Citation: Jinwang Wu, Qijing Xie, Chengliang Zhang, Haifeng Shi. Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100050. doi: 10.1016/j.actphy.2025.100050 shu

Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic

  • Corresponding author: Haifeng Shi, hfshi@jiangnan.edu.cn
  • Contributed equally to this work.
  • Received Date: 5 November 2024
    Revised Date: 16 December 2024
    Accepted Date: 24 December 2024

    Fund Project: the National Natural Science Foundation of China 52271175National Laboratory of Solid State Microstructures, Nanjing University M34047

  • Recently, the regulation of electronic spin polarization has attracted considerable interest as an effective strategy to mitigate the rapid recombination of photo-generated charges. However, current research predominantly targets individual photocatalysts, where the efficiency of charge separation still has significant room for improvement. Herein, a ZnFe1.2Co0.8O4 (ZFCO) and BiVO4 (BVO) S-scheme heterojunction was developed, which synergistically promoted charge separation through the S-scheme heterojunction and spin polarization, and further enhanced the photocatalytic performance in removing organic pollutants under an external magnetic field. Experimental results revealed that under sole light irradiation, ZB-1.5 (ZFCO : BVO = 3 : 2) demonstrated optimal performance, with a reaction rate constant (k) for tetracycline (TC) degradation of 0.0146 min−1. Under light irradiation and magnetic field conditions, the reaction rate constant (k) of ZB-1.5 for TC degradation increased to 0.0175 min−1, indicating enhanced photocatalytic performance. DFT calculations indicated that ZFCO exhibited the spin polarization. Photoluminescence measurements demonstrated that the S-scheme heterojunction structure improved the charge separation efficiency. In addition, possible degradation pathways and toxicity were assessed, indicating successful detoxification. This work provides some useful insights into utilizing S-scheme heterojunctions to develop photocatalysts with efficient separation of photo-generated charges.
  • 加载中
    1. [1]

      Li, R.; Qiu, L. P.; Cao, S. Z.; Li, Z.; Gao, S. L.; Zhang, J.; Ramakrishna, S.; Long, Y. Z. Adv. Funct. Mater. 2024, 34, 2316725. doi: 10.1002/adfm.202316725  doi: 10.1002/adfm.202316725

    2. [2]

      Chen, R. Y.; Xia, J. Z.; Chen, Y. G.; Shi, H. F. Acta Phys. -Chim. Sin. 2023, 39, 2209012.  doi: 10.3866/PKU.WHXB202209012

    3. [3]

      Xie, Q. J.; Huang, H. M.; Zhang, C. L.; Zheng, X. Y.; Shi, H. F. J. Phys. D: Appl. Phys. 2024, 57, 165104. doi: 10.1088/1361-6463/ad2094  doi: 10.1088/1361-6463/ad2094

    4. [4]

      Wang, L. N.; Chen, T. Y.; Cui, Y. J.; Wu, J. W.; Zhou, X. Y.; Xu, M. F.; Liu, Z. Q.; Mao, W.; Zeng, X. M.; Shen, W.; et al. Adv. Funct. Mater. 2024, 34, 2313653. doi: 10.1002/adfm.202313653  doi: 10.1002/adfm.202313653

    5. [5]

      Xu, J. C.; Zhang, X. D.; Wang, X. F.; Zhang, J. J.; Yu, J. G.; Yu, H. G. ACS Catal. 2024, 14, 15444. doi: 10.1021/acscatal.4c03916  doi: 10.1021/acscatal.4c03916

    6. [6]

      You, C. J.; Wang, C. C.; Cai, M. J.; Liu, Y. P.; Zhu, B. K.; Li, S. J. Acta Phys. -Chim. Sin. 2024, 40, 2407014.  doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Chen, R. Y.; Zhang, H. Y.; Dong, Y. M.; Shi, H. F. J. Mater. Sci. Technol. 2024, 170, 11. doi: 10.1016/j.jmst.2023.07.005  doi: 10.1016/j.jmst.2023.07.005

    8. [8]

      Fang, X. Y.; Choi, J. Y.; Stodolka, M.; Pham, H. T.; Park, J. Acc. Chem. Res. 2024, 57, 2316. doi: 10.1021/acs.accounts.4c00280  doi: 10.1021/acs.accounts.4c00280

    9. [9]

      Shi, H. F.; Chen, G. Q.; Zhang, C. L.; Zou, Z. G. ACS Catal. 2014, 4, 3637. doi: 10.1021/cs500848f  doi: 10.1021/cs500848f

    10. [10]

      Dong, K. X.; Shen, C. Q.; Yan, R. Y.; Liu, Y. P.; Zhuang, C. Q.; Li, S. J. Acta Phys. -Chim. Sin. 2024, 40, 2310013.  doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Lv, M. S.; Wang, S. H.; Shi, H. F. J. Mater. Sci. Technol. 2024, 201, 21. doi: 10.1016/j.jmst.2024.02.073  doi: 10.1016/j.jmst.2024.02.073

    12. [12]

      Jin, X. X.; Li, X.; Dong, L. M.; Zhang, B.; Liu, D.; Hou, S. K.; Zhang, Y. S.; Zhang, F. M.; Song, B. Nano Energy 2024, 123, 109341. doi: 10.1016/j.nanoen.2024.109341  doi: 10.1016/j.nanoen.2024.109341

    13. [13]

      Dai, B. Y.; Gao, C. C.; Guo, J. H.; Ding, M.; Xu, Q. L.; He, S. X.; Mou, Y. B.; Dong, H.; Hu, M. G.; Dai, Z. Nano Lett. 2024, 24, 4816. doi: 10.1021/acs.nanolett.3c05098  doi: 10.1021/acs.nanolett.3c05098

    14. [14]

      Ding, X.; Jing, W. H.; Yin, Y. T.; He, G. W.; Bai, S. J.; Wang, F.; Liu, Y.; Guo, L. J. Chem. Eng. J. 2024, 499, 156091. doi: 10.1016/j.cej.2024.156091  doi: 10.1016/j.cej.2024.156091

    15. [15]

      Li, X. Y.; Mai, H. X.; Wang, X. D.; Xie, Z. L.; Lu, J. L.; Wen, X. M.; Russo, S. P.; Chen, D. H.; Caruso, R. A. J. Mater. Chem. A 2024, 12, 5204. doi: 10.1039/d3ta06439e  doi: 10.1039/d3ta06439e

    16. [16]

      Fang, B.; Xing, Z. P.; Kong, W. F.; Li, Z. Z.; Zhou, W. Nano Energy 2022, 101, 107616. doi: 10.1016/j.nanoen.2022.107616  doi: 10.1016/j.nanoen.2022.107616

    17. [17]

      Li, Y. Y.; Wang, Z. H.; Wang, Y. Q.; Kovács, A.; Foo, C.; Dunin-Borkowski, R. E.; Lu, Y. H.; Taylor, R. A.; Wu, C.; Tsang, S. C. E. Energy Environ. Sci. 2022, 15, 265. doi: 10.1039/D1EE02222A  doi: 10.1039/D1EE02222A

    18. [18]

      Mtangi, W.; Kiran, V.; Fontanesi, C.; Naaman, R. J. Phys. Chem. Lett. 2015, 6, 4916. doi: 10.1021/acs.jpclett.5b02419  doi: 10.1021/acs.jpclett.5b02419

    19. [19]

      Wu, T. Z.; Sun, Y. M.; Ren, X.; Wang, J. R.; Song, J. J.; Pan, Y. D.; Mu, Y. B.; Zhang, J. S.; Cheng, Q. Z.; Xian, G. Y. Adv. Mater. 2023, 35, 2207041. doi: 10.1002/adma.202207041  doi: 10.1002/adma.202207041

    20. [20]

      Zhou, S. M.; Miao, X. B.; Zhao, X.; Ma, C.; Qiu, Y. H.; Hu, Z. P.; Zhao, J. Y.; Shi, L.; Zeng, J. Nat. Commun. 2016, 7, 11510. doi: 10.1038/ncomms11510  doi: 10.1038/ncomms11510

    21. [21]

      Gao, W. Q.; Peng, R.; Yang, Y. Y.; Zhao, X. L.; Cui, C.; Su, X. W.; Qin, W.; Dai, Y.; Ma, Y. D.; Liu, H. ACS Energy Lett. 2021, 6, 2129. doi: 10.1021/acsenergylett.1c00682  doi: 10.1021/acsenergylett.1c00682

    22. [22]

      Pan, L.; Ai, M. H.; Huang, C. Y.; Yin, L.; Liu, X.; Zhang, R. R.; Wang, S. B.; Jiang, Z.; Zhang, X. W.; Zou, J. J. Nat. Commun. 2020, 11, 418. doi: 10.1038/s41467-020-14333-w  doi: 10.1038/s41467-020-14333-w

    23. [23]

      Zhu, B. C.; Sun, J.; Zhao, Y. Y.; Zhang, L. Y.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    24. [24]

      Deng, X. Y.; Zhang, J. J.; Qi, K. Z.; Liang, G. J.; Xu, F. Y.; Yu, J. G. Nat. Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    25. [25]

      Meng, K.; Zhang, J. J.; Cheng, B.; Ren, X. G.; Xia, Z. S.; Xu, F. Y.; Zhang, L. Y.; Yu, J. G. Adv. Mater. 2024, 36, 2406460. doi: 10.1002/adma.202406460  doi: 10.1002/adma.202406460

    26. [26]

      Sun, G. T.; Tai, Z. G.; Zhang, J. J.; Cheng, B.; Yu, H. G.; Yu, J. G. Appl. Catal. B 2024, 358, 124459. doi: 10.1016/j.apcatb.2024.124459  doi: 10.1016/j.apcatb.2024.124459

    27. [27]

      Li, Y. Q.; Wan, S. J.; Liang, W. C.; Cheng, B.; Wang, W.; Xiang, Y.; Yu, J. G.; Cao, S. W. Small 2024, 20, 2312104. doi: 10.1002/smll.202312104  doi: 10.1002/smll.202312104

    28. [28]

      Qiu, J. Y.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J. J.; Wang, L. X.; Yu, J. G. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    29. [29]

      Deng, X. Y.; Wen, Z. H.; Li, X. H.; Macyk, W.; Yu, J. G.; Xu, F. Y. Small 2024, 20, 2305410. doi: 10.1002/smll.202305410  doi: 10.1002/smll.202305410

    30. [30]

      Wang, W. L.; Zhang, H. C.; Chen, Y. G.; Shi, H. F. Acta Phys. -Chim. Sin. 2022, 38, 2201008.  doi: 10.3866/PKU.WHXB202201008

    31. [31]

      Wang, S. D.; Huang, L. Y.; Xue, L. J.; Kang, Q.; Wen, L. L.; Lv, K. L. Appl. Catal. B 2024, 358, 124366. doi: 10.1016/j.apcatb.2024.124366  doi: 10.1016/j.apcatb.2024.124366

    32. [32]

      Zhang, D.; Chen, P. X.; Qin, R.; Li, H. S.; Pu, X. P.; Zou, J. P.; Liu, J. C.; Zhang, D. F.; Ji, X. Y. Appl. Catal. B 2024, 361, 124690. doi: 10.1016/j.apcatb.2024.124690  doi: 10.1016/j.apcatb.2024.124690

    33. [33]

      Xiao, L. F.; Ren, W. L.; Shen, S. S.; Chen, M. S.; Liao, R. H.; Zhou, Y. T.; Li, X. B. Acta Phys. -Chim. Sin. 2024, 40, 2308036.  doi: 10.3866/PKU.WHXB202308036

    34. [34]

      Hu, T. P.; Dai, K.; Zhang, J. F.; Chen, S. F. Appl. Catal. B 2020, 269, 118844. doi: 10.1016/j.apcatb.2020.118844  doi: 10.1016/j.apcatb.2020.118844

    35. [35]

      Huang, K. H.; Chen, D. J.; Zhang, X.; Shen, R. X.; Zhang, P.; Xu, D. F.; Li. X. Acta Phys. -Chim. Sin. 2024, 40, 2407020.  doi: 10.3866/PKU.WHXB202407020

    36. [36]

      Hu, H. J.; Zhang, X. Y.; Zhang, K. L.; Ma, Y. L.; Wang, H. T.; Li, H.; Huang, H. W.; Sun, X. D.; Ma, T. Y. Adv. Energy Mater. 2024, 14, 2303638. doi: 10.1002/aenm.202303638  doi: 10.1002/aenm.202303638

    37. [37]

      Ren, D. D.; Zhang, W. N.; Ding, Y. N.; Shen, R. C.; Jiang, Z. M.; Lu, X. Y.; Li, X. Sol. RRL 2020, 4, 1900423. doi: 10.1002/solr.201900423  doi: 10.1002/solr.201900423

    38. [38]

      Li, S. J.; Wang, C. C.; Dong, K. X.; Zhang, P.; Chen, X. B.; Li, X. Chin. J. Catal. 2023, 51, 101. doi: 10.1016/S1872-2067(23)64479-1  doi: 10.1016/S1872-2067(23)64479-1

    39. [39]

      Guo, W. Q.; Luo, H. L.; Jiang, Z.; Shangguan, W. F. Chin. J. Catal. 2022, 43, 316. doi: 10.1016/S1872-2067(21)63846-9  doi: 10.1016/S1872-2067(21)63846-9

    40. [40]

      Wang, C. C.; You, C. J.; Rong, K.; Shen, C. Q.; Yang, F.; Li, S. J. Acta Phys. -Chim. Sin. 2024, 40, 2307045.  doi: 10.3866/PKU.WHXB202307045

    41. [41]

      Zhang, Q. Q; Wang, Z.; Song, Y. H.; Fan, J.; Sun, T.; Liu, E. Z. J. Mater. Sci. Technol. 2024, 169, 148. doi: 10.1016/j.jmst.2023.05.066  doi: 10.1016/j.jmst.2023.05.066

    42. [42]

      Liu, J. H.; Wei, X. N.; Sun, W. Q.; Guan, X. X.; Zheng, X. C.; Li, J. Environ. Res. 2021, 197, 111136. doi: 10.1016/j.envres.2021.111136  doi: 10.1016/j.envres.2021.111136

    43. [43]

      Li, Y.; Li, Y. Z.; Yin, Y. D.; Xia, D. H.; Ding, H. R.; Ding, C.; Wu, J.; Yan, Y. H.; Liu, Y.; Chen, N. Appl. Catal. B 2018, 226, 324. doi: 10.1016/j.apcatb.2017.12.051  doi: 10.1016/j.apcatb.2017.12.051

    44. [44]

      Zhang, G. H.; Meng, Y.; Xie, B.; Ni, Z. M.; Lu, H. F.; Xia, S. J. Appl. Catal. B 2021, 296, 120379. doi: 10.1016/j.apcatb.2021.120379  doi: 10.1016/j.apcatb.2021.120379

    45. [45]

      Li, C.; Feng, F.; Jian, J.; Xu, Y. X.; Li, F.; Wang, H. Q.; Jia, L. C. J. Mater. Sci. Technol. 2021, 79, 21. doi: 10.1016/j.jmst.2020.11.037  doi: 10.1016/j.jmst.2020.11.037

    46. [46]

      Zou, X. J.; Dong, Y. Y.; Ke, J.; Ge, H.; Chen, D.; Sun, H. J.; Cui, Y. B. Chem. Eng. J. 2020, 400, 125919. doi: 10.1016/j.cej.2020.125919  doi: 10.1016/j.cej.2020.125919

    47. [47]

      Lai, C.; Zhang, M. M.; Li, B. S.; Huang, D. L.; Zeng, G. M.; Qin, L.; Liu, X. G.; Yi, H.; Cheng, M.; Li, L. Chem. Eng. J. 2019, 358, 891. doi: 10.1016/j.cej.2018.10.072  doi: 10.1016/j.cej.2018.10.072

    48. [48]

      Wu, Y.; Zhang, J.; Duan, H.; Zhao, Y. M.; Dong, Y. Z. Dalton Trans. 2021, 50, 15036. doi: 10.1039/D1DT02865K  doi: 10.1039/D1DT02865K

    49. [49]

      Li, A. H.; Ma, J. L.; Hong, M.; Sun, R. C. Appl. Catal. B 2024, 348, 123834. doi: 10.1016/j.apcatb.2024.123834  doi: 10.1016/j.apcatb.2024.123834

    50. [50]

      Lin, H.; Li, S. M.; Deng, B.; Tan, W. H.; Li, R. M.; Xu, Y.; Zhang, H. Chem. Eng. J. 2019, 364, 541. doi: 10.1016/j.cej.2019.01.189  doi: 10.1016/j.cej.2019.01.189

    51. [51]

      Han, T. Y.; Shi, H. F.; Chen, Y. G. J. Mater. Sci. Technol. 2024, 174, 30. doi: 10.1016/j.jmst.2023.03.053  doi: 10.1016/j.jmst.2023.03.053

    52. [52]

      Yan, J. T.; Zhang, J. J. J. Mater. Sci. Technol. 2024, 193, 18. doi: 10.1016/j.jmst.2023.12.054  doi: 10.1016/j.jmst.2023.12.054

    53. [53]

      Cai, J. J.; Liu, B. W.; Zhang, S. M.; Wang, L. X.; Wu, Z.; Zhang, J. J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi: 10.1016/j.jmst.2024.02.012  doi: 10.1016/j.jmst.2024.02.012

    54. [54]

      Zhu, J. J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi: 10.1016/S1872-2067(23)64438-9  doi: 10.1016/S1872-2067(23)64438-9

    55. [55]

      Cheng, C.; Zhang, J. J.; Zhu, B. C.; Liang, G. J.; Zhang, L. Y.; Yu, J. G. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    56. [56]

      Yu, J. H.; Yao, X. T.; Su, P.; Wang, S. K.; Zhang, D. F.; Ge, B.; Pu, X. P. J. Liaocheng Univ. (Nat. Sci. Ed.) 2024, 37, 52. doi: 10.19728/j.issn1672-6634.2021070009  doi: 10.19728/j.issn1672-6634.2021070009

    57. [57]

      Zhou, D. S.; Shao, S.; Zhang, X.; Di, T. M.; Zhang, J.; Wang, T. L.; Wang, C. W. J. Mater. Chem. A 2023, 11, 401. doi: 10.1039/D2TA07289K  doi: 10.1039/D2TA07289K

    58. [58]

      Long, Z. Y.; Shi, H. F.; Chen, Y. G. J. Colloid Interface Sci. 2025, 678, 1169. doi: 10.1016/j.jcis.2024.09.112  doi: 10.1016/j.jcis.2024.09.112

    59. [59]

      Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/S1872-2067(19)63481-9  doi: 10.1016/S1872-2067(19)63481-9

    60. [60]

      Gracia, J.; Sharpe, R.; Munarriz, J. J. Catal. 2018, 361, 331. doi: 10.1016/j.jcat.2018.03.012  doi: 10.1016/j.jcat.2018.03.012

    61. [61]

      Gracia, J.; Munarriz, J.; Polo, V.; Sharpe, R.; Jiao, Y.; Niemantsverdriet, J.; Lim, T. ChemCatChem 2017, 9, 3358. doi: 10.1002/cctc.201700302  doi: 10.1002/cctc.201700302

    62. [62]

      Gracia, J. J. Phys. Chem. C 2019, 123, 9967. doi: 10.1021/acs.jpcc.9b01635  doi: 10.1021/acs.jpcc.9b01635

  • 加载中
    1. [1]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    2. [2]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    3. [3]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    4. [4]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    5. [5]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    6. [6]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    8. [8]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    9. [9]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    10. [10]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    11. [11]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    16. [16]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    17. [17]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    18. [18]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    19. [19]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    20. [20]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(2)
  • Abstract views(268)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return