4

    13. [13]

      Y. Xin, Q. Hua, C. Li, H. Zhu, L. Gao, X. Ren, P. Yang, A. Liu, J. Mater. Chem. A 12 (2024) 23147, https://doi.org/10.1039/D4TA03393K.  doi: 10.1039/D4TA03393K

    14. [14]

      L. Huo, C. Jin, K. Jiang, Q. Bao, Z. Hu, J. Chu, Adv. Energy Sustain. Res. 3 (2022) 2100189, https://doi.org/10.1002/aesr.202100189.  doi: 10.1002/aesr.202100189

    15. [15]

      X. Deng, R. Zhang, Q. Li, W. Gu, L. Hao, ChemistrySelect 7 (2022) e202200091, https://doi.org/10.1002/slct.202200091.  doi: 10.1002/slct.202200091

    16. [16]

      G. Anandha babu, S. Perumal, M.K.A. Mohammed, M. Govindasamy, A.A. Alothman, M. Ouladsmane, R. Ganesan, Int. J. Hydrogen Energy 54 (2024) 652, https://doi.org/10.1016/j.ijhydene.2023.06.063.  doi: 10.1016/j.ijhydene.2023.06.063

    17. [17]

      S. Lin, R. Mandavkar, M.A. Habib, S.A. Dristy, M.H. Joni, J.-H. Jeong, J. Lee, J. Colloid Interface Sci. 677 (2024) 587, https://doi.org/10.1016/j.jcis.2024.08.009.  doi: 10.1016/j.jcis.2024.08.009

    18. [18]

      W. Li, Y. Deng, L. Luo, Y. Du, X. Cheng, Q. Wu, J. Colloid Interface Sci. 639 (2023) 416, https://doi.org/10.1016/j.jcis.2023.02.071.  doi: 10.1016/j.jcis.2023.02.071

    19. [19]

      P. Ye, K. Fang, H. Wang, Y. Wang, H. Huang, C. Mo, J. Ning, Y. Hu, Nat. Commun. 15 (2024) 1012, https://doi.org/10.1038/s41467-024-45320-0.  doi: 10.1038/s41467-024-45320-0

    20. [20]

      L. Huang, R. Yao, X. Wang, S. Sun, X. Zhu, X. Liu, M.G. Kim, J. Lian, F. Liu, Y. Li, H. Zong, S. Han, X. Ding, Energy Environ. Sci. 15 (2022) 2425, https://doi.org/10.1039/D1EE02764F.  doi: 10.1039/D1EE02764F

    21. [21]

      J. Du, Z. Zou, C. Xu, Electrochem. Sci. Adv. 1 (2021) e2000038, https://doi.org/10.1002/elsa.202000038.  doi: 10.1002/elsa.202000038

    22. [22]

      M. Ahasan Habib, R. Mandavkar, S. Lin, S. Burse, T. Khalid, M. Hasan Joni, J.H. Jeong, J. Lee, Chem. Eng. J. 462 (2023) 142177, https://doi.org/10.1016/j.cej.2023.142177.  doi: 10.1016/j.cej.2023.142177

    23. [23]

      S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 6 (2016) 8069, https://doi.org/10.1021/acscatal.6b02479.  doi: 10.1021/acscatal.6b02479

    24. [24]

      M.K. Sikdar, A. Singh, S. Bhakta, M. Sahoo, S.N. Jha, D.K. Shukla, D. Kanjilal, P.K. Sahoo, Phys. Chem. Chem. Phys. 24 (2022) 18255, https://doi.org/10.1039/D2CP02514K.  doi: 10.1039/D2CP02514K

    25. [25]

      X. Zhao, Z. Li, S. Wu, M. Lu, X. Xie, D. Zhan, J. Yan, Adv. Electron. Mater. 10 (2024) 2300610, https://doi.org/10.1002/aelm.202300610.  doi: 10.1002/aelm.202300610

    26. [26]

      S. Guo, Z. Du, S. Dai, Phys. Status Solidi 246 (2009) 2329, https://doi.org/10.1002/pssb.200945192.  doi: 10.1002/pssb.200945192

    27. [27]

      C. Huang, B. Zhang, Y. Wu, Q. Ruan, L. Liu, J. Su, Y. Tang, R. Liu, P.K. Chu, Appl. Catal. B-Environ. 297 (2021) 120461, https://doi.org/10.1016/j.apcatb.2021.120461.  doi: 10.1016/j.apcatb.2021.120461

    28. [28]

      A. Mitra, M. Mallik, S. Sengupta, S. Banthia, K. Das, S. Das, Cryst. Growth Des. 17 (2017) 1539, https://doi.org/10.1021/acs.cgd.6b01420.  doi: 10.1021/acs.cgd.6b01420

    29. [29]

      M.A. Habib, S. Lin, M.H. Joni, S.A. Dristy, R. Mandavkar, J.-H. Jeong, J. Lee, J. Energy Chem. 100 (2025) 397, https://doi.org/10.1016/j.jechem.2024.08.060.  doi: 10.1016/j.jechem.2024.08.060

    30. [30]

      M. Batool, A. Hameed, M.A. Nadeem, Coord. Chem. Rev. 480 (2023) 215029, https://doi.org/10.1016/j.ccr.2023.215029.  doi: 10.1016/j.ccr.2023.215029

    31. [31]

      Y. Hong, J. Choi, E. Lee, Y.J. Hwang, Nanoscale 16 (2024) 11564, https://doi.org/10.1039/D4NR01186D.  doi: 10.1039/D4NR01186D

    32. [32]

      H. Pan, R. Hao, L. Wang, Y. Yu, N. Yang, ChemSusChem 18 (2024) e202400900, https://doi.org/10.1002/cssc.202400900.  doi: 10.1002/cssc.202400900

    33. [33]

      Y. Wei, X. Wang, M. Sun, M. Ma, J. Tian, M. Shao, ENERGY Environ. Mater. 7 (2024) e12630, https://doi.org/10.1002/eem2.12630.  doi: 10.1002/eem2.12630

    34. [34]

      J. Cao, Z. Jiao, R. Zhu, H. Long, Y. Zheng, J. Pan, J. Wang, F. Luo, C. Li, Q. Wei, J. Alloys Compd. 914 (2022) 165362, https://doi.org/10.1016/j.jallcom.2022.165362.  doi: 10.1016/j.jallcom.2022.165362

    35. [35]

      S.-Y. Lu, L. Wang, C. Wu, J. Zhang, W. Dou, T. Hu, R. Wang, Y. Liu, Q. Yang, H. Yi, ACS Sustain. Chem. Eng. 12 (2024) 6376, https://doi.org/10.1021/acssuschemeng.4c00479.  doi: 10.1021/acssuschemeng.4c00479

    36. [36]

      R. Mandavkar, M.A. Habib, S. Lin, R. Kulkarni, S. Burse, J.-H. Jeong, J. Lee, Appl. Mater. Today 29 (2022) 101579, https://doi.org/10.1016/j.apmt.2022.101579.  doi: 10.1016/j.apmt.2022.101579

    37. [37]

      D. Briggs, Handb. Adhes, second ed., 2005, p. 621, https://doi.org/10.1002/0470014229.ch22.

    38. [38]

      D. Rathore, A. Banerjee, S. Pande, ACS Appl. Nano Mater. 5 (2022) 2664, https://doi.org/10.1021/acsanm.1c04359.  doi: 10.1021/acsanm.1c04359

    39. [39]

      G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang, X.-Z. Fu, J. Zhang, J.-L. Luo, J. Liu, Nano-Micro Lett. 14 (2022) 200, https://doi.org/10.1007/s40820-022-00940-3.  doi: 10.1007/s40820-022-00940-3

    40. [40]

      P. Krishnamurthy, T. Maiyalagan, G. Panomsuwan, Z. Jiang, M. Rahaman, Catalysts 13 (2023) 1095, https://doi.org/10.3390/catal13071095.  doi: 10.3390/catal13071095

    41. [41]

      H. Li, Y. Wang, C. Liu, S. Zhang, H. Zhang, Z. Zhu, Int. J. Hydrogen Energy 47 (2022) 20718, https://doi.org/10.1016/j.ijhydene.2022.04.200.  doi: 10.1016/j.ijhydene.2022.04.200

    42. [42]

      M.A. Ashraf, Y. Yang, D. Zhang, B.T. Pham, J. Colloid Interface Sci. 577 (2020) 265, https://doi.org/10.1016/j.jcis.2020.05.060.  doi: 10.1016/j.jcis.2020.05.060

    43. [43]

      C.M. Coaty, A.A. Corrao, V. Petrova, P.G. Khalifah, P. Liu, J. Phys. Chem. C 123 (2019) 17873, https://doi.org/10.1021/acs.jpcc.9b04172.  doi: 10.1021/acs.jpcc.9b04172

    44. [44]

      [M.A. Habib, S. Burse, S. Lin, R. Mandavkar, M.H. Joni, J. Jeong, S. Lee, J. Lee, Small (2023) 2307533, https://doi.org/10.1002/smll.202307533.

    45. [45]

      C. Prakash, P. Sahoo, R. Yadav, A. Pandey, V.K. Singh, A. Dixit, Int. J. Hydrogen Energy 48 (2023) 21969, https://doi.org/10.1016/j.ijhydene.2023.03.093.  doi: 10.1016/j.ijhydene.2023.03.093

    46. [46]

      L. Jiang, R. Wang, Z. Xiang, X. Wang, Int. J. Hydrogen Energy 51 (2024) 898, https://doi.org/10.1016/j.ijhydene.2023.10.238.  doi: 10.1016/j.ijhydene.2023.10.238

    47. [47]

      S. Burse, R. Kulkarni, R. Mandavkar, M.A. Habib, S. Lin, Y.-U. Chung, J.-H. Jeong, J. Lee, Nanomaterials 12 (2022) 3283, https://doi.org/10.3390/nano12193283.  doi: 10.3390/nano12193283

    48. [48]

      L. Quan, H. Jiang, G. Mei, Y. Sun, B. You, Chem. Rev. 124 (2024) 3694, https://doi.org/10.1021/acs.chemrev.3c00332.  doi: 10.1021/acs.chemrev.3c00332

    49. [49]

      J. Jayabharathi, B. Karthikeyan, B. Vishnu, S. Sriram, Phys. Chem. Chem. Phys. 25 (2023) 8992, https://doi.org/10.1039/D2CP05522H.  doi: 10.1039/D2CP05522H

    50. [50]

      S.Y. Lim, S. Park, S.W. Im, H. Ha, H. Seo, K.T. Nam, ACS Catal. 10 (2020) 235, https://doi.org/10.1021/acscatal.9b03544.  doi: 10.1021/acscatal.9b03544

    51. [51]

      M.A. Habib, R. Mandavkar, S. Burse, S. Lin, R. Kulkarni, C.S. Patil, J.H. Jeong, J. Lee, Mater. Today Energy 26 (2022) 101021, https://doi.org/10.1016/j.mtener.2022.101021.  doi: 10.1016/j.mtener.2022.101021

    52. [52]

      T. Zhao, B. Gong, G. Xu, J. Jiang, L. Zhang, Chinese J. Catal. 61 (2024) 269, https://doi.org/10.1016/S1872-2067(24)60037-9.  doi: 10.1016/S1872-2067(24)60037-9

    53. [53]

      R. Srivastava, H. Chaudhary, A. Kumar, F.M. de Souza, S.R. Mishra, F. Perez, R.K. Gupta, Discov. Nano 18 (2023) 148, https://doi.org/10.1186/s11671-023-03937-y.  doi: 10.1186/s11671-023-03937-y

    54. [54]

      H. Liu, X. Li, L. Chen, X. Zhu, P. Dong, M.O.L. Chee, M. Ye, Y. Guo, J. Shen, Adv. Funct. Mater. 32 (2022) 1, https://doi.org/10.1002/adfm.202107308.  doi: 10.1002/adfm.202107308

    55. [55]

      B. Han, X. Du, J. Li, H. Wang, G. Liu, J. Li, Appl. Surf. Sci. 604 (2022), https://doi.org/10.1016/j.apsusc.2022.154617.  doi: 10.1016/j.apsusc.2022.154617

    56. [56]

      S. Lin, M.A. Habib, R. Mandavkar, R. Kulkarni, S. Burse, Y.-U. Chung, C. Liu, Z. Wang, S. Lin, J.-H. Jeong, J. Lee, Adv. Sustain. Syst. 6 (2022) 2200213, https://doi.org/10.1002/adsu.202200213.  doi: 10.1002/adsu.202200213

    57. [57]

      E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W.D. Lou, Sci. 11 (2018) 872, https://doi.org/10.1039/C8EE00076J.  doi: 10.1039/C8EE00076J

    58. [58]

      Y. Qi, Q. Zhang, S. Meng, D. Li, W. Wei, D. Jiang, M. Chen, Electrochim. Acta 334 (2020), https://doi.org/10.1016/j.electacta.2020.135633.  doi: 10.1016/j.electacta.2020.135633

    59. [59]

      P. Zhou, X. Lv, D. Xing, F. Ma, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai, B. Huang, Appl. Catal. B-Environ. 263 (2020) 118330, https://doi.org/10.1016/j.apcatb.2019.118330.  doi: 10.1016/j.apcatb.2019.118330

    60. [60]

      E. Hatami, A. Toghraei, G. Barati Darband, Int. J. Hydrogen Energy 46 (2021) 9394, https://doi.org/10.1016/j.ijhydene.2020.12.110.  doi: 10.1016/j.ijhydene.2020.12.110

    61. [61]

      Y. Liu, J. Cao, Y. Chen, M. Wei, X. Liu, X. Li, Q. Wu, B. Feng, Y. Zhang, L. Yang, CrystEngComm 24 (2022) 1704, https://doi.org/10.1039/d1ce01555a.  doi: 10.1039/d1ce01555a

    62. [62]

      S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang, Q. Chen, ACS Catal. 10 (2020) 1152, https://doi.org/10.1021/acscatal.9b04922.  doi: 10.1021/acscatal.9b04922

    63. [63]

      Q. Ma, R. Dong, H. Liu, A. Zhu, L. Qiao, Y. Ma, J. Wang, J. Xie, J. Pan, J. Alloys Compd. 820 (2020) 153438, https://doi.org/10.1016/j.jallcom.2019.153438.  doi: 10.1016/j.jallcom.2019.153438

    64. [64]

      Y. Teng, X.D. Wang, J.F. Liao, W.G. Li, H.Y. Chen, Y.J. Dong, D. Bin Kuang, Adv. Funct. Mater. 28 (2018), https://doi.org/10.1002/adfm.201802463.  doi: 10.1002/adfm.201802463

    65. [65]

      D. Wang, L. Gu, X. Luo, R. Su, Y. Shang, Y. Wang, S. Hao, Y. Yang, J. Electroanal. Chem. 924 (2022) 116875, https://doi.org/10.1016/j.jelechem.2022.116875.  doi: 10.1016/j.jelechem.2022.116875

    66. [66]

      X. Lin, J. Xu, Z. Peng, Sustain. Times 3 (2024) 100023, https://doi.org/10.1016/j.nxsust.2023.100023.  doi: 10.1016/j.nxsust.2023.100023

    67. [67]

      Y. Hao, X. Cao, C. Lei, Z. Chen, X. Yang, M. Gong, Mater. Today Catal 2 (2023) 100012, https://doi.org/10.1016/j.mtcata.2023.100012.  doi: 10.1016/j.mtcata.2023.100012

    68. [68]

      C. Linder, S.G. Rao, R.D. Boyd, A. le Febvrier, P. Eklund, S. Munktell, E.M. Björk, ACS Appl. Energy Mater. 5 (2022) 10838, https://doi.org/10.1021/acsaem.2c01499.  doi: 10.1021/acsaem.2c01499

    69. [69]

      W. Zhang, M. Liu, X. Gu, Y. Shi, Z. Deng, N. Cai, Chem. Rev. 123 (2023) 7119, https://doi.org/10.1021/acs.chemrev.2c00573.  doi: 10.1021/acs.chemrev.2c00573

    70. [70]

      P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao, B. Zhang, S. Cao, Y. Zhang, Z. Li, Z. Fan, C. Wang, X. Zhang, J.T. Miller, L. Sun, J. Hou, Nat. Commun. 12 (2021) 1, https://doi.org/10.1038/s41467-021-24828-9.  doi: 10.1038/s41467-021-24828-9

    71. [71]

      L. Ye, Y. Zhang, B. Guo, D. Cao, Y. Gong, Dalt. Trans. 50 (2021) 13951, https://doi.org/10.1039/d1dt02341a.  doi: 10.1039/d1dt02341a

    72. [72]

      Q.-N. Ha, N. Susanto Gultom, C.-H. Yeh, D.-H. Kuo, Chem. Eng. J. 472 (2023) 144931, https://doi.org/10.1016/j.cej.2023.144931.  doi: 10.1016/j.cej.2023.144931

    73. [73]

      C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, J. Wang, Nano Energy 48 (2018) 73, https://doi.org/10.1016/j.nanoen.2018.03.034.  doi: 10.1016/j.nanoen.2018.03.034

    74. [74]

      Q. Che, N. Bai, Q. Li, X. Chen, Y. Tan, X. Xu, Nanoscale 10 (2018) 15238, https://doi.org/10.1039/c8nr03944e.  doi: 10.1039/c8nr03944e

    75. [75]

      G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu, C. Liu, J. Zhang, Nanoscale 10 (2018) 17347, https://doi.org/10.1039/C8NR05494K.  doi: 10.1039/C8NR05494K

    76. [76]

      X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang, Z. Li, X. Zhang, L. Lei, C. Yuan, Y. Hou, J. Mater. Chem. A 7 (2019) 965, https://doi.org/10.1039/c8ta11223a.  doi: 10.1039/c8ta11223a

    77. [77]

      Y. Dong, Z. Deng, H. Zhang, G. Liu, X. Wang, Nano Lett. 23 (2023) 9087, https://doi.org/10.1021/acs.nanolett.3c02940.  doi: 10.1021/acs.nanolett.3c02940

    78. [78]

      X. Li, T. Wu, N. Li, S. Zhang, W. Chang, J. Chi, X. Liu, L. Wang, Adv. Funct. Mater. 34 (2024) 2400734, https://doi.org/10.1002/adfm.202400734.  doi: 10.1002/adfm.202400734

    79. [79]

      J. Chen, L. Zhang, J. Li, X. He, Y. Zheng, S. Sun, X. Fang, D. Zheng, Y. Luo, Y. Wang, J. Zhang, L. Xie, Z. Cai, Y. Sun, A.A. Alshehri, Q. Kong, C. Tang, X. Sun, J. Mater. Chem. A 11 (2023) 1116, https://doi.org/10.1039/D2TA08568B.  doi: 10.1039/D2TA08568B

    80. [80]

      Y. Hu, H. Yu, L. Qi, J. Dong, P. Yan, T.T. Isimjan, X. Yang, ChemSusChem 14 (2021) 1565, https://doi.org/10.1002/cssc.202002873.  doi: 10.1002/cssc.202002873

    81. [81]

      H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.-P. Li, M. Du, Adv. Funct. Mater. 30 (2020) 1910596, https://doi.org/10.1002/adfm.201910596.  doi: 10.1002/adfm.201910596

    82. [82]

      Y. Liu, X. Gu, W. Jiang, H. Li, Y. Ma, C. Liu, Y. Wu, G. Che, Dalt. Trans. 51 (2022) 9486, https://doi.org/10.1039/D2DT01098D.  doi: 10.1039/D2DT01098D

    83. [83]

      H. Mao, X. Liu, S. Wu, G. Sun, G. Zhou, J. Chi, L. Wang, Adv. Energy Mater. 13 (2023) 2302251, https://doi.org/10.1002/aenm.202302251.  doi: 10.1002/aenm.202302251

    84. [84]

      M. Ning, F. Zhang, L. Wu, X. Xing, D. Wang, S. Song, Q. Zhou, L. Yu, J. Bao, S. Chen, Energy Environ. Sci. 15 (2022) 3945, https://doi.org/10.1039/D2EE01094A.  doi: 10.1039/D2EE01094A

    85. [85]

      X. Hou, C. Yu, T. Ni, S. Zhang, J. Zhou, S. Dai, L. Chu, M. Huang, Chinese J. Catal. 61 (2024) 192, https://doi.org/10.1016/S1872-2067(24)60030-6.  doi: 10.1016/S1872-2067(24)60030-6

    86. [86]

      Q. Lv, J. Han, X. Tan, W. Wang, L. Cao, B. Dong, ACS Appl. Energy Mater. 2 (2019) 3910, https://doi.org/10.1021/acsaem.9b00599.  doi: 10.1021/acsaem.9b00599

    87. [87]

      X. Luo, X. Tan, P. Ji, L. Chen, J. Yu, S. Mu, EnergyChem 5 (2023) 100091, https://doi.org/10.1016/j.enchem.2022.100091  doi: 10.1016/j.enchem.2022.100091

  • 加载中
    1. [1]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    4. [4]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    6. [6]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    7. [7]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    9. [9]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    10. [10]

      Xian-Wei LvXinyuan DingJiaxing GongXuhuan YanDayong HuangJianxin GengZhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    13. [13]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    14. [14]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    15. [15]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    16. [16]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    17. [17]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    20. [20]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

Metrics
  • PDF Downloads(2)
  • Abstract views(522)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return