Citation: Huayan Liu, Yifei Chen, Mengzhao Yang, Jiajun Gu. Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100063. doi: 10.1016/j.actphy.2025.100063 shu

Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors

  • Corresponding author: Jiajun Gu, gujiajun@sjtu.edu.cn
  • Received Date: 13 December 2024
    Revised Date: 9 February 2025
    Accepted Date: 13 February 2025

    Fund Project: the National Natural Science Foundation of China 52071213the National Natural Science Foundation of China 52072241

  • With the profound transformation of the global energy landscape and the rapid advancement of portable electronic devices and electric vehicle industries, there is an increasingly urgent demand for high-performance energy storage devices. Among the available energy storage technologies, supercapacitors stand out due to their rapid charge/discharge capabilities, excellent cycling stability, and high power density, enabling reliable long-term operation as well as efficient energy conversion and storage. A fundamental challenge in contemporary energy storage research remains the enhancement of supercapacitor energy density while maintaining their inherent high power density capabilities. Two-dimensional (2D) materials have emerged as promising candidates for constructing high-performance supercapacitor electrodes. Materials such as graphene, transition metal nitrides and/or carbides (MXenes), and transition metal dichalcogenides possess unique layered structures with atomic thickness, exceptional surface areas, high theoretical capacities, and remarkable mechanical flexibility. These characteristics make them particularly suitable for developing next-generation energy storage devices. However, the inherent van der Waals interactions between nanosheets frequently result in restacking phenomena, significantly impeding ion transport and consequently limiting both practical capacity and rate performance. Thus, rational materials design and precise electrode architecture engineering are imperative for overcoming these performance limitations. This review first explores modification strategies for enhancing the electrochemical performance of 2D materials. Studies have shown that diverse modification approaches, including surface functionalization, defect engineering, and heterogeneous structure construction, can effectively increase active sites, enhance conductivity, and improve pseudocapacitive characteristics. These modifications lead to substantial improvements in both areal and volumetric capacitance of electrode materials. Notably, efforts to increase supercapacitor energy density typically necessitate higher active material mass loading, which inherently results in more complex and extended ion transport pathways within the electrode structure, thereby compromising rate performance. In addressing this challenge, we evaluate conventional methodologies for establishing ion transport channels in high mass loading electrodes, including template-based approaches, external field-induced assembly techniques, and three-dimensional (3D) printing processes. However, these traditional methods typically generate pore structures at the micrometer or sub-micrometer scale, making it challenging to simultaneously achieve optimal rate performance and volumetric capacitance. To concurrently optimize areal capacitance, volumetric capacitance, and rate performance, this review emphasizes recent innovative approaches for constructing nanoscale porous architectures. These include capillary force-driven densification, interlayer insertion strategies, surface etching techniques, and quantum dot methodologies. These advanced approaches aim to establish three-dimensional interconnected networks for efficient ion transport, thereby accelerating the development of miniaturized supercapacitor technologies that simultaneously achieve high energy density and high power density characteristics.
  • 加载中
    1. [1]

      Liu, H. Q.; Zhou, F.; Shi, X. Y.; Shi, Q.; Wu, Z. S. Acta Phys. -Chim. Sin. 2022, 38, 2204017.  doi: 10.3866/PKU.WHXB202204017

    2. [2]

      Liu, H.; Ma, Y.; Cao, B.; Zhu, Q. Z.; Xu, B. Acta Phys. -Chim. Sin. 2023, 39, 2210027.  doi: 10.3866/PKU.WHXB202210027

    3. [3]

      Zhang, J. W.; Ma, H. L.; Ma, J.; Hu, M. X.; Li, Q. H.; Chen, S.; Ning, T. S.; Ge, C. X.; Liu, X.; Xiao, L.; et al. Acta Phys. -Chim. Sin. 2023, 39, 2111037.  doi: 10.3866/PKU.WHXB202111037

    4. [4]

      Wei, R. F.; Li, D. F.; Yin, H.; Wang, X. L.; Li, C. Acta Phys. -Chim. Sin. 2023, 39, 2207035.  doi: 10.3866/PKU.WHXB202207035

    5. [5]

      Hu, Y.; Liu, B.; Xu, L. Y.; Dong, Z. Q.; Wu, Y. T.; Liu, J.; Zhong, C.; Hu, W. B. Acta Phys. -Chim. Sin. 2023, 39, 2209004.  doi: 10.3866/PKU.WHXB202209004

    6. [6]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    7. [7]

      Xu, Z.; Gao, C. Mater. Today 2015, 18, 480. doi: 10.1016/j.mattod.2015.06.009  doi: 10.1016/j.mattod.2015.06.009

    8. [8]

      Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906. doi: 10.1002/adma.201001068  doi: 10.1002/adma.201001068

    9. [9]

      Sun, Y. Q.; Wu, Q. O.; Shi, G. Q. Energy Environ. Sci. 2011, 4, 1113. doi: 10.1039/c0ee00683a  doi: 10.1039/c0ee00683a

    10. [10]

      Jamal, F.; Rafique, A.; Moeen, S.; Haider, J.; Nabgan, W.; Haider, A.; Imran, M.; Nazir, G.; Alhassan, M.; Ikram, M.; et al. ACS Appl. Nano Mater. 2023, 6, 7077. doi: 10.1021/acsanm.3c00417  doi: 10.1021/acsanm.3c00417

    11. [11]

      Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. J. Mater. Chem. A 2017, 5, 12653. doi: 10.1039/c7ta00863e  doi: 10.1039/c7ta00863e

    12. [12]

      Li, J.; Triana, C. A.; Wan, W.; Saseendran, D. P. A.; Zhao, Y.; Balaghi, S. E.; Heidari, S.; Patzke, G. R. Chem. Soc. Rev. 2021, 50, 2444. doi: 10.1039/d0cs00978d  doi: 10.1039/d0cs00978d

    13. [13]

      Abdulhameed, M. A.; Othman, M. H. D.; Ismail, A. F.; Matsuura, T.; Harun, Z.; Rahman, M. A.; Puteh, M. H.; Jaafar, J. J. Aust. Ceram. Soc. 2017, 53, 645. doi: 10.1007/s41779-017-0076-0  doi: 10.1007/s41779-017-0076-0

    14. [14]

      An, C. H.; Zhang, Y.; Guo, H. N.; Wang, Y. J. Nanoscale Adv. 2019, 1, 4644. doi: 10.1039/c9na00543a  doi: 10.1039/c9na00543a

    15. [15]

      Ahsan, M. A.; He, T. W.; Eid, K.; Abdullah, A. M.; Curry, M. L.; Du, A. J.; Santiago, A. R. P.; Echegoyen, L.; Noveron, J. C. J. Am. Chem. Soc. 2021, 143, 1203. doi: 10.1021/jacs.0c12386  doi: 10.1021/jacs.0c12386

    16. [16]

      Cai, C.; Wang, M. Y.; Han, S. B.; Wang, Q.; Zhang, Q.; Zhu, Y. M.; Yang, X. M.; Wu, D. J.; Zu, X. T.; Sterbinsky, G. E.; et al. Acs Catalysis 2021, 11, 123. doi: 10.1021/acscatal.0c04656  doi: 10.1021/acscatal.0c04656

    17. [17]

      Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2009, 110, 132. doi: 10.1021/cr900070d  doi: 10.1021/cr900070d

    18. [18]

      Krishnamoorthy, K.; Pazhamalai, P.; Kim, S. J. Energy Environ. Sci. 2018, 11, 1595. doi: 10.1039/c8ee00160j  doi: 10.1039/c8ee00160j

    19. [19]

      Kang, L. P.; Zhang, G. N.; Bai, Y. L.; Wang, H. J.; Lei, Z. B.; Liu, Z. H. Acta Phys. -Chim. Sin. 2020, 36, 1905032.  doi: 10.3866/PKU.WHXB201905032

    20. [20]

      Jiang, M. H.; Sheng, L. Z.; Wang, C.; Jiang, L. L.; Fan, Z. J. Acta Phys. -Chim. Sin. 2021, 38, 2012085.  doi: 10.3866/PKU.WHXB202012085

    21. [21]

      Shi, X. Y.; Zheng, S. H.; Wu, Z. S.; Bao, X. H. J. Energy Chem. 2018, 27, 25. doi: 10.1016/j.jechem.2017.09.034  doi: 10.1016/j.jechem.2017.09.034

    22. [22]

      Theerthagiri, J.; Senthil, R. A.; Nithyadharseni, P.; Lee, S. J.; Durai, G.; Kuppusami, P.; Madhavan, J.; Choi, M. Y. Ceram. Int. 2020, 46, 14317. doi: 10.1016/j.ceramint.2020.02.270  doi: 10.1016/j.ceramint.2020.02.270

    23. [23]

      Rasappan, A. S.; Palanisamy, R.; Thangamuthu, V.; Dharmalingam, V. P.; Natarajan, M.; Archana, B.; Velauthapillai, D.; Kim, J. Mater. Lett. 2024, 357, 135640. doi: 10.1016/j.matlet.2023.135640  doi: 10.1016/j.matlet.2023.135640

    24. [24]

      Haider, W. A.; Tahir, M.; He, L.; Yang, W.; Minhas-khan, A.; Owusu, K. A.; Chen, Y.; Hong, X.; Mai, L. J. Alloys Compd. 2020, 823, 151769. doi: 10.1016/j.jallcom.2019.151769  doi: 10.1016/j.jallcom.2019.151769

    25. [25]

      Sharma, A.; Kapse, S.; Verma, A.; Bisoyi, S.; Pradhan, G. K.; Thapa, R.; Rout, C. S. ACS Appl. Energy Mater. 2022, 5, 10315. doi: 10.1021/acsaem.2c02116  doi: 10.1021/acsaem.2c02116

    26. [26]

      Zhang, M. Y.; Miao, J. Y.; Yan, X. H.; Zhu, Y. H.; Li, Y. L.; Zhang, W. J.; Zhu, W.; Pan, J. M.; Javed, M. S.; Hussain, S. J. Mater. Chem. C 2022, 10, 640. doi: 10.1039/d1tc03903b  doi: 10.1039/d1tc03903b

    27. [27]

      Bagheri, A.; Bellani, S.; Beydaghi, H.; Eredia, M.; Najafi, L.; Bianca, G.; Zappia, M. I.; Safarpour, M.; Najafi, M.; Mantero, E.; et al. Acs Nano 2022, 16, 16426. doi: 10.1021/acsnano.2c05640  doi: 10.1021/acsnano.2c05640

    28. [28]

      Ozturk, O.; Gur, E. Chemelectrochem 2024, 11, e202300575. doi: 10.1002/celc.202300575  doi: 10.1002/celc.202300575

    29. [29]

      Jiang, Y. Q.; Chen, L. Y.; Zhang, H. Q.; Zhang, Q.; Chen, W. F.; Zhu, J. K.; Song, D. M. Chem. Eng. J. 2016, 292, 1. doi: 10.1016/j.cej.2016.02.009  doi: 10.1016/j.cej.2016.02.009

    30. [30]

      Xuan, L. Y.; Chen, L. Y.; Yang, Q. Q.; Chen, W. F.; Hou, X. H.; Jiang, Y. Q.; Zhang, Q.; Yuan, Y. J. Mater. Chem. A 2015, 3, 17525. doi: 10.1039/c5ta05305f  doi: 10.1039/C5TA05305F

    31. [31]

      Zhu, J. K.; Huang, B.; Zhao, C. L.; Xu, H.; Wang, S. N.; Chen, Y. P.; Xie, L.; Chen, L. Y. Electrochim. Acta 2019, 313, 194. doi: 10.1016/j.electacta.2019.05.019  doi: 10.1016/j.electacta.2019.05.019

    32. [32]

      Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 15. doi: 10.1002/adma.201102306  doi: 10.1002/adma.201102306

    33. [33]

      Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Science 2013, 341, 1502. doi: 10.1126/science.1241488  doi: 10.1126/science.1241488

    34. [34]

      De, S.; Acharya, S.; Sahoo, S.; Nayak, G. C. Mater. Chem. Front. 2021, 5, 7134. doi: 10.1039/d1qm00556a  doi: 10.1039/d1qm00556a

    35. [35]

      Otgonbayar, Z.; Yang, S. H. Y.; Kim, I. J.; Oh, W. C. Nanomaterials 2023, 13, 919. doi: 10.3390/nano13050919  doi: 10.3390/nano13050919

    36. [36]

      Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanoscale 2013, 5, 72. doi: 10.1039/c2nr32040a  doi: 10.1039/c2nr32040a

    37. [37]

      Tsai, Y. C.; Yang, W. D.; Lee, K. C.; Huang, C. M. Materials 2016, 9, 246. doi: 10.3390/ma9040246  doi: 10.3390/ma9040246

    38. [38]

      Tao, B. R.; He, J. L.; Miao, F. J.; Zang, Y. Vacuu 2022, 197, 110668. doi: 10.1016/j.vacuum.2021.110857  doi: 10.1016/j.vacuum.2021.110857

    39. [39]

      Wang, X. H.; Xia, H. Y.; Wang, X. Q.; Gao, J.; Shi, B.; Fang, Y. J. Alloys Compd. 2016, 686, 969. doi: 10.1016/j.jallcom.2016.06.156  doi: 10.1016/j.jallcom.2016.06.156

    40. [40]

      Wang, X. H.; Bannenberg, L. MRS Bull. 2021, 46, 755. doi: 10.1557/s43577-021-00150-z  doi: 10.1557/s43577-021-00150-z

    41. [41]

      Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M.; Simon, P.; Gogotsi, Y. Nat. Energy 2017, 2, 17105. doi: 10.1038/nenergy.2017.105  doi: 10.1038/nenergy.2017.105

    42. [42]

      Jayakumar, S.; Santhosh, P. C.; Ramakrishna, S.; Radhamani, A. V. J. Energy Storage 2024, 97, 112741. doi: 10.1016/j.est.2024.112741  doi: 10.1016/j.est.2024.112741

    43. [43]

      Zhu, Y. Y.; Wang, S.; Ma, J. X.; Das, P.; Zheng, S. H.; Wu, Z. S. Energy Storage Mater. 2022, 51, 500. doi: 10.1016/j.ensm.2022.06.044  doi: 10.1016/j.ensm.2022.06.044

    44. [44]

      Jia, J.; Zhu, Y. Y.; Das, P.; Ma, J. X.; Wang, S.; Zhu, G. S.; Wu, Z. S. J. Materiomics 2023, 9, 1242. doi: 10.1016/j.jmat.2023.08.013  doi: 10.1016/j.jmat.2023.08.013

    45. [45]

      Zhu, Y. Y.; Zhang, Q. X.; Ma, J. X.; Das, P.; Zhang, L. Z.; Liu, H. Q.; Wang, S.; Li, H.; Wu, Z. S. Carbon Energy 2024, 6, e481. doi: 10.1002/cey2.481  doi: 10.1002/cey2.481

    46. [46]

      Zhu, Y.; Zheng, S.; Qin, J.; Ma, J.; Das, P.; Zhou, F.; Wu, Z. S. Fundam. Res. 2024, 4, 307. doi: 10.1016/j.fmre.2022.03.021  doi: 10.1016/j.fmre.2022.03.021

    47. [47]

      Jiang, X.; Jia, J.; Zhu, Y. Y.; Li, J.; Jia, H. W.; Liu, C. H.; Zhao, G. Z.; Yu, L. H.; Zhu, G. Energy Storage Mater. 2024, 70, 103462. doi: 10.1016/j.ensm.2024.103462  doi: 10.1016/j.ensm.2024.103462

    48. [48]

      Chen, N. J.; Duan, Z. Y.; Cai, W. R.; Wang, Y. B.; Pu, B.; Huang, H. C.; Xie, Y. T.; Tang, Q.; Zhang, H. T.; Yang, W. Q. Nano Energy 2023, 107, 108147. doi: 10.1016/j.nanoen.2022.108147  doi: 10.1016/j.nanoen.2022.108147

    49. [49]

      Wang, Y.; Zhou, B.; Tang, Q.; Yang, Y.; Pu, B.; Bai, J.; Xu, J.; Feng, Q.; Liu, Y.; Yang, W. Adv. Mater. 2024, 36, e2410736. doi: 10.1002/adma.202410736  doi: 10.1002/adma.202410736

    50. [50]

      Zhu, Y.; Ma, J.; Das, P.; Wang, S.; Wu, Z. S. Small Methods 2023, 7, e2201609. doi: 10.1002/smtd.202201609  doi: 10.1002/smtd.202201609

    51. [51]

      Nguyen, T.; Montemor, M. D. Adv. Sci. 2019, 6, 1801797. doi: 10.1002/advs.201801797  doi: 10.1002/advs.201801797

    52. [52]

      Hantanasirisakul, K.; Gogotsi, Y. Adv. Mater. 2018, 30, 135. doi: 10.1002/adma.201804779  doi: 10.1002/adma.201804779

    53. [53]

      Hart, J. L.; Hantanasirisakul, K.; Lang, A. C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J. T.; May, S. J.; Gogotsi, Y.; Taheri, M. L. Nat. Commun. 2019, 10, 522. doi: 10.1038/s41467-018-08169-8  doi: 10.1038/s41467-018-08169-8

    54. [54]

      Pomerantseva, E.; Gogotsi, Y. Nat. Energy 2017, 2, 1. doi: 10.1038/nenergy.2017.89  doi: 10.1038/nenergy.2017.89

    55. [55]

      Wang, K. L.; Zheng, B. C.; Mackinder, M.; Baule, N.; Qiao, H.; Jin, H.; Schuelke, T.; Fan, Q. H. Energy Storage Mater. 2019, 20, 299. doi: 10.1016/j.ensm.2019.04.029  doi: 10.1016/j.ensm.2019.04.029

    56. [56]

      Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. Adv. Sci. 2020, 7, 1903077doi: 10.1002/advs.201903077  doi: 10.1002/advs.201903077

    57. [57]

      Guo, W.; Yu, C.; Li, S. F.; Qiu, J. S. Energy Environ. Sci. 2021, 14, 576. doi: 10.1039/d0ee02649b  doi: 10.1039/d0ee02649b

    58. [58]

      Tomy, M.; Ambika Rajappan, A.; Vm, V.; Thankappan Suryabai, X. Energy Fuels 2021, 35, 19881. doi: 10.1021/acs.energyfuels.1c02743  doi: 10.1021/acs.energyfuels.1c02743

    59. [59]

      Simon, P.; Gogotsi, Y. Joule 2022, 6, 28. doi: 10.1016/j.joule.2021.12.019  doi: 10.1016/j.joule.2021.12.019

    60. [60]

      Shang, W. X.; Yu, W. T.; Xiao, X.; Ma, Y. Y.; He, Y.; Zhao, Z. X.; Tan, P. Adv. Powder Mater. 2023, 2, 100075. doi: 10.1016/j.apmate.2022.100075  doi: 10.1016/j.apmate.2022.100075

    61. [61]

      Liu, K. L.; Yu, C.; Guo, W.; Ni, L.; Yu, J. H.; Xie, Y. Y.; Wang, Z.; Ren, Y. W.; Qiu, J. S. J. Energy Chem. 2021, 58, 94. doi: 10.1016/j.jechem.2020.09.041  doi: 10.1016/j.jechem.2020.09.041

    62. [62]

      Jagadale, A. D.; Rohit, R. C.; Shinde, S. K.; Kim, D. Y. J. Electrochem. Soc. 2021, 168, 090562. doi: 10.1149/1945-7111/ac275d  doi: 10.1149/1945-7111/ac275d

    63. [63]

      Wang, Y.; Shi, Z. Q.; Huang, Y.; Ma, Y. F.; Wang, C. Y.; Chen, M. M.; Chen, Y. S. J. Phys. Chem. C 2009, 113, 13103. doi: 10.1021/jp902214f  doi: 10.1021/jp902214f

    64. [64]

      Zhang, D. C.; Zhang, X.; Chen, Y.; Wang, C. H.; Ma, Y. W. Electrochim. Acta 2012, 69, 364. doi: 10.1016/j.electacta.2012.03.024  doi: 10.1016/j.electacta.2012.03.024

    65. [65]

      Wang, Q.; Yan, J.; Fan, Z. J. Energy Environ. Sci. 2016, 9, 729. doi: 10.1039/c5ee03109e  doi: 10.1039/c5ee03109e

    66. [66]

      Wang, H. B.; Wu, Y. P.; Zhang, J. F.; Li, G. Y.; Huang, H. J.; Zhang, X.; Jiang, Q. G. Mater. Lett. 2015, 160, 537. doi: 10.1016/j.matlet.2015.08.046  doi: 10.1016/j.matlet.2015.08.046

    67. [67]

      Zhang, X. F.; Liu, Y.; Dong, S. L.; Yang, J. Q.; Liu, X. D. Electrochim. Acta 2019, 294, 233. doi: 10.1016/j.electacta.2018.10.096  doi: 10.1016/j.electacta.2018.10.096

    68. [68]

      Hu, X. W.; Gong, N.; Zhang, Q. C.; Chen, Q. M.; Xie, T. Z.; Liu, H. B.; Li, Y.; Li, Y.; Peng, W. C.; Zhang, F. B.; Fan, X. B. Small 2024, 20, 2306997. doi: 10.1002/smll.202306997  doi: 10.1002/smll.202306997

    69. [69]

      Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Science 2020, 369, 979. doi: 10.1126/science.aba8311  doi: 10.1126/science.aba8311

    70. [70]

      Anasori, B.; Shi, C. Y.; Moon, E. J.; Xie, Y.; Voigt, C. A.; Kent, P. R. C.; May, S. J.; Billinge, S. J. L.; Barsoum, M. W.; Gogotsi, Y. Nanoscale Horiz. 2016, 1, 227. doi: 10.1039/c5nh00125k  doi: 10.1039/c5nh00125k

    71. [71]

      Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M.; et al. Nat. Mater. 2020, 19, 894. doi: 10.1038/s41563-020-0657-0  doi: 10.1038/s41563-020-0657-0

    72. [72]

      Xie, Y.; Dall'Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L. L.; Kent, P. R. C. Acs Nano 2014, 8, 9606. doi: 10.1021/nn503921j  doi: 10.1021/nn503921j

    73. [73]

      Wang, X.; Mathis, T. S.; Li, K.; Lin, Z.; Vlcek, L.; Torita, T.; Osti, N. C.; Hatter, C.; Urbankowski, P.; Sarycheva, A.; et al. Nat. Energy 2019, 4, 241. doi: 10.1038/s41560-019-0339-9  doi: 10.1038/s41560-019-0339-9

    74. [74]

      Ando, Y.; Okubo, M.; Yamada, A.; Otani, M. Adv. Funct. Mater. 2020, 30, 2000820. doi: 10.1002/adfm.202000820  doi: 10.1002/adfm.202000820

    75. [75]

      Pu, S.; Wang, Z. X.; Xie, Y. T.; Fan, J. T.; Xu, Z.; Wang, Y. H.; He, H. Y.; Zhang, X.; Yang, W. Q.; Zhang, H. T. Adv. Funct. Mater. 2022, 33, 2208715. doi: 10.1002/adfm.202208715  doi: 10.1002/adfm.202208715

    76. [76]

      Wang, Z.; Xu, Z.; Huang, H.; Chu, X.; Xie, Y.; Xiong, D.; Yan, C.; Zhao, H.; Zhang, H.; Yang, W. ACS Nano 2020, 14, 4916. doi: 10.1021/acsnano.0c01056  doi: 10.1021/acsnano.0c01056

    77. [77]

      Zhuo, Y. L.; Kinloch, I. A.; Bissett, M. A. ACS Appl. Nano Mater. 2023, 6, 18062. doi: 10.1021/acsanm.3c03322  doi: 10.1021/acsanm.3c03322

    78. [78]

      Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Chem. Soc. Rev. 2021, 50, 9817. doi: 10.1039/d1cs00330e  doi: 10.1039/d1cs00330e

    79. [79]

      Kumar, R.; Sahoo, S.; Joanni, E.; Pandey, R.; Shim, J. J. Chem. Commun. 2023, 59, 6109. doi: 10.1039/d3cc00815k  doi: 10.1039/d3cc00815k

    80. [80]

      Shen, J. Q.; Wang, P.; Jiang, H. S.; Wang, H.; Pollet, B. G.; Wang, R. F.; Ji, S. Ionics 2020, 26, 5155. doi: 10.1007/s11581-020-03597-3  doi: 10.1007/s11581-020-03597-3

    81. [81]

      Ma, Q. H.; Cui, F.; Zhang, J. J.; Qi, X.; Cui, T. Y. Appl. Surf. Sci. 2022, 578, 152001. doi: 10.1016/j.apsusc.2021.152001  doi: 10.1016/j.apsusc.2021.152001

    82. [82]

      Wu, Y. D.; Wang, Y.; Zhu, P.; Ye, X. F.; Liu, R. N.; Cai, W. F. Appl. Surf. Sci. 2022, 606, 154863. doi: 10.1016/j.apsusc.2022.154863  doi: 10.1016/j.apsusc.2022.154863

    83. [83]

      Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Nat. Mater. 2017, 16, 454. doi: 10.1038/Nmat4810  doi: 10.1038/Nmat4810

    84. [84]

      Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. J. Mater. Chem. 2010, 20, 7135. doi: 10.1039/c0jm00744g  doi: 10.1039/c0jm00744g

    85. [85]

      Huang, L.; Yao, B.; Sun, J. Y.; Gao, X.; Wu, J. B.; Wan, J.; Li, T. Q.; Hu, Z. M.; Zhou, J. J. Mater. Chem. A 2017, 5, 2897. doi: 10.1039/c6ta10433a  doi: 10.1039/c6ta10433a

    86. [86]

      Huang, L.; Gao, X.; Dong, Q.; Hu, Z. M.; Xiao, X.; Li, T. Q.; Cheng, Y. L.; Yao, B.; Wan, J.; Ding, D.; et al. J. Mater. Chem. A 2015, 3, 17217. doi: 10.1039/c5ta05251c  doi: 10.1039/c5ta05251c

    87. [87]

      Li, T. Q.; Beidaghi, M.; Xiao, X.; Huang, L.; Hu, Z. M.; Sun, W. M.; Chen, X.; Gogotsi, Y.; Zhou, J. Nano Energy 2016, 26, 100. doi: 10.1016/j.nanoen.2016.05.004  doi: 10.1016/j.nanoen.2016.05.004

    88. [88]

      Chen, G. L.; Xie, Y. Y.; Tang, Y.; Wang, T. S.; Wang, Z. Y.; Yang, C. H. Small 2024, 20, 2307408. doi: 10.1002/smll.202307408  doi: 10.1002/smll.202307408

    89. [89]

      Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lyu, M. Q.; Dai, L. M.; Wang, L. Z. Nano Energy 2017, 38, 368. doi: 10.1016/j.nanoen.2017.06.009  doi: 10.1016/j.nanoen.2017.06.009

    90. [90]

      Yang, C. H.; Tang, Y.; Tian, Y. P.; Luo, Y. Y.; Din, M. F. U.; Yin, X. T.; Que, W. X. Adv. Energy Mater. 2018, 8, 1802087. doi: 10.1002/aenm.201802087  doi: 10.1002/aenm.201802087

    91. [91]

      Tao, Q. Z.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M. W.; Persson, P. O. Å.; et al. Nat. Commun. 2017, 8, 14949. doi: 10.1038/ncomms14949  doi: 10.1038/ncomms14949

    92. [92]

      Li, S. S.; Li, X. H.; Cui, H. L.; Zhang, R. Z. J. Phys. Chem. Solids 2021, 153, 110021. doi: 10.1016/j.jpcs.2021.110021  doi: 10.1016/j.jpcs.2021.110021

    93. [93]

      Liu, K. K.; Xia, Q. X.; Si, L. J.; Kong, Y.; Shinde, N.; Wang, L. B.; Wang, J. K.; Hu, Q. K.; Zhou, A. G. Electrochim. Acta 2022, 435, 141372. doi: 10.1016/j.electacta.2022.141372  doi: 10.1016/j.electacta.2022.141372

    94. [94]

      Liu, Z. X.; Tian, Y. P.; Li, S. Q.; Wang, L.; Han, B. X.; Cui, X. W.; Xu, Q. Adv. Funct. Mater. 2023, 33, 2301994. doi: 10.1002/adfm.202301994  doi: 10.1002/adfm.202301994

    95. [95]

      Zhang, W. Y.; Jin, H. X.; Du, Y. Q.; Chen, G. W.; Zhang, J. X. Electrochim. Acta 2021, 390, 138812. doi: 10.1016/j.electacta.2021.138812  doi: 10.1016/j.electacta.2021.138812

    96. [96]

      Li, Z. Q.; He, W. X.; Wang, X. X.; Wang, X. L.; Song, M.; Zhao, J. L. Int. J. Hydrogen Energy 2020, 45, 112. doi: 10.1016/j.ijhydene.2019.10.196  doi: 10.1016/j.ijhydene.2019.10.196

    97. [97]

      Wang, J.; Ding, B.; Hao, X. D.; Xu, Y. L.; Wang, Y.; Shen, L. F.; Dou, H.; Zhang, X. G. Carbon 2016, 102, 255. doi: 10.1016/j.carbon.2016.02.047  doi: 10.1016/j.carbon.2016.02.047

    98. [98]

      Nathabumroong, S.; Poochai, C.; Chanlek, N.; Eknapakul, T.; Sonsupap, S.; Tuichai, W.; Sriprachuabwong, C.; Rujirawat, S.; Songsiriritthigul, P.; Tuantranont, A.; et al. J. Power Sources 2021, 513, 230517. doi: 10.1016/j.jpowsour.2021.230517  doi: 10.1016/j.jpowsour.2021.230517

    99. [99]

      Luo, W. L.; Sun, Y.; Lin, Z. T.; Li, X.; Han, Y. Q.; Ding, J. X.; Li, T. X.; Hou, C. P.; Ma, Y. J. Energy Storage 2023, 62, 106807. doi: 10.1016/j.est.2023.106807  doi: 10.1016/j.est.2023.106807

    100. [100]

      He, Z. Q.; Wang, Y. H.; Li, Y.; Ma, J. J.; Song, Y. M.; Wang, X. X.; Wang, F. P. J. Alloys Compd. 2022, 899, 163241. doi: 10.1016/j.jallcom.2021.163241  doi: 10.1016/j.jallcom.2021.163241

    101. [101]

      Yu, Z. L.; Wang, S. X.; Xiao, Z. A.; Xu, F.; Xiang, C. L.; Sun, L. X.; Zou, Y. J. J. Energy Storage 2024, 77, 110009. doi: 10.1016/j.est.2023.110009  doi: 10.1016/j.est.2023.110009

    102. [102]

      Shrestha, K. R.; Kandula, S.; Kim, N. H.; Lee, J. H. J. Alloys Compd. 2019, 771, 810. doi: 10.1016/j.jallcom.2018.09.032  doi: 10.1016/j.jallcom.2018.09.032

    103. [103]

      Lonkar, S. P.; Alhassan, S. M. Sustain. Energy Fuels 2021, 5, 6124. doi: 10.1039/d1se01134k  doi: 10.1039/d1se01134k

    104. [104]

      Meng, W.; Zhou, J. J.; Wang, G. J.; Qin, J. L.; Yang, L.; Huang, H. J.; Zhao, Y. X.; He, H. Y. J. Energy Storage 2022, 56, 106105. doi: 10.1016/j.est.2022.106105  doi: 10.1016/j.est.2022.106105

    105. [105]

      Zhang, X.; Yang, S. X.; Liu, S. Y.; Che, X. G.; Lu, W.; Tian, Y. H.; Liu, Z. Q.; Zhao, Y. Y.; Yang, J. ACS Appl. Energy Mater. 2023, 6, 636. doi: 10.1021/acsaem.2c02442  doi: 10.1021/acsaem.2c02442

    106. [106]

      Ansari, S. A.; Cho, M. H. Sci. Rep. 2017, 7, 43055doi: 10.1038/srep43055  doi: 10.1038/srep43055

    107. [107]

      Xu, X. J.; Lai, H. L.; Lu, H. L.; Zhou, P. J.; Ying, Y. L.; Liu, Y. J. Energy Storage 2024, 97, 112919. doi: 10.1016/j.est.2024.112919  doi: 10.1016/j.est.2024.112919

    108. [108]

      Borysiuk, V. N.; Mochalin, V. N.; Gogotsi, Y. Comput. Mater. Sci. 2018, 143, 418. doi: 10.1016/j.commatsci.2017.11.028  doi: 10.1016/j.commatsci.2017.11.028

    109. [109]

      Garlapati, K. K.; Martha, S. K.; Panigrahi, B. B. J. Power Sources 2024, 605, 234503. doi: 10.1016/j.jpowsour.2024.234503  doi: 10.1016/j.jpowsour.2024.234503

    110. [110]

      Wang, X.; Li, H.; Li, H.; Lin, S.; Ding, W.; Zhu, X. G.; Sheng, Z. G.; Wang, H.; Zhu, X. B.; Sun, Y. P. Adv. Funct. Mater. 2020, 30, 0190302. doi: 10.1002/adfm.201910302  doi: 10.1002/adfm.201910302

    111. [111]

      Hu, R.; Liao, Y. M.; Qiao, H.; Li, J.; Wang, K.; Huang, Z. Y.; Qi, X. Ceram. Int. 2022, 48, 23498. doi: 10.1016/j.ceramint.2022.04.345  doi: 10.1016/j.ceramint.2022.04.345

    112. [112]

      Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V. K.; Manoharan, S.; Kesavan, D.; Kim, S. J. Adv. Funct. Mater. 2020, 31, 2008422. doi: 10.1002/adfm.202008422  doi: 10.1002/adfm.202008422

    113. [113]

      Sun, X.; Sun, H.; Li, H.; Peng, H. Adv. Mater. 2013, 25, 5153. doi: 10.1002/adma.201301926  doi: 10.1002/adma.201301926

    114. [114]

      Weiss, N. O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. Adv. Mater. 2012, 24, 5782. doi: 10.1002/adma.201201482  doi: 10.1002/adma.201201482

    115. [115]

      Huo, P. P.; Zhao, P.; Wang, Y.; Liu, B.; Yin, G. C.; Dong, M. D. Energies 2018, 11, 167. doi: 10.3390/en11010167  doi: 10.3390/en11010167

    116. [116]

      Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192. doi: 10.1038/nature11458  doi: 10.1038/nature11458

    117. [117]

      Xu, E. Z.; Zhang, Y.; Wang, H.; Zhu, Z. F.; Quan, J. J.; Chang, Y. J.; Li, P. C.; Yu, D. B.; Jiang, Y. Chem. Eng. J. 2020, 385, 123839. doi: 10.1016/j.cej.2019.123839  doi: 10.1016/j.cej.2019.123839

    118. [118]

      Wei, Y. Y.; Sun, B.; Su, D. W.; Zhu, J. G.; Wang, G. X. Energy Technol. 2016, 4, 737. doi: 10.1002/ente.201500467  doi: 10.1002/ente.201500467

    119. [119]

      Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Nature 2018, 557, 409. doi: 10.1038/s41586-018-0109-z  doi: 10.1038/s41586-018-0109-z

    120. [120]

      Han, Y.; Li, M. Y.; Jung, G. S.; Marsalis, M. A.; Qin, Z.; Buehler, M. J.; Li, L. J.; Muller, D. A. Nat. Mater. 2018, 17, 129. doi: 10.1038/nmat5038  doi: 10.1038/nmat5038

    121. [121]

      Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. Acs Nano 2020, 14, 867. doi: 10.1021/acsnano.9b08030  doi: 10.1021/acsnano.9b08030

    122. [122]

      Aamir, A.; Ahmad, A.; Khan, Y.; Zia-Ur-Rehman; Ul Ain, N.; Shah, S. K.; Mehmood, M.; Zaman, B. Bull. Mater. Sci. 2020, 43, 1. doi: 10.1007/s12034-020-02249-6  doi: 10.1007/s12034-020-02249-6

    123. [123]

      Tetik, H.; Orangi, J.; Yang, G.; Zhao, K.; Mujib, S. B.; Singh, G.; Beidaghi, M.; Lin, D. Adv. Mater. 2021, 34, 2104980. doi: 10.1002/adma.202104980  doi: 10.1002/adma.202104980

    124. [124]

      Zhou, G. Q.; Li, M. C.; Liu, C. Z.; Wu, Q. L.; Mei, C. T. Adv. Funct. Mater. 2022, 32, 2109593. doi: 10.1002/adfm.202109593  doi: 10.1002/adfm.202109593

    125. [125]

      Zhou, G. Q.; Liu, X. Y.; Liu, C. Z.; Li, Z. L.; Liu, C. H.; Shi, X. J.; Li, Z. Y.; Mei, C. T.; Li, M. C. J. Mater. Chem. A 2024, 12, 3734. doi: 10.1039/d3ta06925g  doi: 10.1039/d3ta06925g

    126. [126]

      Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. Adv. Funct. Mater. 2019, 29, 1903960. doi: 10.1002/adfm.201903960  doi: 10.1002/adfm.201903960

    127. [127]

      Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Nat. Commun. 2014, 5, 4554. doi: 10.1038/ncomms5554  doi: 10.1038/ncomms5554

    128. [128]

      Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S. Acs Nano 2012, 6, 4020. doi: 10.1021/nn3003345  doi: 10.1021/nn3003345

    129. [129]

      Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. Small 2020, 16, 1906851. doi: 10.1002/smll.201906851  doi: 10.1002/smll.201906851

    130. [130]

      Chen, C. M.; Zhang, Q.; Huang, C. H.; Zhao, X. C.; Zhang, B. S.; Kong, Q. Q.; Wang, M. Z.; Yang, Y. G.; Cai, R.; Su, D. S. ChCom 2012, 48, 7149. doi: 10.1039/c2cc32189k  doi: 10.1039/c2cc32189k

    131. [131]

      Yang, X.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Adv. Funct. Mater. 2021, 31, 2101087. doi: 10.1002/adfm.202101087  doi: 10.1002/adfm.202101087

    132. [132]

      Patil, A. M.; Wang, J. J.; Li, S. S.; Hao, X. Q.; Du, X.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Chem. Eng. J. 2021, 421, 127883. doi: 10.1016/j.cej.2020.127883  doi: 10.1016/j.cej.2020.127883

    133. [133]

      Kong, J.; Yang, H. C.; Guo, X. Z.; Yang, S. L.; Huang, Z. S.; Lu, X. C.; Bo, Z.; Yan, J. H.; Cen, K. F.; Ostrikov, K. K. ACS Energy Lett. 2020, 5, 2266. doi: 10.1021/acsenergylett.0c00704  doi: 10.1021/acsenergylett.0c00704

    134. [134]

      Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. Adv. Mater. 2016, 28, 6719. doi: 10.1002/adma.201506157  doi: 10.1002/adma.201506157

    135. [135]

      Xia, P.; Zhang, Z.; Tang, Z.; Xue, Y.; Li, J.; Yang, G. Molecules 2022, 27, 376. doi: 10.3390/molecules27020376  doi: 10.3390/molecules27020376

    136. [136]

      Mochizuki, D.; Tanaka, R.; Makino, S.; Ayato, Y.; Sugimoto, W. ACS Appl. Energy Mater. 2019, 2, 1033. doi: 10.1021/acsaem.8b01478  doi: 10.1021/acsaem.8b01478

    137. [137]

      Qian, O.; Lin, D.; Zhao, X. L.; Han, F. M. Chem. Lett. 2019, 48, 824. doi: 10.1246/cl.190218  doi: 10.1246/cl.190218

    138. [138]

      Yu, Y. F.; Zhang, H. P.; Xie, Y. Q.; Jiang, F.; Gao, X.; Bai, H.; Yao, F.; Yue, H. Y. Chem. Eng. J. 2024, 482, 149063. doi: 10.1016/j.cej.2024.149063  doi: 10.1016/j.cej.2024.149063

    139. [139]

      Zhang, J. Z.; Uzun, S.; Seyedin, S.; Lynch, P. A.; Akuzum, B.; Wang, Z. Y.; Qin, S.; Alhabeb, M.; Shuck, C. E.; Lei, W. W.; et al. ACS Cent. Sci. 2020, 6, 254. doi: 10.1021/acscentsci.9b01217  doi: 10.1021/acscentsci.9b01217

    140. [140]

      Lee, C.; Park, S. M.; Kim, S.; Choi, Y. S.; Park, G.; Kang, Y. C.; Koo, C. M.; Kim, S. J.; Yoon, D. K. Nat Commun 2022, 13, 5615. doi: 10.1038/s41467-022-33337-2  doi: 10.1038/s41467-022-33337-2

    141. [141]

      Jang, G. G.; Song, B.; Li, L. Y.; Keum, J. K.; Jiang, Y. D.; Hunt, A.; Moon, K. S.; Wong, C. P.; Hu, M. Z. Nano Energy 2017, 32, 88. doi: 10.1016/j.nanoen.2016.12.016  doi: 10.1016/j.nanoen.2016.12.016

    142. [142]

      Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; Xie, P. W.; Zhang, D.; Fan, T. X. Acs Nano 2018, 12, 3502. doi: 10.1021/acsnano.8b00304  doi: 10.1021/acsnano.8b00304

    143. [143]

      Tagliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Mater. Adv. 2021, 2, 540. doi: 10.1039/d0ma00753f  doi: 10.1039/d0ma00753f

    144. [144]

      Yao, B.; Chandrasekaran, S.; Zhang, H. Z.; Ma, A.; Kang, J. Z.; Zhang, L.; Lu, X. H.; Qian, F.; Zhu, C.; Duoss, E. B.; et al. Adv. Mater. 2020, 32, 1906652. doi: 10.1002/adma.201906652  doi: 10.1002/adma.201906652

    145. [145]

      Corker, A.; Ng, H. C.; Poole, R. J.; Garcia-Tunon, E. Soft Matter 2019, 15, 1444. doi: 10.1039/c8sm01936c  doi: 10.1039/c8sm01936c

    146. [146]

      Yun, X. W.; Lu, B. C.; Xiong, Z. Y.; Jia, B.; Tang, B.; Mao, H. N.; Zhang, T.; Wang, X. G. RSC Advances 2019, 9, 29384. doi: 10.1039/c9ra04882k  doi: 10.1039/c9ra04882k

    147. [147]

      Tagliaferri, S.; Nagaraju, G.; Panagiotopoulos, A.; Och, M.; Cheng, G.; Iacoviello, F.; Mattevi, C. Acs Nano 2021, 15, 15342. doi: 10.1021/acsnano.1c06535  doi: 10.1021/acsnano.1c06535

    148. [148]

      Jakus, A. E.; Secor, E. B.; Rutz, A. L.; Jordan, S. W.; Hersam, M. C.; Shah, R. N. Acs Nano 2015, 9, 4636. doi: 10.1021/acsnano.5b01179  doi: 10.1021/acsnano.5b01179

    149. [149]

      Zhu, C.; Han, T. Y.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Nat. Commun. 2015, 6, 6962. doi: 10.1038/ncomms7962  doi: 10.1038/ncomms7962

    150. [150]

      Zhang, L. L.; Qin, J. Q.; Das, P.; Wang, S.; Bai, T. S.; Zhou, F.; Wu, M. B.; Wu, Z. S. Adv. Mater. 2024, 36, 2313930. doi: 10.1002/adma.202313930  doi: 10.1002/adma.202313930

    151. [151]

      Li, K.; Zhao, J.; Zhussupbekova, A.; Shuck, C. E.; Hughes, L.; Dong, Y. Y.; Barwich, S.; Vaesen, S.; Shvets, I. V.; Möbius, M.; Schmitt, W.; et al. Nat. Commun. 2022, 13, 6884. doi: 10.1038/s41467-022-34583-0  doi: 10.1038/s41467-022-34583-0

    152. [152]

      Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS nano 2010, 4, 4324. doi: 10.1021/nn101187z  doi: 10.1021/nn101187z

    153. [153]

      Chen, W. F.; Yan, L. F. Nanoscale 2011, 3, 3132. doi: 10.1039/c1nr10355e  doi: 10.1039/c1nr10355e

    154. [154]

      Tao, Y.; Kong, D.; Zhang, C.; Lv, W.; Wang, M. X.; Li, B. H.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Carbon 2014, 69, 169. doi: 10.1016/j.carbon.2013.12.003  doi: 10.1016/j.carbon.2013.12.003

    155. [155]

      Li, L.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. J. Power Sources 2017, 364, 234. doi: 10.1016/j.jpowsour.2017.08.029  doi: 10.1016/j.jpowsour.2017.08.029

    156. [156]

      Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C. S.; Lv, W.; et al. Adv. Mater. 2019, 31, e1902432. doi: 10.1002/adma.201902432  doi: 10.1002/adma.201902432

    157. [157]

      Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L. B.; Li, D. Science 2013, 341, 534. doi: 10.1126/science.123908  doi: 10.1126/science.123908

    158. [158]

      Tao, Y.; Xie, X.; Lv, W.; Tang, D. M.; Kong, D.; Huang, Z.; Nishihara, H.; Ishii, T.; Li, B.; Golberg, D.; et al. Sci. Rep. 2013, 3, 2975. doi: 10.1038/srep02975  doi: 10.1038/srep02975

    159. [159]

      Wu, Z.; Deng, Y.; Yu, J.; Han, J.; Shang, T.; Chen, D.; Wang, N.; Gu, S.; Lv, W.; Kang, F.; et al. Adv. Mater. 2023, 35, 2300580. doi: 10.1002/adma.202300580  doi: 10.1002/adma.202300580

    160. [160]

      Wu, Z. T.; Liu, X. C.; Shang, T. X.; Deng, Y. Q.; Wang, N.; Dong, X. M.; Zhao, J.; Chen, D. R.; Tao, Y.; Yang, Q. H. Adv. Funct. Mater. 2021, 31, 2102874. doi: 10.1002/adfm.202102874  doi: 10.1002/adfm.202102874

    161. [161]

      Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Adv. Funct. Mater. 2017, 27, 1701264. doi: 10.1002/adfm.201701264  doi: 10.1002/adfm.201701264

    162. [162]

      Wang, H.; Li, J. M.; Kuai, X. X.; Bu, L. M.; Gao, L. J.; Xiao, X.; Gogotsi, Y. Adv. Energy Mater. 2020, 10, 2001411. doi: 10.1002/aenm.202001411  doi: 10.1002/aenm.202001411

    163. [163]

      Tang, J.; Mathis, T.; Zhong, X.; Xiao, X.; Wang, H.; Anayee, M.; Pan, F.; Xu, B.; Gogotsi, Y. Adv. Energy Mater. 2020, 11, 2003025. doi: 10.1002/aenm.202003025  doi: 10.1002/aenm.202003025

    164. [164]

      Chen, W. S.; Gu, J. J.; Liu, Q. L.; Yang, M. Z.; Zhan, C.; Zang, X. N.; Pham, T. A.; Liu, G. X.; Zhang, W.; Zhang, D.; et al. Nat. Nanotechnol. 2021, 17, 153. doi: 10.1038/s41565-021-01020-0  doi: 10.1038/s41565-021-01020-0

    165. [165]

      Xiao, K. F.; Liang, J. X.; Liu, H. B.; Yang, T. M.; Han, J. W.; Fang, R. P.; Xu, H. Y.; Yang, Q. H.; Wang, D. W. ACS Energy Lett. 2024, 9, 2564. doi: 10.1021/acsenergylett.4c00770  doi: 10.1021/acsenergylett.4c00770

    166. [166]

      Du, X. Y.; Jiang, W. J.; Zu, L. H.; Feng, D. S.; Wang, X.; Li, M. G.; Wang, P. Y.; Cao, Y.; Wang, Y. F.; Liang, Q. H.; et al. Energy Storage Mater. 2025, 74, 103969. doi: 10.1016/j.ensm.2024.103969  doi: 10.1016/j.ensm.2024.103969

    167. [167]

      Xu, Y. X.; Chen, C. Y.; Zhao, Z. P.; Lin, Z. Y.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. F. Nano Lett. 2015, 15, 4605. doi: 10.1021/acs.nanolett.5b01212  doi: 10.1021/acs.nanolett.5b01212

    168. [168]

      Kumar, R.; Oh, J. H.; Kim, H. J.; Jung, J. H.; Jung, C. H.; Hong, W. G.; Kim, H. J.; Park, J. Y.; Oh, I. K. ACS nano 2015, 9, 7343. doi: 10.1021/acsnano.5b02337  doi: 10.1021/acsnano.5b02337

    169. [169]

      Villarreal, R.; Lin, P. C.; Zarkua, Z.; Bana, H.; Tsai, H. C.; Auge, M.; Junge, F.; Hofsäss, H.; Tosi, E.; De Feyter, S.; et al. Carbon 2023, 203, 590. doi: 10.1016/j.carbon.2022.12.005  doi: 10.1016/j.carbon.2022.12.005

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    4. [4]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    6. [6]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-0. doi: 10.3866/PKU.WHXB202310029

    12. [12]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    13. [13]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    17. [17]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    19. [19]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    20. [20]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025

Metrics
  • PDF Downloads(1)
  • Abstract views(328)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return