Citation: Jian Li, Yu Zhang, Rongrong Yan, Kaiyuan Sun, Xiaoqing Liu, Zishang Liang, Yinan Jiao, Hui Bu, Xin Chen, Jinjin Zhao, Jianlin Shi. Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100042. doi: 10.1016/j.actphy.2024.100042 shu

Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy

  • Corresponding author: Hui Bu, 26500825@hebmu.edu.cn Xin Chen, xinc2019@126.com Jinjin Zhao, jinjinzhao2012@163.com
  • These authors contributed equally.
  • Received Date: 18 October 2024
    Revised Date: 29 November 2024
    Accepted Date: 30 November 2024

    Fund Project: the National Natural Science Foundation of China U2130128the Yanzhao Young Scientist Project from Hebei Natural Science Foundation B2023205040the Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region from Hebei Natural Science Foundation H2022205047the Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region from Hebei Natural Science Foundation 22JCZXJC00060the Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region from Hebei Natural Science Foundation E3B33911DFthe Central Government Guiding Local Science and Technology Development Project 236Z7753Gthe Central Government Guiding Local Science and Technology Development Project 246Z7755GKey Cultivation Special Project for Basic Research from Hebei Education Department JCZX2025007the Innovation Capability Improvement Plan Project of Hebei Province 22567604Hthe Ph.D Scientific Research Start-up Fund of Hebei Normal University L2023B18the College student's innovation and entrepreneurship training plan program S202410094046

  • Metal halide perovskites have emerged as highly promising materials in optoelectronics, owing to their unique multidimensional crystal structures that impart exceptional optical and electronic properties. These materials exhibit remarkable fluorescence imaging and tracking capabilities, as well as efficient photoelectric conversion, making them suitable for a broad range of applications. Nevertheless, despite their significant potential, their poor water stability has posed a major challenge, particularly in biomedical fields such as drug delivery systems, biological imaging, and photoelectrocatalytic oncotherapy. This limitation has hindered their practical use in medical treatments and diagnostics. In this study, we address the water stability issue by successfully synthesizing CsSn0.5Pb0.5Br3 perovskite nanocrystals (PeNCs) and conjugating them with methotrexate-chitosan-folic acid (MTX-CS-FA), resulting in innovative green light-emitting PeNCs@MTX-CS-FA nanoparticles. These nanoparticles exhibited remarkable water stability, maintaining their structural and functional integrity for up to 228 d, a significant improvement that enables their application in complex biological environments. Under visible light illumination, the nanoparticles demonstrated a dual-action therapeutic mechanism. The perovskites effectively generated electrons and reactive oxygen species (ROS), inducing oxidative stress in tumor cells. At the same time, photogenerated holes oxidized glutathione (GSH), a molecule that is typically overexpressed in tumor cells to protect against oxidative damage. By depleting GSH, the nanoparticles weakened the tumor cells' efense mechanisms, thereby enhancing the oxidative damage caused by ROS. In addition, methotrexate (MTX), a chemotherapeutic agent integrated into the system, inhibited dihydrofolate reductase (DHFR) activity. This inhibition disrupted tumor cell metabolism, particularly nucleotide synthesis, leading to lipid peroxidation and subsequent cell death. Together, these mechanisms generated a potent, synergistic therapeutic effect. The therapeutic efficacy of the PeNCs@MTX-CS-FA nanoparticles was validated through in vivo antitumor experiments in mice. A total dose of 2.4 mg of nanoparticles resulted in a 63.68% reduction in tumor volume and a 63.26% decrease in tumor weight, demonstrating significant tumor growth suppression. Biological safety evaluations further confirmed the nanoparticles' biocompatibility. Notably, they were excreted from the mice in their fluorescent form without decomposition, ensuring minimal long-term toxicity. This safe excretion pathway underscores the feasibility of repeated use of these nanoparticles in clinical applications. Overall, this study highlights the transformative potential of metal halide perovskites in cancer treatment. By overcoming the water stability limitations that have previously constrained their biomedical applications, the PeNCs@MTX-CS-FA nanoparticles exhibited outstanding capabilities in real-time bioimaging and effective photoelectrocatalytic chemotherapy, thus paving the way for future innovations in biomedical science.
  • 加载中
    1. [1]

      Grätzel, M. Nature 2001, 414 (15), 338. doi: 10.1038/35104607  doi: 10.1038/35104607

    2. [2]

      Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499 (7458), 316. doi: 10.1038/nature12340  doi: 10.1038/nature12340

    3. [3]

      Andrei, V.; Roh, I.; Yang, P. Sci. Adv. 2023, 9 (6), 9044. doi: 10.1126/sciadv.ade9044  doi: 10.1126/sciadv.ade9044

    4. [4]

      Han, D.; Wang, J.; Agosta, L.; Zang, Z.; Zhao, B.; Kong, L.; Lu, H.; Mosquera-Lois, I.; Carnevali, V.; Dong, J.; et al. Nature 2023, 622 (7983), 493. doi: 10.1038/s41586-023-06514-6  doi: 10.1038/s41586-023-06514-6

    5. [5]

      Qin, L.; Gan, J.; Niu, D.; Cao, Y.; Duan, X.; Qin, X.; Zhang, H.; Jiang, Z.; Jiang, Y.; Dai, S.; et al. Nat. Commun. 2022, 13 (1), 91. doi: 10.1038/s41467-021-27640-7  doi: 10.1038/s41467-021-27640-7

    6. [6]

      Zhu, P.; Pu, Y.; Wang, M.; Wu, W.; Qin, H.; Shi, J. J. Am. Chem. Soc 2023, 145 (10), 5803. doi: 10.1021/jacs.2c12942  doi: 10.1021/jacs.2c12942

    7. [7]

      Chang, M.; Wang, Z.; Dong, C.; Zhou, R.; Chen, L.; Huang, H.; Feng, W.; Wang, Z.; Wang, Y.; Chen, Y. Adv. Mater. 2023, 35 (7), 2208817. doi: 10.1002/adma.202208817  doi: 10.1002/adma.202208817

    8. [8]

      Jeong, M.; Choi, I. W.; Yim, K.; Jeong, S.; Kim, M.; Choi, S. J.; Cho, Y.; An, J.-H.; Kim, H.-B.; Jo, Y.; et al. Nat. Photonics 2022, 16 (2), 119. doi: 10.1038/s41566-021-00931-7  doi: 10.1038/s41566-021-00931-7

    9. [9]

      Qin, W.; Ali, W.; Wang, J.; Liu, Y.; Yan, X.; Zhang, P.; Feng, Z.; Tian, H.; Yin, Y.; Tian, W.; et al. Nat. Commun. 2023, 14 (1), 256. doi: 10.1038/s41467-023-35837-1  doi: 10.1038/s41467-023-35837-1

    10. [10]

      Zhang, G.; Xu, Y.; Yang, S.; Ren, S.; Jiao, Y.; Wang, Y.; Ma, X.; Li, H.; Hao, W.; He, C.; et al. Nano Energy 2023, 106, 108074. doi: 10.1016/j.nanoen.2022.108074  doi: 10.1016/j.nanoen.2022.108074

    11. [11]

      Zhao, J.; Kong, G.; Chen, S.; Chen, S.; Li, Q.; Huang, B.; Huang, B.; Liu, Z.; San, X.; Wang, Y.; et al. Sci. Bull. 2017, 62 (17), 1173. doi: 10.1016/j.scib.2017.08.022  doi: 10.1016/j.scib.2017.08.022

    12. [12]

      Zhao, J.; Wei, L.; Jia, C.; Tang, H.; Su, X.; Ou, Y.; Liu, Z.; Wang, C.; Zhao, X.; Jin, H.; et al. J. Mater. Chem. A 2018, 6 (41), 20224. doi: 10.1039/c8ta05282d  doi: 10.1039/c8ta05282d

    13. [13]

      Macdonald, T. J.; Lanzetta, L.; Liang, X.; Ding, D.; Haque, S. A. Adv. Mater. 2023, 35 (25), 2206684. doi: 10.1002/adma.202206684  doi: 10.1002/adma.202206684

    14. [14]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52 (15), 9019. doi: 10.1021/ic401215x  doi: 10.1021/ic401215x

    15. [15]

      Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. J. S. Science 2015, 347 (6225), 967. doi: 10.1126/science.aaa5760  doi: 10.1126/science.aaa5760

    16. [16]

      Jiang, Y.; Wang, X.; Pan, A. J. A. M. Adv. Mater. 2019, 31 (47), 1806671. doi: 10.1002/adma.201806671  doi: 10.1002/adma.201806671

    17. [17]

      Cui, J.; Liu, Y.; Deng, Y.; Lin, C.; Fang, Z.; Xiang, C.; Bai, P.; Du, K.; Zuo, X.; Wen, K.; et al. Sci. Adv. 2021, 7 (41), 8458. doi: 10.1126/sciadv.abg8458  doi: 10.1126/sciadv.abg8458

    18. [18]

      Jiang, Y.; Sun, C.; Xu, J.; Li, S.; Cui, M.; Fu, X.; Liu, Y.; Liu, Y.; Wan, H.; Wei, K.; et al. Nature 2022, 612 (7941), 679. doi: 10.1038/s41586-022-05486-3  doi: 10.1038/s41586-022-05486-3

    19. [19]

      Song, W.; Wang, D.; Tian, J.; Qi, G.; Wu, M.; Liu, S.; Wang, T.; Wang, B.; Yao, Y.; Zou, Z.; et al. Small 2022, 18 (42), 2204763. doi: 10.1002/smll.202204763  doi: 10.1002/smll.202204763

    20. [20]

      Jin, M.; Zhai, X.; Huang, Y.; Zhang, M.; Ma, T.; Zeng, Z.; Fu, H.; Yin, L.; Zhang, Y.; Du, Y. Small 2024, 20 (26), e2310238. doi: 10.1002/smll.202310238  doi: 10.1002/smll.202310238

    21. [21]

      He, C. L.; Meng, Z. Q.; Ren, S. X.; Li, J.; Wang, Y.; Wu, H.; Bu, H.; Zhang, Y.; Hao, W. Z.; Chen, S. L.; et al. Rare Met. 2023, 42, 1624. doi: 10.1007/s12598-022-02222-8  doi: 10.1007/s12598-022-02222-8

    22. [22]

      Ma, C.; Eickemeyer, F. T.; Lee, S.-H.; Kang, D.-H.; Kwon, S. J.; Grätzel, M.; Park, N.-G. Science 2023, 379 (6628), 173. doi: 10.1126/science.adf3349  doi: 10.1126/science.adf3349

    23. [23]

      Park, S. M.; Wei, M.; Xu, J.; Atapattu, H. R.; Eickemeyer, F. T.; Darabi, K.; Grater, L.; Yang, Y.; Liu, C.; Science 2023, 381 (6654), 209. doi: 10.1126/science.adi4107  doi: 10.1126/science.adi4107

    24. [24]

      Wang, Z.; Zeng, L.; Zhu, T.; Chen, H.; Chen, B.; Kubicki, D. J.; Balvanz, A.; Li, C.; Maxwell, A.; Ugur, E.; et al. Nature 2023, 618 (7963), 74. doi: 10.1038/s41586-023-06006-7  doi: 10.1038/s41586-023-06006-7

    25. [25]

      Folgueras, M. C.; Jiang, Y.; Jin, J.; Yang, P. Nature 2023, 621 (7978), 282. doi: 10.1038/s41586-023-06396-8  doi: 10.1038/s41586-023-06396-8

    26. [26]

      Jin, J.; Huang, H.; Chen, C.; Smith, P. W.; Folgueras, M. C.; Yu, S.; Zhang, Y.; Chen, P.-C.; Seeler, F.; Schaefer, B.; et al. ACS Photonics 2023, 10 (3), 772. doi: 10.1021/acsphotonics.3c00042  doi: 10.1021/acsphotonics.3c00042

    27. [27]

      Ryu, I.; Ryu, J. Y.; Choe, G.; Kwon, H.; Park, H.; Cho, Y. S.; Du, R.; Yim, S. Adv. Funct. Mater. 2021, 31 (34), 2102334. doi: 10.1002/adfm.202102334  doi: 10.1002/adfm.202102334

    28. [28]

      Lian, H.; Li, Y.; Saravanakumar, S.; Jiang, H.; Li, Z.; Wang, J.; Xu, L.; Zhao, W.; Han, G. Coord. Chem. Rev. 2022, 452, 214313. doi: 10.1016/j.ccr.2021.214313  doi: 10.1016/j.ccr.2021.214313

    29. [29]

      Patel, M.; Patel, R.; Park, C.; Cho, K.; Kumar, P.; Park, C.; Koh, W.-G. Nano Converg. 2023, 10 (1), 21. doi: 10.1186/s40580-023-00366-6  doi: 10.1186/s40580-023-00366-6

    30. [30]

      Luo, X.; Han, Y.; Chen, Z.; Li, Y.; Liang, G.; Liu, X.; Ding, T.; Nie, C.; Wang, M.; Castellano, F. N.; et al. Nat. Commun. 2020, 11 (1), 28. doi: 10.1038/s41467-019-13951-3  doi: 10.1038/s41467-019-13951-3

    31. [31]

      Luo, X.; Liang, G.; Han, Y.; Li, Y.; Ding, T.; He, S.; Liu, X.; Wu, K. J. Am. Chem. Soc 2020, 142 (25), 11270. doi: 10.1021/jacs.0c04583  doi: 10.1021/jacs.0c04583

    32. [32]

      Liu, M.; Xia, P.; Zhao, G.; Nie, C.; Gao, K.; He, S.; Wang, L.; Wu, K. Angew. Chem. Int. Ed. 2022, 61 (35), 202208241. doi: 10.1002/anie.202208241  doi: 10.1002/anie.202208241

    33. [33]

      Liu, M.; Wang, J.; Liang, G.; Luo, X.; Zhao, G.; He, S.; Wang, L.; Liang, W.; Li, J.; Wu, K. Chem. 2022, 8 (6), 1720. doi: 10.1016/j.chempr.2022.03.003  doi: 10.1016/j.chempr.2022.03.003

    34. [34]

      Crespo-Quesada, M.; Pazos-Outón, L. M.; Warnan, J.; Kuehnel, M. F.; Friend, R. H.; Reisner, E. Nat. Commun. 2016, 7 (1), 12555. doi: 10.1038/ncomms12555  doi: 10.1038/ncomms12555

    35. [35]

      Li, S.; Lei, D.; Ren, W.; Guo, X.; Wu, S.; Zhu, Y.; Rogach, A. L.; Chhowalla, M.; Jen, A. K. Y. Nat. Commun. 2020, 11 (1), 1192. doi: 10.1038/s41467-020-15016-2  doi: 10.1038/s41467-020-15016-2

    36. [36]

      Hu, X.; Xu, Y.; Wang, J.; Ma, J.; Wang, L.; Jiang, W. Adv. Fiber Mater. 2023, 5 (1), 183. doi: 10.1007/s42765-022-00207-x  doi: 10.1007/s42765-022-00207-x

    37. [37]

      Xue, J.; Chen, D.; Zhang, H.; Guo, L.; Li, P.; Han, D.; Guo, X.; Duan, Q.; Sang, S. ACS Appl. Nano Mater. 2024, 7 (4), 3997. doi: 10.1021/acsanm.3c05605  doi: 10.1021/acsanm.3c05605

    38. [38]

      Jia, C.; Zhao, X.; Lai, Y.-H.; Zhao, J.; Wang, P.-C.; Liou, D.-S.; Wang, P.; Liu, Z.; Zhang, W.; Chen, W.; et al. Nano Energy 2019, 60, 476. doi: 10.1016/j.nanoen.2019.03.053  doi: 10.1016/j.nanoen.2019.03.053

    39. [39]

      Liu, X.; Ren, S.; Li, Z.; Guo, J.; Yi, S.; Yang, Z.; Hao, W.; Li, R.; Zhao, J. Adv. Funct. Mater. 2022, 32 (38), 2202951. doi: 10.1002/adfm.202202951  doi: 10.1002/adfm.202202951

    40. [40]

      Wang, P.; Zhao, J.; Liu, J.; Wei, L.; Liu, Z.; Guan, L.; Cao, G. J. Power Sources 2017, 339, 51. doi: 10.1016/j.jpowsour.2016.11.046  doi: 10.1016/j.jpowsour.2016.11.046

    41. [41]

      Lim, S.; Han, S.; Kim, D.; Min, J.; Choi, J.; Park, T. Adv. Mater. 2022, 35 (4), 2203430. doi: 10.1002/adma.202203430  doi: 10.1002/adma.202203430

    42. [42]

      Zhang, W.; Duan, X.; Tan, Y.; Hao, J.; Zhu, H.; Wang, Q.; Yang, H.; Liu, H.; Wang, K.; Wang, Z.; et al. Laser Photonics Rev. 2024, 18, 2400367. doi: 10.1002/lpor.202400367  doi: 10.1002/lpor.202400367

    43. [43]

      Soheyli, E.; Ghaemi, B.; Sahraei, R.; Sabzevari, Z.; Kharrazi, S.; Amani, A. MSE C 2020, 111, 110807. doi: 10.1016/j.msec.2020.110807  doi: 10.1016/j.msec.2020.110807

    44. [44]

      Wang, N.; Zheng, A.-Q.; Liu, X.; Chen, J.-J.; Yang, T.; Chen, M.-L.; Wang, J.-H. ACS Appl. Mater. Interfaces 2018, 10 (9), 7901. doi: 10.1021/acsami.8b00947  doi: 10.1021/acsami.8b00947

    45. [45]

      Khan, Z. U.; Khan, L. U.; Uchiyama, M. K.; Prado, F. M.; Faria, R. L.; Costa, I. F.; Miyamoto, S.; Araki, K.; Gidlund, M.; Brito, H. F.; et al. ACS Appl. Nano Mater. 2023, 6 (5), 3767. doi: 10.1021/acsanm.2c05482  doi: 10.1021/acsanm.2c05482

    46. [46]

      Soheyli, E.; Sahraei, R.; Nabiyouni, G.; Hatamnia, A. A.; Rostamzad, A.; Soheyli, S. J. Colloid Interface Sci. 2018, 529, 520. doi: 10.1016/j.jcis.2018.06.024  doi: 10.1016/j.jcis.2018.06.024

    47. [47]

      Wu, X.-g.; Ji, H.; Yan, X.; Zhong, H. Nat. Nanotechnol. 2022, 17 (8), 813. doi: 10.1038/s41565-022-01163-8  doi: 10.1038/s41565-022-01163-8

    48. [48]

      Cheng, H.; Chen, X.; Sheng, Y.; Song, M.; Sun, C.; Wang, Z.; Zhou, J.; Zhang, H.; Ding, Y. Chem. Eng. J. 2023, 468. doi: 10.1016/j.cej.2023.143457  doi: 10.1016/j.cej.2023.143457

    49. [49]

      Sun, L.; Cao, Y.; Li, W.; Wang, L.; Ding, P.; Lu, Z.; Ma, F.; Wang, Z.; Pei, R. Small 2023, 19 (27). doi: 10.1002/smll.202300101  doi: 10.1002/smll.202300101

    50. [50]

      Zhang, C.; Li, W.; Li, L. Angew. Chem. 2021, 133 (14), 7564. doi: 10.1002/ange.202006169  doi: 10.1002/ange.202006169

    51. [51]

      Samiei, S.; Soheyli, E.; Vighnesh, K.; Nabiyouni, G.; Rogach, A. L. Small 2024, 20 (17), 2307972. doi: 10.1002/smll.202307972  doi: 10.1002/smll.202307972

    52. [52]

      Liang, S.; Zhang, M.; Biesold, G. M.; Choi, W.; He, Y.; Li, Z.; Shen, D.; Lin, Z. Adv. Mater. 2021, 33 (50), 2005888. doi: 10.1002/adma.202005888  doi: 10.1002/adma.202005888

    53. [53]

      Gao, J.; Hou, B.; Zhu, Q.; Yang, L.; Jiang, X.; Zou, Z.; Li, X.; Xu, T.; Zheng, M.; Chen, Y.-H.; et al. Nat. Commun. 2022, 13 (1), 4318. doi: 10.1038/s41467-022-32050-4  doi: 10.1038/s41467-022-32050-4

    54. [54]

      Geng, B.; Hu, J.; Li, Y.; Feng, S.; Pan, D.; Feng, L.; Shen, L. Nat. Commun. 2022, 13 (1), 5735. doi: 10.1038/s41467-022-33474-8  doi: 10.1038/s41467-022-33474-8

    55. [55]

      Pan, S.; Huang, G.; Sun, Z.; Chen, X.; Xiang, X.; Jiang, W.; Xu, Y.; Chen, T.; Zhu, X. Adv. Funct. Mater. 2023, 33 (13), 2213364. doi: 10.1002/adfm.202213364  doi: 10.1002/adfm.202213364

    56. [56]

      Du, J.; Zhou, M.; Chen, Q.; Tao, Y.; Ren, J.; Zhang, Y.; Qin, H. Adv. Funct. Mater. 2023, 33 (24), 2215244. doi: 10.1002/adfm.202215244  doi: 10.1002/adfm.202215244

    57. [57]

      Yang, K.; Yu, G.; Yang, Z.; Yue, L.; Zhang, X.; Sun, C.; Wei, J.; Rao, L.; Chen, X.; Wang, R. Angew. Chem. Int. Ed. 2021, 60 (32), 17570. doi: 10.1002/anie.202103721  doi: 10.1002/anie.202103721

    58. [58]

      Yu, G.; Zhao, X.; Zhou, J.; Mao, Z.; Huang, X.; Wang, Z.; Hua, B.; Liu, Y.; Zhang, F.; He, Z.; et al. J. Am. Chem. Soc 2018, 140 (25), 8005. doi: 10.1021/jacs.8b04400  doi: 10.1021/jacs.8b04400

    59. [59]

      Sun, S.; Chen, Q.; Tang, Z.; Liu, C.; Li, Z.; Wu, A.; Lin, H. Angew. Chem. Int. Ed. 2020, 59 (47), 21041. doi: 10.1002/anie.202007786  doi: 10.1002/anie.202007786

    60. [60]

      Wang, J.; Zhang, Z.; Ai, Y.; Liu, F.; Chen, M.-M.; Liu, D. Carbohydr. Res. 2021, 501, 108275. doi: 10.1016/j.carres.2021.108275  doi: 10.1016/j.carres.2021.108275

    61. [61]

      Chen, J.; Huang, L.; Lai, H.; Lu, C.; Fang, M.; Zhang, Q.; Luo, X. Mol. Pharm. 2014, 11 (7), 2213. doi: 10.1021/mp400269z  doi: 10.1021/mp400269z

    62. [62]

      Pang, Z.; Yan, W.; Yang, J.; Li, Q.; Guo, Y.; Zhou, D.; Jiang, X. ACS Nano 2022, 16 (10), 16019. doi: 10.1021/acsnano.2c03752  doi: 10.1021/acsnano.2c03752

    63. [63]

      Liu, H.; Nie, T.; Duan, X.; Zhang, X.; Zheng, Y.; Zhong, W.; Chen, H.; Miao, C.; Wu, J.; Lin, D. J. Control. Release 2023, 359, 132. doi: 10.1016/j.jconrel.2023.05.040  doi: 10.1016/j.jconrel.2023.05.040

    64. [64]

      Zheng, J.; Conrad, M. Cell Metab 2020, 32 (6), 920. doi: 10.1016/j.cmet.2020.10.011  doi: 10.1016/j.cmet.2020.10.011

    65. [65]

      Pramanik, A.; Patibandla, S.; Gao, Y.; Gates, K.; Ray, P. C. JACS Au 2020, 1 (1), 53. doi: 10.1021/jacsau.0c00038  doi: 10.1021/jacsau.0c00038

    66. [66]

      Lei, Y.; Li, Y.; Lu, C.; Yan, Q.; Wu, Y.; Babbe, F.; Gong, H.; Zhang, S.; Zhou, J.; Wang, R.; et al. Nature 2022, 608 (7922), 317. doi: 10.1038/s41586-022-04961-1  doi: 10.1038/s41586-022-04961-1

    67. [67]

      Zhang, H.; Lee, J.-W.; Nasti, G.; Handy, R.; Abate, A.; Grätzel, M.; Park, N.-G. Nature 2023, 617 (7962), 687. doi: 10.1038/s41586-023-05938-4  doi: 10.1038/s41586-023-05938-4

    68. [68]

      Chowdhury, T. H.; Reo, Y.; Yusoff, A. R. B. M.; Noh, Y. Y. Adv. Sci. 2022, 9 (33), 2203749. doi: 10.1002/advs.202203749  doi: 10.1002/advs.202203749

    69. [69]

      Sun, Q.; Zhang, Z.; Zhang, T.; Feng, Y.; Gu, A.; Yu, H.; Zhang, M.; Zhang, X. L.; Zhu, J.; Shen, Y.; et al. ACS Energy Lett. 2022, 7 (12), 4215. doi: 10.1021/acsenergylett.2c02262  doi: 10.1021/acsenergylett.2c02262

    70. [70]

      Liu, F.; Ding, C.; Zhang, Y.; Ripolles, T. S.; Kamisaka, T.; Toyoda, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S.; et al. J. Am. Chem. Soc 2017, 139 (46), 16708. doi: 10.1021/jacs.7b08628  doi: 10.1021/jacs.7b08628

    71. [71]

      Schwartz, H. A.; Laurenzen, H.; Marzouk, A.; Runkel, M.; Brinkmann, K. O.; Rogalla, D.; Riedl, T.; Ashhab, S.; Olthof, S. ACS Appl. Mater. Interfaces 2021, 13 (3), 4203. doi: 10.1021/acsami.0c20285  doi: 10.1021/acsami.0c20285

    72. [72]

      Karmakar, A.; Bhattacharya, A.; Bernard, G. M.; Mar, A.; Michaelis, V. K. ACS Mater. Lett. 2021, 3 (3), 261. doi: 10.1021/acsmaterialslett.0c00596  doi: 10.1021/acsmaterialslett.0c00596

    73. [73]

      Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; et al. J. Am. Chem. Soc 2016, 138 (9), 2941. doi: 10.1021/jacs.5b13470  doi: 10.1021/jacs.5b13470

    74. [74]

      Yang, Z.; Zhang, S.; Sheng, T.; Lv, X.; Wei, X.; Qin, S.; Yi, S.; Zhao, J. J. Mater. Chem. A 2023, 11 (41), 22020. doi: 10.1039/D3TA02909C  doi: 10.1039/D3TA02909C

    75. [75]

      http://www.science-and-fun.de/tools/ (accessed on Oct 3, 2024).

    76. [76]

      Al-Nemrawi, N.; Hameedat, F.; Al-Husein, B.; Nimrawi, S. Pharmaceuticals 2022, 15 (2), 149. doi: 10.3390/ph15020149  doi: 10.3390/ph15020149

    77. [77]

      Al-Nemrawi, N. K.; Altawabeyeh, R. M.; Darweesh, R. S. J. Pharm. Sci. 2022, 111 (2), 485. doi: 10.1016/j.xphs.2021.10.034  doi: 10.1016/j.xphs.2021.10.034

    78. [78]

      Li, M.; Zhang, X.; Yang, P. Nanoscale 2021, 13 (6), 3860. doi: 10.1039/d0nr08325a  doi: 10.1039/d0nr08325a

    79. [79]

      Zhu, J.; Liu, Y.; He, B.; Zhang, W.; Cui, L.; Wang, S.; Chen, H.; Duan, Y.; Tang, Q. Chem. Eng. J. 2022, 428, 131950. doi: 10.1016/j.cej.2021.131950  doi: 10.1016/j.cej.2021.131950

    80. [80]

      Yang, X.; Yan, Z. J.; Zhong, C. M.; Jia, H.; Chen, G. L.; Fan, X. T.; Wang, S. L.; Wu, T. Z.; Lin, Y.; Chen, Z. Adv. Opt. Mater. 2023, 11 (9), 2202673. doi: 10.1002/adom.202202673  doi: 10.1002/adom.202202673

    81. [81]

      Martins, N. C. T.; Ângelo, J.; Girão, A. V.; Trindade, T.; Andrade, L.; Mendes, A. Appl. Catal. B Environ. 2016, 193, 67. doi: 10.1016/j.apcatb.2016.04.016  doi: 10.1016/j.apcatb.2016.04.016

    82. [82]

      Wang, Y.; Zhang, Y.; Feng, Y.; Zhang, X.; Liu, J.; Hou, W.; Jia, J.; Zhang, B. IOP Conf. Ser. Mater. Sci. Eng. 2019, 490 (2), 022067. doi: 10.1088/1757-899x/490/2/022067  doi: 10.1088/1757-899x/490/2/022067

    83. [83]

      Ban, H.; Sun, Q.; Zhang, T.; Li, H.; Shen, Y.; Wang, M. Sol. RRL 2019, 4 (3), 1900457. doi: 10.1002/solr.201900457  doi: 10.1002/solr.201900457

    84. [84]

      Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Surf. Sci. Rep. 2011, 66 (1), 1. doi: 10.1016/j.surfrep.2010.10.001  doi: 10.1016/j.surfrep.2010.10.001

    85. [85]

      Chen, X.; Lai, J.; Shen, Y.; Chen, Q.; Chen, L. 2018, 30 (48), 1802490. doi: 10.1002/adma.201802490

    86. [86]

      Wang, R.; Wang, Z.; Shang, X.; Yang, Y.; Ding, J.; Zhong, Q. J. Mater. Chem. A 2023, 11 (2), 630. doi: 10.1039/D2TA08349C  doi: 10.1039/D2TA08349C

    87. [87]

      Yuan, Y.; Li, T.; Wang, Q.; Xing, J.; Gruverman, A.; Huang, J. 2017, 3 (3), e1602164. doi: 10.1126/sciadv.1602164

    88. [88]

      Deng, X.; Qi, F.; Li, F.; Wu, S.; Lin, F. R.; Zhang, Z.; Guan, Z.; Yang, Z.; Lee, C. S.; Jen, A. K. Y. Angew. Chem. Int. Ed. 2022, 61 (30), 202203088. doi: 10.1002/anie.202203088  doi: 10.1002/anie.202203088

    89. [89]

      Li, Z.; Mo, F.; Wang, Y.; Li, W.; Chen, Y.; Liu, J.; Chen-Mayfield, T.-J.; Hu, Q. Nat. Commun. 2022, 13 (1), 6321. doi: 10.1038/s41467-022-34036-8  doi: 10.1038/s41467-022-34036-8

    90. [90]

      Cramer, S. L.; Saha, A.; Liu, J.; Tadi, S.; Tiziani, S.; Yan, W.; Triplett, K.; Lamb, C.; Alters, S. E.; Rowlinson, S.; et al. Nat. Med. 2017, 23 (1), 120. doi: 10.1038/nm.4232  doi: 10.1038/nm.4232

    91. [91]

      Yuan, M.; Liang, S.; Yang, L.; Li, F.; Liu, B.; Yang, C.; Yang, Z.; Bian, Y.; Ma, P.; Cheng, Z.; et al. Adv. Mater. 2023, 35 (10), 2209589. doi: 10.1002/adma.202209589  doi: 10.1002/adma.202209589

    92. [92]

      Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Biomaterials 2021, 277, 121110. doi: 10.1016/j.biomaterials.2021.121110  doi: 10.1016/j.biomaterials.2021.121110

    93. [93]

      Zhu, J.; Wang, C.; Wei, Q.; Su, Y.; Qu, X.; Wang, W.; Song, X.; Dong, X.; Cai, Y. Small 2023, 19 (45), 2303365. doi: 10.1002/smll.202303365  doi: 10.1002/smll.202303365

    94. [94]

      Lu, G.; Wang, X.; Li, F.; Wang, S.; Zhao, J.; Wang, J.; Liu, J.; Lyu, C.; Ye, P.; Tan, H.; et al. Nat. Commun. 2022, 13 (1), 4214. doi: 10.1038/s41467-022-31799-y  doi: 10.1038/s41467-022-31799-y

    95. [95]

      Ogiwara, H.; Takahashi, K.; Sasaki, M.; Kuroda, T.; Yoshida, H.; Watanabe, R.; Maruyama, A.; Makinoshima, H.; Chiwaki, F.; Sasaki, H.; et al. Cancer cell 2019, 35 (2), 177. doi: 10.1016/j.ccell.2018.12.009  doi: 10.1016/j.ccell.2018.12.009

    96. [96]

      Xiong, Y.; Xiao, C.; Li, Z.; Yang, X. Chem. Soc. Rev. 2021, 50 (10), 6013. doi: 10.1039/d0cs00718h  doi: 10.1039/d0cs00718h

    97. [97]

      Liu, Y.; Wang, Y.; Song, S.; Zhang, H. Natl. Sci. Rev. 2022, 9 (3), 139. doi: 10.1093/nsr/nwab139  doi: 10.1093/nsr/nwab139

    98. [98]

      Cheung, E. C.; Vousden, K. H. Nat. Rev. Cancer 2022, 22 (5), 280. doi: 10.1038/s41568-021-00435-0  doi: 10.1038/s41568-021-00435-0

    99. [99]

      Hardy, N.; Viola, H. M.; Johnstone, V. P.; Clemons, T. D.; Cserne Szappanos, H.; Singh, R.; Smith, N. M.; Iyer, K. S.; Hool, L. C. ACS Nano 2015, 9 (1), 279. doi: 10.1021/nn5061404  doi: 10.1021/nn5061404

    100. [100]

      Yu, Y.; Huang, Z.; Chen, Q.; Zhang, Z.; Jiang, H.; Gu, R.; Ding, Y.; Hu, Y. Biomaterials 2022, 288, 121724. doi: 10.1016/j.biomaterials.2022.121724  doi: 10.1016/j.biomaterials.2022.121724

    101. [101]

      Fan, L.; Duan, M.; Sun, X.; Wang, H.; Liu, J. ACS Appl. Bio Mater. 2020, 3 (6), 3553. doi: 10.1021/acsabm.0c00171  doi: 10.1021/acsabm.0c00171

    102. [102]

      Zhou, G.; Li, M. Adv. Mater. 2022, 34 (24), 2200871. doi: 10.1002/adma.202200871  doi: 10.1002/adma.202200871

    103. [103]

      Verma, R.; Singh, V.; Koch, B.; Kumar, M. Colloids Surf. B Biointerfaces 2023, 226, 113308. doi: 10.1016/j.colsurfb.2023.113308  doi: 10.1016/j.colsurfb.2023.113308

    104. [104]

      Shiji, R.; Joseph, M. M.; Sen, A.; Pillai, K. R.; Unnikrishnan, B.; Sreelekha, T. T. Int. J. Biol. Macromol. 2022, 219, 740. doi: 10.1016/j.ijbiomac.2022.07.185  doi: 10.1016/j.ijbiomac.2022.07.185

    105. [105]

      Pandey, S.; Choudhary, P.; Gajbhiye, V.; Jadhav, S.; Bodas, D. Cancer Nanotechnol. 2023, 14 (1), 30. doi: 10.1186/s12645-023-00162-1  doi: 10.1186/s12645-023-00162-1

    106. [106]

      Shan, M.; Wang, H.; Li, S.; Zhang, X.; Yang, G.; Shan, Y. Mol. Pharm. 2023, 20 (6), 3234. doi: 10.1021/acs.molpharmaceut.2c01035  doi: 10.1021/acs.molpharmaceut.2c01035

    107. [107]

      Moharil, P.; Wan, Z.; Pardeshi, A.; Li, J.; Huang, H.; Luo, Z.; Rathod, S.; Zhang, Z.; Chen, Y.; Zhang, B.; et al. Acta Pharm. Sin. B. 2022, 12 (3), 1148. doi: 10.1016/j.apsb.2021.09.024  doi: 10.1016/j.apsb.2021.09.024

    108. [108]

      Forster Iii, J.; Nandi, D.; Kulkarni, A. Biomater. Sci. 2022, 10 (19), 5566. doi: 10.1039/D2BM00883A  doi: 10.1039/D2BM00883A

    109. [109]

      Cheng, K.; Liu, B.; Zhang, X.-S.; Zhang, R.-Y.; Zhang, F.; Ashraf, G.; Fan, G.-Q.; Tian, M.-Y.; Sun, X.; Yuan, J.; et al. Nat. Commun. 2022, 13 (1), 4567. doi: 10.1038/s41467-022-32349-2  doi: 10.1038/s41467-022-32349-2

    110. [110]

      Lu, C.; Zhang, C.; Wang, P.; Zhao, Y.; Yang, Y.; Wang, Y.; Yuan, H.; Qu, S.; Zhang, X.; Song, G.; et al. Chem 2020, 6 (9), 2314. doi: 10.1016/j.chempr.2020.06.024  doi: 10.1016/j.chempr.2020.06.024

    111. [111]

      Jiang, H.; Guo, Y.; Wei, C.; Hu, P.; Shi, J. Adv. Mater. 2021, 33 (20), 2008065. doi: 10.1002/adma.202008065  doi: 10.1002/adma.202008065

    112. [112]

      Feng, W.; Lv, Y.; Chen, Z.; Wang, F.; Wang, Y.; Pei, Y.; Jin, W.; Shi, C.; Wang, Y.; Qu, Y.; et al. Chem. Eng. J. 2021, 417, 129178. doi: 10.1016/j.cej.2021.129178  doi: 10.1016/j.cej.2021.129178

    113. [113]

      Niu, H.; Chen, J.; Jin, J.; Qi, X.; Bai, K.; Shu, C.; Wu, A.; Xiao, Y.; Wu, C.; Bu, H.; et al. Chem. Eng. J. 2022, 437, 135373. doi: 10.1016/j.cej.2022.135373  doi: 10.1016/j.cej.2022.135373

    114. [114]

      https://stacks.cdc.gov/view/cdc/37586 (accessed on Oct 3, 2024).

    115. [115]

      Zhang, J.; Li, P.; Wang, T.; Li, J.; Yun, K.; Zhang, X.; Yang, X. Pharmacol. Res. 2023, 187, 106632. doi: 10.1016/j.phrs.2022.106632  doi: 10.1016/j.phrs.2022.106632

  • 加载中
    1. [1]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    2. [2]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    3. [3]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    6. [6]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    7. [7]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    8. [8]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    9. [9]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    10. [10]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    11. [11]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    12. [12]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-0. doi: 10.3866/PKU.WHXB202309045

    13. [13]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    14. [14]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    15. [15]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    17. [17]

      Wenwei Zeng Qingyu Sun Mengxiang Liang Lirong Lin Laiying Zhang . Unveiling Anti-Counterfeiting Secrets: Excitation-Dependent Luminescence in Sb3+-Doped Perovskite Materials. University Chemistry, 2026, 41(2): 375-384. doi: 10.12461/PKU.DXHX202503036

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

Metrics
  • PDF Downloads(1)
  • Abstract views(245)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return