Citation: YAN Dong-jie, GUO Tong, YU Ya, CHEN Zhao-hui. Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NOx at low temperature[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 113-120. doi: 10.1016/S1872-5813(21)60003-8 shu

Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NOx at low temperature

  • Corresponding author: YAN Dong-jie, yandongjie_2000@163.com
  • Received Date: 11 September 2020
    Revised Date: 11 October 2020

    Fund Project: The project was supported by the Key R & D project of Shaanxi Province (2020SF-432) and the research project of Shaanxi Modern Architecture Design & Research Institute (XDKY-2020-04)

Figures(10)

  • The effect of lead on the catalytic performance of Mn-Ce/TiO2 catalysts in the selective catalytic reduction (SCR) of NOx with ammonia at low temperature was investigated; with the help of nitrogen sorption, XRD, FT-IR spectroscopy, H2-TPR and NH3-TPD characterization, the causes of lead poisoning and acid regeneration were clarified. The results indicate that the doping of Pb in Mn-Ce/TiO2 leads to a significant decrease of the low-temperature SCR activity; with a Pb loading of 11%, the conversion of NO over Mn-Ce/TiO2 at 180 °C decreases from original 100% on the fresh catalyst to 44% on the Pd-poisoned catalyst. The presence of Pb may reduce the content of active Mn4+ and Ce3+ species on the Mn-Ce/TiO2 catalyst, which suppresses the redox cycle of Mn4+ + Ce3+ ↔ Mn3+ + Ce4+; moreover, the decrease of surface acidity on the Mn-Ce/TiO2 catalyst by the doping of Pb is also disadvantageous to the adsorption and activation of NH3. The Pd-poisoned Mn-Ce/TiO2 can be regenerated by nitric acid treatment; after the regeneration, the catalytic activity of Mn-Ce/TiO2 in NH3-SCR of NO is almost completely recovered and even exceeds that of the fresh catalyst at 80–150 °C. The nitric acid treatment can restore the redox capacity of Mn-Ce/TiO2, increase the surface area, and create new acid sites, which contribute to recovery of the activity of Pb-poisoned Mn-Ce/TiO2 catalyst in NH3-SCR.
  • 加载中
    1. [1]

      HAO Ji-ming, MA Guang-da, WANG Shu-xiao. Air Pollution Control Engineering [M]. 3rd Ed. Beijing: Higher Education Press, 2010: 401−402.

    2. [2]

      PARK T S, JEONG S K, HONG S H, HONG S C. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature[J]. Ind Eng Chen Res,2015,40(21):4491−4495.

    3. [3]

      XU W Q, YU Y B, ZHANG C B, HE H. Selective catalytic reduction of NO with NH3 over a Ce/TiO2 catalyst[J]. Catal Commun,2008,9(6):1453−1457.  doi: 10.1016/j.catcom.2007.12.012

    4. [4]

      SUN Ke, LIU Wei, WANG Yue-jun, MO Jian-song, LIU Yue, WU Zhong-biao. Experimental study on influences of additives in the molding process of Ce-Mn/TiO2 catalyst for the low-temperature selective catalytic reduction of NOx[J]. Environ Pollut Control,2013,35(11):37−41.  doi: 10.3969/j.issn.1001-3865.2013.11.009

    5. [5]

      CASAPU M, KRÖCHERR O, ELSENER M. Screening of doped MnOx-CeO2 catalysts for low temperature NO-SCR[J]. Appl Catal B: Environ,2009,88(3):413−419.

    6. [6]

      TANG X L, HAO J M, YI H H, NING P. Low-temperature SCR of with NH3 on Mn-based catalysts modified with cerium[J]. J Rare Earth,2007,01:240−243.

    7. [7]

      ANDREOLI S, DEORSOLA F A, PIRONE R. MnOx-CeO2 catalysts synthesized by solution combustion synthesis for the low-temperature NH3-SCR[J]. Catal Today,2015,253:199−206.  doi: 10.1016/j.cattod.2015.03.036

    8. [8]

      QI N, DAN H, LI X. Effect of Cu doping on the SCR activity of Mn-Ce/ATP catalyst[J]. Russ J Appl Chem,2018,91(1):136−142.  doi: 10.1134/S1070427218010214

    9. [9]

      WANG Xiao-wei, WANG Hu. The research progress of SCR catalyst deactivation reason and regeneration method[J]. Shandong Chem Ind,2015,44(17):37−39.  doi: 10.3969/j.issn.1008-021X.2015.17.013

    10. [10]

      DENG Shuang, ZHANG Fan, LIU Yu, SHI Ying-jie, WANG Hong-mei, ZHANG Chen, WANG Xiang-feng, CAO Qing. Lead emission and speciation of coal-fired power plants in China[J]. J Environ Sci-China,2013,33(7):1199−1206.

    11. [11]

      CHEN Geng, KE Zhao-yue, TANG Nian, ZHANG Kai, LIU Jun. Preliminary study on test method for lead in flue gas from coal-fired power plant[J]. Adm Techn Environ Monit,2020,32(4):52−54.  doi: 10.3969/j.issn.1006-2009.2020.04.012

    12. [12]

      GUO R T, LU C Z, PAN W G, ZHEN W L, WANG Q S, CHEN Q L, DING H L, YANG N Z. A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Catal Commun,2015,59:136−139.  doi: 10.1016/j.catcom.2014.10.006

    13. [13]

      JIANG Ye. Study on titania-based SCR catalysts and their poisoning mechanism of potassium and lead[D]. Hangzhou: Zhejiang University, 2010.

    14. [14]

      CHEN J P, BUZANOWSKI M A, YANG R T, CICHANOWICZ J E. Deactivation of the vanadia catalyst in the selective catalytic reduction process[J]. Air Repair,1990,40(10):1403−1409.

    15. [15]

      JI Yan. Study on heavy metal poisoning and its regeneration technology of DeNOx catalyst[D]. Beijing: North China Electric Power University, 2017.

    16. [16]

      LI Q C, LIU Z Y, LIU Q Y. Kinetics of vanadium leaching from a spent industrial V2O5/TiO2 catalyst by sulfuric acid[J]. Ind Eng Chen Res,2014,53:2956−2962.  doi: 10.1021/ie401552v

    17. [17]

      YU Y K, HE C, CHEN J S, YIN L Q, QIU T X, MENG X R. Regeneration of deactivated commercial SCR catalyst by alkali washing[J]. Catal Commun,2013,39(5):78−81.

    18. [18]

      ZHOU L L, LIA C T, ZHAO L K, ZENG G M, GAO L, WANG Y, YU M E. The poisoning effect of PbO on Mn-Ce/TiO2 catalyst for selective catalytic reduction of NO with NH3 at low temperature[J]. Appl Surf Sci,2016,389:532−539.  doi: 10.1016/j.apsusc.2016.07.136

    19. [19]

      THIRUPATHI B, SMIRNIOTIS P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations[J]. J Catal,2012,288:74−83.  doi: 10.1016/j.jcat.2012.01.003

    20. [20]

      WAN Y P, ZHAO W R, TANG Y, LI L, WANG H J, CUI Y L, GU J L, LI Y S, SHI J L. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Appl Catal B: Environ,2014,148:114−122.

    21. [21]

      HUANG Ji-hui, TONG Hua, TONG Zhi-quan, ZHANG Jun-feng, HUANG Yan. Effects of H2O and SO2 on Mn-Fe/MPS catalyst for NO reduction by NH3 at lower temperatures[J]. Chin J Process Eng,2008,8(16):517−522.

    22. [22]

      CENTENO M A, CARRIZOSA I, ODREOZOLA J A. NO-NH3 coad sorption on vanadia titania catalysts: Ddetermination of the reduction degree of vanadium[J]. Appl Catal B: Environ,2001,29:307−314.  doi: 10.1016/S0926-3373(00)00214-9

    23. [23]

      JIANG Y, YANG L, LIANG G T, LIU S J, GAO W Q, YANG Z D, WANG X W, LIN R Y, ZHU X B. The poisoning effect of PbO on CeO2-MoO3 /TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. Mol Catal,2020,486:1−9.

    24. [24]

      THIRUPATHI B, SMIRNIOTIS P G. Effect of nickel as dopant in Mn/TiO2 catalysts for the low-temperature selective reduction of NO with NH3[J]. Catal Lett,2011,141:1399−1404.  doi: 10.1007/s10562-011-0678-z

    25. [25]

      CHI G L, SHEN B X, YU R R, HE C, ZHANG X. Simultaneous removal of NO and HgO over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts[J]. J Hazard Mater,2017,330:83−92.  doi: 10.1016/j.jhazmat.2017.02.013

    26. [26]

      LIAN Z H, LIU F D, HE H, SHI X Y, MO J S, WU Z B. Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures[J]. Chem Eng J,2014:390−398.

    27. [27]

      CAO F, XIANG J, SU S, WANG P Y, HU S, SUN L S. Ag modified Mn-Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature[J]. Fuel Process Technol,2015,135:66−72.  doi: 10.1016/j.fuproc.2014.10.021

  • 加载中
    1. [1]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    5. [5]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    10. [10]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    11. [11]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    12. [12]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    13. [13]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    14. [14]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    15. [15]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    16. [16]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    17. [17]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    18. [18]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

Metrics
  • PDF Downloads(5)
  • Abstract views(2022)
  • HTML views(451)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return