Citation: Yi Yang, Xin Zhou, Miaoli Gu, Bei Cheng, Zhen Wu, Jianjun Zhang. Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100064. doi: 10.1016/j.actphy.2025.100064 shu

Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation

  • Corresponding author: Zhen Wu, wuzhen@oit.edu.cn Jianjun Zhang, zhangjianjun@cug.edu.cn
  • Received Date: 22 January 2025
    Revised Date: 12 February 2025
    Accepted Date: 13 February 2025

    Fund Project: National Natural Science Foundation of China 22278324National Natural Science Foundation of China 52202375National Natural Science Foundation of China 22469001the Science Foundation of Hubei Province of China 2022CFA001

  • Photocatalytic hydrogen peroxide (H2O2) production is a crucial process for clean energy conversion, involving the reduction of O2 through two electrons. However, this process is often hampered by the sluggish water oxidation involving the photogenerated holes. To address this challenge, we have constructed a dual-functional S-scheme ZnO/CdIn2S4 heterojunction systerm coupling the H2O2 generation with a value-added benzylamine (BA) oxidation reaction. In this dual-functional photocatalytic system, photogenerated electrons in CdIn2S4 efficiently reduce O2 to produce H2O2, while photogenerated holes in ZnO selectively oxidize BA to N-benzylidenebenzylamine. Leveraging the advantages of the S-scheme heterojunction, the optimized ZnO/CdIn2S4 photocatalyst displays an enhanced H2O2 production rate (386 μmol·L−1·h−1) and BA oxidation fraction (81%) than pure ZnO or CdIn2S4. Femtosecond transient absorption (fs-TA) spectroscopy confirm the ultrafast S-scheme electron transfer from the ZnO conduction band (CB) to the CdIn2S4 valence band (VB) upon photoexcitation of the ZnO/CdIn2S4 composite. Besides, timely depletion of VB holes in ZnO and CB electrons in CdIn2S4 can accelerate the interfacial electron transfer in the ZnO/CdIn2S4 S-scheme heterojunction. The innovative design of the ZnO/CdIn2S4 S-scheme photocatalyst provides new insights for developing efficient dual-functional heterojunction photocatalytic systems and introduces a novel method for studying S-scheme heterojunctions using fs-TA spectroscopy.
  • 加载中
    1. [1]

      Das, P.; Roeser, J.; Thomas, A. Angew. Chem. Int. Ed. 2023, 62, e202304349. doi: 10.1002/anie.202304349  doi: 10.1002/anie.202304349

    2. [2]

      Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2021, 143, 12590. doi: 10.1021/jacs.1c04622  doi: 10.1021/jacs.1c04622

    3. [3]

      Toan, H. P.; Nguyen, D.-V.; Phan, P. D. M.; Anh, N. H.; Ly, P. P.; Pham, M.-T.; Hur, S. H.; Ung, T. D. T.; Bich, D. D.; Nguyen, M. C.; et al. ACS Appl. Mater. Interfaces 2024, 16, 29421. doi: 10.1021/acsami.4c04387  doi: 10.1021/acsami.4c04387

    4. [4]

      Sareshkeh, A. T.; Rasoulifard, M. H.; Abdi, A.; Dorraji, M. S. S.; Hosseini, S. F. J. Alloys Compd. 2024, 1005, 175822. doi: 10.1016/j.jallcom.2024.175822  doi: 10.1016/j.jallcom.2024.175822

    5. [5]

      Wu, Y.; Cheng, C.; Qi, K.; Cheng, B.; Zhang, J.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2024, 40, 2406027. doi: 10.3866/PKU.WHXB202406027  doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Pradhan, S. K.; Bariki, R.; Kumar, A.; Nayak, S. K.; Panda, S.; Das, N. K.; Mishra, B. G. Surfaces and Interfaces 2024, 52, 104824. doi: 10.1016/j.surfin.2024.104824  doi: 10.1016/j.surfin.2024.104824

    7. [7]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

    8. [8]

      Jiang, Z.; Long, Q.; Cheng, B.; He, R.; Wang, L. J. Mater. Sci. Technol. 2023, 162, 1. doi: 10.1016/j.jmst.2023.03.045  doi: 10.1016/j.jmst.2023.03.045

    9. [9]

      Moon, G.-h.; Fujitsuka, M.; Kim, S.; Majima, T.; Wang, X.; Choi, W. ACS Catal. 2017, 7, 2886. doi: 10.1021/acscatal.6b03334  doi: 10.1021/acscatal.6b03334

    10. [10]

      Yin, X.; Shi, H.; Wang, Y.; Wang, X.; Wang, P.; Yu, H. Acta Phys. Chim. Sin. 2024, 40, 2312007. doi: 10.3866/PKU.WHXB202312007  doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi: 10.1038/s41467-024-47624-7  doi: 10.1038/s41467-024-47624-7

    12. [12]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    13. [13]

      Gu, M.; Yang, Y.; Cheng, B.; Zhang, L.; Xiao, P.; Chen, T. Chin. J. Catal. 2024, 59, 185. doi: 10.1016/s1872-2067(23)64610-8  doi: 10.1016/s1872-2067(23)64610-8

    14. [14]

      Liu, X.; Dai, D.; Cui, Z.; Zhang, Q.; Gong, X.; Wang, Z.; Liu, Y.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B.; Wang, P. ACS Catal. 2022, 12, 12386. doi: 10.1021/acscatal.2c03550  doi: 10.1021/acscatal.2c03550

    15. [15]

      Malefane, M. E.; Managa, M.; Nkambule, T. T. I.; Kuvarega, A. T. ChemSusChem 2024, e202401471. doi: 10.1002/cssc.202401471  doi: 10.1002/cssc.202401471

    16. [16]

      Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Angew. Chem. Int. Ed. 2014, 53, 13454. doi: 10.1002/anie.201407938  doi: 10.1002/anie.201407938

    17. [17]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    18. [18]

      Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi: 10.1016/S1872-2067(23)64466-3  doi: 10.1016/S1872-2067(23)64466-3

    19. [19]

      Liu, G.; Chen, R.; Xia, B.; Wu, Z.; Liu, S.; Talebian-Kiakalaieh, A.; Ran, J. Chin. J. Catal. 2024, 61, 97. doi: 10.1016/s1872-2067(24)60014-8  doi: 10.1016/s1872-2067(24)60014-8

    20. [20]

      Kalyakin, A.; Volkov, A.; Vylkov, A.; Gorbova, E.; Medvedev, D.; Demin, A.; Tsiakaras, P. J. Electroanal. Chem. 2018, 808, 133. doi: 10.1016/j.jelechem.2017.12.001  doi: 10.1016/j.jelechem.2017.12.001

    21. [21]

      He, B.; Zhang, S.; Zhang, Y.; Li, G.; Zhang, B.; Ma, W.; Rao, B.; Song, R.; Zhang, L.; Zhang, Y.; He, G. J. Am. Chem. Soc. 2022, 144, 4422. doi: 10.1021/jacs.1c11577  doi: 10.1021/jacs.1c11577

    22. [22]

      Wang, P.; Li, X.; Fan, S.; Yin, Z.; Wang, L.; Tadé, M. O.; Liu, S. Nano Energy 2021, 83, 105831. doi: 10.1016/j.nanoen.2021.105831  doi: 10.1016/j.nanoen.2021.105831

    23. [23]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi: 10.1002/anie.202313172  doi: 10.1002/anie.202313172

    24. [24]

      Tian, Z.; Han, C.; Zhao, Y.; Dai, W.; Lian, X.; Wang, Y.; Zheng, Y.; Shi, Y.; Pan, X.; Huang, Z.; et al. Nat. Commun. 2021, 12, 2039. doi: 10.1038/s41467-021-22394-8  doi: 10.1038/s41467-021-22394-8

    25. [25]

      Bariki, R.; Pradhan, S. K.; Panda, S.; Nayak, S. K.; Pati, A. R.; Mishra, B. G. Langmuir 2023, 39, 7707. doi: 10.1021/acs.langmuir.3c00519  doi: 10.1021/acs.langmuir.3c00519

    26. [26]

      Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. Appl. Catal. B-Environ. 2023, 333, 122780. doi: 10.1016/j.apcatb.2023.122780  doi: 10.1016/j.apcatb.2023.122780

    27. [27]

      Sahoo, S. K.; Acharya, L.; Biswal, L.; Priyadarshini, P.; Parida, K. Inorg. Chem. Front. 2024, 11, 4914. doi: 10.1039/d4qi00950a  doi: 10.1039/d4qi00950a

    28. [28]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. Chim. Sin. 2023, 39, 2212009. doi: 10.3866/PKU.WHXB202212009  doi: 10.3866/PKU.WHXB202212009

    29. [29]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. Chim. Sin. 2023, 39, 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    30. [30]

      He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi: 10.1016/j.jmst.2022.09.002  doi: 10.1016/j.jmst.2022.09.002

    31. [31]

      Mansingh, S.; Das, K. K.; Priyadarshini, N.; Sahoo, D. P.; Prusty, D.; Sahu, J.; Mohanty, U. A.; Parida, K. Energy Fuels 2023, 37, 9873. doi: 10.1021/acs.energyfuels.3c00717  doi: 10.1021/acs.energyfuels.3c00717

    32. [32]

      Zhang, X.; Yu, J.; Macyk, W.; Wageh, S.; Al-Ghamdi, A. A.; Wang, L. Adv. Sustain. Syst. 2023, 7, 2200113. doi: 10.1002/adsu.202200113  doi: 10.1002/adsu.202200113

    33. [33]

      Ma, Y.; Wang, S.; Zhang, Y.; Cheng, B.; Zhang, L. J. Materiomics 2025, 11, 100978. doi: 10.1016/j.jmat.2024.100978  doi: 10.1016/j.jmat.2024.100978

    34. [34]

      Oyegbeda, O.; Akpotu, S. O.; Moodley, B. Environ. Res. 2025, 266, 120501. doi: 10.1016/j.envres.2024.120501  doi: 10.1016/j.envres.2024.120501

    35. [35]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    36. [36]

      Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi: 10.1016/S1872-2067(23)64514-0  doi: 10.1016/S1872-2067(23)64514-0

    37. [37]

      Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. Chin. J. Catal. 2023, 52, 32. doi: 10.1016/S1872-2067(23)64502-4  doi: 10.1016/S1872-2067(23)64502-4

    38. [38]

      Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al‐Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029  doi: 10.1016/j.jmst.2022.01.029

    39. [39]

      Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S.-K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi: 10.1016/j.cej.2021.129530  doi: 10.1016/j.cej.2021.129530

    40. [40]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6  doi: 10.1038/s41467-021-25007-6

    41. [41]

      Li, K.; Mei, J.; Li, J.; Liu, Y.; Wang, G.; Hu, D.; Yan, S.; Wang, K. Sci. China Mater. 2024, 67, 484. doi: 10.1007/s40843-023-2717-0  doi: 10.1007/s40843-023-2717-0

    42. [42]

      Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016  doi: 10.1016/j.jmst.2022.02.016

    43. [43]

      Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. Nano Res. 2023, 16, 4506. doi: 10.1007/s12274-021-3733-0  doi: 10.1007/s12274-021-3733-0

    44. [44]

      Sun, J.; Liu, H.; Wang, S.; Zhang, Y.; Bie, C.; Zhang, L. J. Materiomics 2025, 11, 100975. doi: 10.1016/j.jmat.2024.100975  doi: 10.1016/j.jmat.2024.100975

    45. [45]

      Tahir, M.; Tahir, B. J. Mater. Sci. Technol. 2022, 106, 195. doi: 10.1016/j.jmst.2021.08.019  doi: 10.1016/j.jmst.2021.08.019

    46. [46]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    47. [47]

      Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 8462. doi: 10.1021/acs.jpclett.2c02125  doi: 10.1021/acs.jpclett.2c02125

    48. [48]

      Ghalehsefid, E. S.; Jahani, Z. G.; Aliabadi, A.; Ghodrati, M.; Khamesan, A.; Parsaei-Khomami, A.; Mousavi, M.; Hosseini, M.-A.; Ghasemi, J. B.; Li, X. J. Environ. Chem. Eng. 2023, 11, 110160. doi: 10.1016/j.jece.2023.110160  doi: 10.1016/j.jece.2023.110160

    49. [49]

      Sharma, K.; Sudhaik, A.; Raizada, P.; Thakur, P.; Pham, X. M.; Van Le, Q.; Nguyen, V.-H.; Ahamad, T.; Thakur, S.; Singh, P. Environ. Sci. Pollut. Res. 2023, 30, 124902. doi: 10.1007/s11356-022-24940-3  doi: 10.1007/s11356-022-24940-3

    50. [50]

      Das, K. K.; Mansingh, S.; Mohanty, R.; Sahoo, D. P.; Priyadarshini, N.; Parida, K. J. Phys. Chem. C 2022, 127, 22. doi: 10.1021/acs.jpcc.2c06369  doi: 10.1021/acs.jpcc.2c06369

    51. [51]

      Khamesan, A.; Esfahani, M. M.; Ghasemi, J. B.; Farzin, F.; Parsaei-Khomami, A.; Mousavi, M. Adv. Powder Technol. 2022, 33, 103777. doi: 10.1016/j.apt.2022.103777  doi: 10.1016/j.apt.2022.103777

    52. [52]

      Cai, C.; Teng, Y.; Wu, J. H.; Li, J. Y.; Chen, H. Y.; Chen, J. H.; Dai‐Bin, K. Adv. Funct. Mater. 2020, 30, 2001478. doi: 10.1002/adfm.202001478  doi: 10.1002/adfm.202001478

    53. [53]

      Cheng, C.; Zhu, B.; Cheng, B.; Macyk, W.; Wang, L.; Yu, J. ACS Catal. 2023, 13, 459. doi: 10.1021/acscatal.2c05001  doi: 10.1021/acscatal.2c05001

    54. [54]

      Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi: 10.1016/S1872-2067(23)64438-9  doi: 10.1016/S1872-2067(23)64438-9

    55. [55]

      Gao, R.; Bai, J.; Shen, R.; Hao, L.; Huang, C.; Wang, L.; Liang, G.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2023, 137, 223. doi: 10.1016/j.jmst.2022.09.001  doi: 10.1016/j.jmst.2022.09.001

    56. [56]

      Li, Y.; Ma, J.; Xu, L.; Liu, T.; Xiao, T.; Chen, D.; Song, Z.; Qiu, J.; Yueli, Z. Adv. Sci. 2023, 10, 2207514. doi: 10.1002/advs.202207514  doi: 10.1002/advs.202207514

    57. [57]

      Zhang, Y.; Qiu, J.; Zhu, B.; Fedin, M. V.; Cheng, B.; Yu, J.; Zhang, L. Chem. Eng. J. 2022, 444, 136584. doi: 10.1016/j.cej.2022.136584  doi: 10.1016/j.cej.2022.136584

    58. [58]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    59. [59]

      Lin, M.; Luo, M.; Liu, Y.; Shen, J.; Long, J.; Zhang, Z. Chin. J. Catal. 2023, 50, 239. doi: 10.1016/S1872-2067(23)64477-8  doi: 10.1016/S1872-2067(23)64477-8

    60. [60]

      Wang, L.; Sun, J.; Cheng, B.; He, R.; Yu, J. J. Phys. Chem. Lett. 2023, 14, 4803. doi: 10.1021/acs.jpclett.3c00811  doi: 10.1021/acs.jpclett.3c00811

    61. [61]

      He, G.; Lai, Y.; Guo, Y.; Yin, H.; Chang, B.; Liu, M.; Zhang, S.; Yang, B.; Wang, J. ACS Appl. Mater. Interfaces 2022, 14, 53724. doi: 10.1021/acsami.2c14554  doi: 10.1021/acsami.2c14554

    62. [62]

      Zhang, H.; Liu, J.; Zhang, Y.; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi: 10.1016/j.jmst.2023.05.030  doi: 10.1016/j.jmst.2023.05.030

    63. [63]

      Lei, M.; Gao, M.; Yang, X.; Zou, Y.; Alghamdi, A.; Ren, Y.; Deng, Y. ACS Appl. Mater. Interfaces 2021, 13, 51933. doi: 10.1021/acsami.1c07322  doi: 10.1021/acsami.1c07322

    64. [64]

      Wang, H.; Song, Y.; Xiong, J.; Bi, J.; Li, L.; Yu, Y.; Liang, S.; Wu, L. Appl. Catal. B-Environ. 2018, 224, 394. doi: 10.1016/j.apcatb.2017.10.069  doi: 10.1016/j.apcatb.2017.10.069

    65. [65]

      Wei, S.; Zhong, H.; Wang, H.; Song, Y.; Jia, C.; Anpo, M.; Wu, L. Appl. Catal. B-Environ. 2022, 305, 121032. doi: 10.1016/j.apcatb.2021.121032  doi: 10.1016/j.apcatb.2021.121032

    66. [66]

      Xu, J.; Li, X.; Ju, Z.; Sun, Y.; Jiao, X.; Wu, J.; Wang, C.; Yan, W.; Ju, H.; Zhu, J.; Xie, Y. Angew. Chem. Int. Ed. 2019, 58, 3032. doi: 10.1002/anie.201807332  doi: 10.1002/anie.201807332

  • 加载中
    1. [1]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Jie GuoLijun XueFahui SongChengpeng LiZhuo ChenLili Wen . Dual built-in electric field-driven S-scheme heterojunction of D-A COFs/ZnIn2S4 for accelerated charge separation toward high-efficiency H2O2 photosynthesis in pure water. Acta Physico-Chimica Sinica, 2026, 42(4): 100177-0. doi: 10.1016/j.actphy.2025.100177

    3. [3]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    4. [4]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    5. [5]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    6. [6]

      Zhen LiSujuan ZhangZhongliao WangJinfeng ZhangGaoli ChenShifu Chen . Rational design of S-scheme CdS/MnO2 heterojunctions for high-value photothermal synergistic catalytic oxidation of toluene. Acta Physico-Chimica Sinica, 2026, 42(4): 100179-0. doi: 10.1016/j.actphy.2025.100179

    7. [7]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    8. [8]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    9. [9]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    10. [10]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    14. [14]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    15. [15]

      Aoyun MengZhenhua LiGuoyuan XiongZhen LiJinfeng Zhang . S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides. Acta Physico-Chimica Sinica, 2026, 42(5): 100186-0. doi: 10.1016/j.actphy.2025.100186

    16. [16]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    17. [17]

      Ling ZhouLong LiLiwen HuangYan Wu . Enhanced H2O2 production performance via indirect two-electron reduction of HOF/BiVO4 (010) S-scheme photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(3): 100172-0. doi: 10.1016/j.actphy.2025.100172

    18. [18]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    19. [19]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    20. [20]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

Metrics
  • PDF Downloads(9)
  • Abstract views(1040)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return