Citation: Shiyang He, Dandan Chu, Zhixin Pang, Yuhang Du, Jiayi Wang, Yuhong Chen, Yumeng Su, Jianhua Qin, Xiangrong Pan, Zhan Zhou, Jingguo Li, Lufang Ma, Chaoliang Tan. Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100046. doi: 10.1016/j.actphy.2025.100046 shu

Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy

  • Corresponding author: Zhan Zhou, zhouzhan@lynu.edu.cn Jingguo Li, lijingguo@zzu.edu.cn Lufang Ma, mazhuxp@126.com Chaoliang Tan, cltan@hku.hk; chaoltan@cityu.edu.hk
  • These authors contributed equally to this work.
  • Received Date: 6 August 2024
    Revised Date: 18 September 2024
    Accepted Date: 20 September 2024

    Fund Project: the National Natural Science Foundation of China 52102348the National Natural Science Foundation of China 22271130the National Natural Science Foundation of China 52173143the Science and Technology Innovation Talent Program of University in Henan Province 23HASTIT016the Natural Science Foundation of Henan Province of China 242300421018C.T. thanks the funding support from the National Natural Science Foundation of China - Excellent Young Scientists Fund (Hong Kong and Macau) 52122002

  • The pressing challenges posed by infectious diseases caused by pathogenic microbial infections have necessitated the development of advanced antimicrobial strategies. Among the promising avenues, photodynamic therapy (PDT) has emerged as a promising approach due to its non-invasive and targeted nature. Although it has been widely used in antibacterial therapy, there are still obstacles in precisely regulating the structure of photosensitizers to achieve satisfactory photodynamic performance. Herein, Pt single-atoms (SAs) are deposited on two-dimensional (2D) Al-TCPP metal-organic framework (MOF) nanosheets, creating Pt/Al-TCPP as the photosensitizer to boost reactive oxygen species (ROS) production for enhanced photodynamic antimicrobial therapy. By integrating Pt SAs onto 2D Al-TCPP MOF nanosheets, we not only improve the dispersion and stability of Pt atoms but also harness the synergistic effect between the MOF's crystal porous structure and Pt SAs, optimizing its light-trapping ability. This unique structure enhances the bridging unit between Pt SA and the porphyrin linker, facilitating efficient charge transfer and separation during illumination, ultimately boosting ROS production. In addition to the inherent photodynamic performance of Pt SAs, they can also increase the adsorption of oxygen, facilitate electron transfer, and improve charge separation, thus enhancing photodynamic ROS generation efficiency. Therefore, the Pt/Al-TCPP photosensitizer shows much greater efficacy in generating ROS under a 660 nm laser irradiation compared to Al-TCPP. Both in vitro and in vivo experiments demonstrate that the Pt/Al-TCPP nanosheets can effectively eliminate bacteria and promote wound healing in a short time at low doses under laser irradiation. This study underscores the advantages of integrating Pt SAs with Pt/Al-TCPP nanosheets and offers a highly effective photosensitizer for bacterial infections. The results pave the way for novel strategies in the antibacterial realm, highlighting the potential of Pt/Al-TCPP nanosheets as a promising therapeutic agent for efficient wound healing.
  • 加载中
    1. [1]

      Lin, H.; Yang, C.; Luo, Y.; Ge, M.; Shen, H.; Zhang, X. ; Shi, J. ACS Nano 2022, 16, 5943. doi: 10.1021/acsnano.1c11132  doi: 10.1021/acsnano.1c11132

    2. [2]

      Bian, Y.; Zhao, K.; Hu, T.; Tan, C.; Liang, R.; Weng, X. Adv. Sci. 2024, 11, 2403791. doi: 10.1002/advs.202403791  doi: 10.1002/advs.202403791

    3. [3]

      Hu, T.; Gu, Z.; Williams, G.; Strimaite, M.; Zha, J.; Zhou, Z.; Zhang, X.; Tan, C.; Liang, R. Chem. Soc. Rev. 2022, 51, 6126. doi: 10.1039/d2cs00236a  doi: 10.1039/d2cs00236a

    4. [4]

      Wang, W.; Cui, Y.; Wei, X.; Zang, Y.; Chen, X.; Cheng, L.; Wang, X. ACS Nano 2024, 18, 15845. doi: 10.1021/acsnano.4c02825  doi: 10.1021/acsnano.4c02825

    5. [5]

      Zhao, X.; Qiu, H.; Shao, Y.; Wang, P.; Yu, S.; Li, H.; Zhou, Y.; Zhou, Z.; Ma, L.; Tan, C. Acta Phys. -Chim. Sin. 2023, 39, 2211043.  doi: 10.3866/PKU.WHXB202211043

    6. [6]

      Li, X.; Zhao, X.; Chu, D.; Zhu, X.; Xue, B.; Chen, H.; Zhou, Z.; Li, J. Surf. Interfaces 2022, 33, 102247. doi: 10.1016/j.surfin.2022.102247  doi: 10.1016/j.surfin.2022.102247

    7. [7]

      Yang, Y.; Liang, H.; Tang, C.; Cheng, Y.; Cheng, L. Adv. Funct. Mater. 2024, 34, 2313454. doi: 10.1002/adfm.202313454  doi: 10.1002/adfm.202313454

    8. [8]

      Zhu, D.; Lu, Y.; Yang, S.; Hu, T.; Tan, C.; Liang, R.; Wang, Y. Adv. Sci. 2024, 11, 2401064. doi: 10.1002/advs.202401064  doi: 10.1002/advs.202401064

    9. [9]

      Huang, X.; Cheng, S.; Yang, X.; Pei, Z.; Cui, X.; Hou, G.; Yang, N.; Han, Z.; Chen, Y.; Cheng, Y.; et al. Nano Today 2024, 57, 102400. doi: 10.1016/j.nantod.2024.102400  doi: 10.1016/j.nantod.2024.102400

    10. [10]

      Zhang, Y.; Zhang, N.; Xing, J.; Sun, Y.; Jin, X.; Shen, C.; Cheng, L.; Wang, Y.; Wang, X. Biomaterials 2024, 311, 122675. doi: 10.1016/j.biomaterials.2024.122675  doi: 10.1016/j.biomaterials.2024.122675

    11. [11]

      Hu, T.; Zhou, Z.; Zha, J.; Williams, G.; Wu, Z.; Zhao, W.; Shen, W.; Li, H.; Weng, X.; Liang, R.; et al. Fundam. Res. 2024, 4, 926. doi: 10.1016/j.fmre.2022.06.001  doi: 10.1016/j.fmre.2022.06.001

    12. [12]

      Wei, K.; Wu, Y.; Zheng, X.; Ouyang, L.; Ma, G.; Ji, C.; Yin, M. Angew. Chem. Int. Ed. 2024, 63, e202404395. doi: 10.1002/anie.202404395  doi: 10.1002/anie.202404395

    13. [13]

      Zhao, X.; He, X.; Hou, A.; Cheng, C.; Wang, X.; Yue, Y.; Pei, C.; Liu, B.; Li, H.; Shen, J.; et al. Inorg. Chem. 2022, 61, 9328. doi: 10.1021/acs.inorgchem.2c01091  doi: 10.1021/acs.inorgchem.2c01091

    14. [14]

      Hou, A.; Du, Y.; Su, Y.; Pang, Z.; Liu, S.; Xian, S.; Zhao, X.; Ma, L.; Liu, B.; Wu, H.; et al. ACS Appl. Nano Mater. 2024, 7, 10998. doi: 10.1021/acsanm.4c02067  doi: 10.1021/acsanm.4c02067

    15. [15]

      Dang, L.; Zheng, J.; Zhang, J.; Chen, T.; Chai, Y.; Fu, H.; Aznarez, F.; Liu, S.; Li, D.; Ma, L. Angew. Chem. Int. Ed. 2024, 63, e202406552. doi: 10.1002/anie.202406552  doi: 10.1002/anie.202406552

    16. [16]

      Zhou, Z.; Li, X.; Hu, T.; Xue, B.; Chen, H.; Ma, L.; Liang, R.; Tan, C. Adv. NanoBiomed Res. 2022, 2, 2200065. doi: 10.1002/anbr.202200065  doi: 10.1002/anbr.202200065

    17. [17]

      Zhao, Y.; Chai, Y.; Chen, T.; Zheng, J.; Li, T.; Aznarez, F.; Dang, L.; Ma, L. Chin. Chem. Lett. 2024, 35, 109298. doi: 10.1016/j.cclet.2023.109298  doi: 10.1016/j.cclet.2023.109298

    18. [18]

      Zhou, Z.; Wang, Y.; Peng, F.; Meng, F.; Zha, J.; Ma, L.; Du, Y.; Peng, N.; Ma, L.; Zhang, Q.; et al. Angew. Chem. Int. Ed. 2022, 61, e202115939. doi: 10.1002/anie.202115939  doi: 10.1002/anie.202115939

    19. [19]

      Li, B.; Chu, D.; Cui, H.; Li, Z.; Zhou, Z.; Tan, C.; Li, J. SmartMat 2023, 4, e1243. doi: 10.1002/smm2.1243  doi: 10.1002/smm2.1243

    20. [20]

      Shen, W.; Hu, T.; Liu, X.; Zha, J.; Meng, F.; Wu, Z.; Cui, Z.; Yang, Y.; Li, H.; Zhang, Q.; et al. Nat. Commun. 2022, 13, 3384. doi: 10.1038/s41467-022-31106-9  doi: 10.1038/s41467-022-31106-9

    21. [21]

      Xue, B.; Geng, X.; Cui, H.; Chen, H.; Wu, Z.; Chen, H.; Li, H.; Zhou, Z.; Zhao, M.; Tan, C.; et al. Chin. Chem. Lett. 2023, 34, 108140. doi: 10.1016/j.cclet.2023.108140  doi: 10.1016/j.cclet.2023.108140

    22. [22]

      Xu, D.; Lin, H.; Qiu, W.; Ge, M.; Chen, Z.; Wu, C.; You, Y.; Lu, X.; Wei, C.; Liu, J.; et al. Biomaterials 2021, 278, 121172. doi: 10.1016/j.biomaterials.2021.121172  doi: 10.1016/j.biomaterials.2021.121172

    23. [23]

      Li, Z.; Zhang, J.; Tian, X.; Yang, S.; Chen, S.; Zhou, H.; Yang, X. Chem. Sci. 2022, 13, 9381. doi: 10.1039/d2sc02662g  doi: 10.1039/d2sc02662g

    24. [24]

      He, L.; Brasino, M.; Mao, C.; Cho, S.; Park, W.; Goodwin, A.; Cha, J. Small 2017, 13, 1700504. doi: 10.1002/smll.201700504  doi: 10.1002/smll.201700504

    25. [25]

      Zhen, W.; Kang, D.; Fan, Y.; Wang, Z.; Germanas, T.; Nash, G.; Shen, Q.; Leech, R.; Li, J.; Engel, G.; et al. J. Am. Chem. Soc. 2024, 146, 16609. doi: 10.1021/jacs.4c03519  doi: 10.1021/jacs.4c03519

    26. [26]

      Ma, A.; Chen, H.; Cui, Y.; Luo, Z.; Liang, R.; Wu, Z.; Chen, Z.; Yin, T.; Ni, J.; Zheng, M.; et al. Small 2019, 15, 1804028. doi: 10.1002/smll.201804028  doi: 10.1002/smll.201804028

    27. [27]

      Lu, X.; Zhang, K.; Niu, X.; Ren, D.; Zhou, Z.; Dang, L.; Fu, H.; Tan, C.; Ma, L.; Zang, S. Chem. Soc. Rev. 2024, 53, 6694. doi: 10.1039/D3CS01026K  doi: 10.1039/D3CS01026K

    28. [28]

      Zhao, Y.; Wu, D.; Qiao, Y.; Yang, G.; Ma, L.; Wang, Y. Inorg. Chem. Front. 2024, 11, 2071. doi: 10.1039/d3qi02527f  doi: 10.1039/d3qi02527f

    29. [29]

      Yang, X.; Zhang, J.; Tian, X.; Qin, J.; Zhang, X.; Ma, L. Angew. Chem. Int. Ed. 2022, 61, e202216699. doi: 10.1002/anie.202216699  doi: 10.1002/anie.202216699

    30. [30]

      Gao, P.; Zhang, K.; Ren, D.; Liu, H.; Zhang, H.; Fu, H.; Ma, L.; Li, D. Adv. Funct. Mater. 2023, 33, 2300105. doi: 10.1002/adfm.202300105  doi: 10.1002/adfm.202300105

    31. [31]

      Wu, Q.; Li, A.; He, R.; Wu, Y.; Hou, L.; Yang, G.; Zhang, W.; Wang, Y. Chin. Chem. Lett. 2024, 35, 108639. doi: 10.1016/j.cclet.2023.108639  doi: 10.1016/j.cclet.2023.108639

    32. [32]

      Lai, K.; Li, F.; Li, N.; Gao, Y.; Ge, L. Acta Phys. -Chim. Sin. 2024, 40, 2304018.  doi: 10.3866/PKU.WHXB202304018

    33. [33]

      Qin, J.; Xiao, Z.; Xu, P.; Li, Z.; Lu, X.; Yang, X.; Lu, W.; Ma, L.; Li, D. Inorg. Chem. 2022, 61, 13234. doi: 10.1021/acs.inorgchem.2c01517  doi: 10.1021/acs.inorgchem.2c01517

    34. [34]

      Li, J.; Song, S.; Meng, J.; Tan, L.; Liu, X.; Zheng, Y.; Li, Z.; Yeung, K.; Cui, Z.; Liang, Y.; et al. J. Am. Chem. Soc. 2021, 143, 15427. doi: 10.1021/jacs.1c07875  doi: 10.1021/jacs.1c07875

    35. [35]

      Tang, Q.; Feng, L.; Li, Z.; Wu, S.; Zhang, L.; Sun, Q.; Wu, M.; Zou, J. Chin. Chem. Lett. 2024, 35, 109454. doi: 10.1016/j.cclet.2023.109454  doi: 10.1016/j.cclet.2023.109454

    36. [36]

      He, W.; Hu, J.; Cui, Y.; Li, J.; Si, Y.; Wang, S.; Zhao, Y.; Zhou, Z.; Ma, L.; Zang, S. Natl. Sci. Rev. 2024, 11, nwae174. doi: 10.1093/nsr/nwae174  doi: 10.1093/nsr/nwae174

    37. [37]

      Zhu, R.; Kang, L.; Li, L.; Pan, X.; Wang, H.; Su, Y.; Li, G.; Cheng, H.; Li, R.; Liu, X.; et al. Acta Phys. -Chim. Sin. 2024, 40, 2303003.  doi: 10.3866/PKU.WHXB202303003

    38. [38]

      He, W.; Zhou, Z.; Han, Z.; Li, S.; Zhou, Z.; Ma, L.; Zang, S. Angew. Chem. Int. Ed. 2021, 60, 8505. doi: 10.1002/anie.202100006  doi: 10.1002/anie.202100006

    39. [39]

      Wang, X.; Kang, Z.; Wang, D.; Zhao, Y.; Xiang, X.; Shang, H.; Zhang, B. Nano Energy 2024, 121, 109268. doi: 10.1016/j.nanoen.2024.109268  doi: 10.1016/j.nanoen.2024.109268

    40. [40]

      Wang, B.; Chen, S.; Zhang, Z.; Wang, D. SmartMat 2022, 3, 84. doi: 10.1002/smm2.1101  doi: 10.1002/smm2.1101

    41. [41]

      Kim, J.; Wu, S.; Zdrazil, L.; Denisov, N.; Schmuki, P. Angew. Chem. Int. Ed. 2024, 63, e202319255. doi: 10.1002/anie.202319255  doi: 10.1002/anie.202319255

    42. [42]

      Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen. B.; et al. Science 2017, 357, 389. doi: 10.1126/science.aah4321  doi: 10.1126/science.aah4321

    43. [43]

      Chang, J.; Hülsey, M.; Wang, S.; Li, M.; Ma, X.; Yan, N. Angew. Chem. Int. Ed. 2023, 62, e202218265. doi: 10.1002/anie.202218265  doi: 10.1002/anie.202218265

    44. [44]

      Zhou, J.; Xu, D.; Tian, G.; He, Q.; Zhang, X.; Liao, J.; Mei, L.; Chen, L.; Gao, L.; Zhao, L.; et al. J. Am. Chem. Soc. 2023, 145, 4279. doi: 10.1021/jacs.2c13597  doi: 10.1021/jacs.2c13597

    45. [45]

      Le, X.; Nguyen, N.; Lee, W.; Yang, Y.; Choi, H.; Youn, Y. Adv. Funct. Mater. 2024, 34, 2401893. doi: 10.1002/adfm.202401893  doi: 10.1002/adfm.202401893

    46. [46]

      Feng, G.; Huang, H.; Zhang, M.; Wu, Z.; Sun, D.; Chen, Q.; Yang, D.; Zheng, Y.; Chen, Y.; Jing, X. Adv. Sci. 2023, 10, 2302579. doi: 10.1002/advs.202302579  doi: 10.1002/advs.202302579

    47. [47]

      Yin, Y.; Ge, X.; Ouyang, J.; Na, N. Nat. Commun. 2024, 15, 2954. doi: 10.1038/s41467-024-46987-1  doi: 10.1038/s41467-024-46987-1

    48. [48]

      Wang, L.; Qu, X.; Zhao, Y.; Weng, Y.; Waterhouse, G.; Yan, H.; Guan, S.; Zhou, S. ACS Appl. Mater. Interfaces 2019, 11, 35228. doi: 10.1021/acsami.9b11238  doi: 10.1021/acsami.9b11238

    49. [49]

      Feng, X.; Lei, J.; Ma, L.; Ouyang, Q.; Zeng, Y.; Liang, H.; Lei, C.; Li, G.; Tan, L.; Liu, X.; et al. Small 2022, 18, 2105775. doi: 10.1002/smll.202105775  doi: 10.1002/smll.202105775

    50. [50]

      Wang, D.; Wang, J.; Gao, X.; Ding, H.; Yang, M.; He, Z.; Xie, J.; Zhang, Z.; Huang, H.; Nie, G.; et al. Adv. Mater. 2024, 36, 2310033. doi: 10.1002/adma.202310033  doi: 10.1002/adma.202310033

    51. [51]

      Zhou, Z.; Wang, T.; Hu, T.; Xu, H.; Cui, L.; Xue, B.; Zhao, X.; Pan, X.; Yu, S.; Li, H.; et al. Adv. Mater. 2024, 36, 2311002. doi: 10.1002/adma.202311002  doi: 10.1002/adma.202311002

    52. [52]

      Zhou, Z.; Wang, T.; Hu, T.; Cheng, C.; Yu, S.; Li, H.; Liu, S.; Ma, L.; Zhao, M.; Liang, R.; et al. Mater. Chem. Front. 2023, 7, 1684. doi: 10.1039/d2qm01333a  doi: 10.1039/d2qm01333a

    53. [53]

      Fateeva, A.; Chater, P.; Ireland, C.; Tahir, A.; Khimyak, Y.; Wiper, P.; Darwent, J.; Rosseinsky, M. Angew. Chem. Int. Ed. 2012, 51, 7440. doi: 10.1002/anie.201202471  doi: 10.1002/anie.201202471

    54. [54]

      Fang, X.; Shang, Q.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y.; Zhang, Q.; Luo, Y.; Jiang, H. Adv. Mater. 2018, 30, 1705112. doi: 10.1002/adma.201705112  doi: 10.1002/adma.201705112

    55. [55]

      Oshida, K.; Yuan, K.; Yamazaki, Y.; Tsukimura, R.; Nishio, H.; Nomoto, K.; Miura, H.; Shishido, T.; Jin, X.; Nozaki, K. Angew. Chem. Int. Ed. 2024, 63, e202403092. doi: 10.1002/anie.202403092  doi: 10.1002/anie.202403092

    56. [56]

      Zhang, S.; Li, Y.; Ding, C.; Niu, Y.; Zhang, Y.; Yang, B.; Li, G.; Wang, J.; Ma, Z.; Yu, L. Small Struct. 2023, 4, 2200115. doi: 10.1002/sstr.202200115  doi: 10.1002/sstr.202200115

    57. [57]

      Xu, T.; Zhao, H.; Zheng, H.; Zhang, P. Chem. Eng. J. 2020, 385, 123832. doi: 10.1016/j.cej.2019.123832  doi: 10.1016/j.cej.2019.123832

    58. [58]

      Jin, L.; Yan, S.; Du, M.; Zhang, J.; Wu, N.; Liu, G.; Chen, H.; Yuan, C.; Qin, A.; Liu, X. J. Colloid Interface Sci. 2024, 662, 183. doi: 10.1016/j.jcis.2024.02.049  doi: 10.1016/j.jcis.2024.02.049

    59. [59]

      Xu, T.; Zheng, H.; Zhang, P. J. Hazard. Mater. 2020, 388, 121746. doi: 10.1016/j.jhazmat.2019.121746  doi: 10.1016/j.jhazmat.2019.121746

    60. [60]

      Guan, G.; Zheng, S.; Xia, M.; Li, K.; Ouyang, Y.; Yang, G.; Yang, Q. Chem. Eng. J. 2023, 464, 142530. doi: 10.1016/j.cej.2023.142530  doi: 10.1016/j.cej.2023.142530

    61. [61]

      Zhou, R.; Lv, W.; Li, B.; Yu, B.; Zhang, S.; Zhou, Y.; Liu, S.; Zhao, Q. Sci. China Chem. 2024, 67, 604. doi: 10.1007/s11426-023-1836-y  doi: 10.1007/s11426-023-1836-y

    62. [62]

      Chen, Y.; Wang, Z.; Wang, H.; Lu, J.; Yu, S.; Jiang, H. J. Am. Chem. Soc. 2017, 139, 2035. doi: 10.1021/jacs.6b12074  doi: 10.1021/jacs.6b12074

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    3. [3]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    4. [4]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    5. [5]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    6. [6]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    10. [10]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052

    13. [13]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    14. [14]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    16. [16]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    17. [17]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    18. [18]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    19. [19]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(3)
  • Abstract views(253)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return