Citation:
	            
		            Lina Kong,  Xintong Zhang,  Changhua Wang,  Fangxu Wan,  Lan Li. Synergic effects of CuxO electron transfer co-catalyst and valence band edge control over TiO2 for efficient visible-light photocatalysis[J]. Chinese Journal of Catalysis,
							;2017, 38(12): 2120-2131.
						
							doi:
								10.1016/S1872-2067(17)62959-0
						
					
				
					
				
	        
- 
	                	Bandgap engineering by doping and co-catalyst loading are two primary approaches to designing efficient photocatalysts by promoting visible-light absorption and charge separation, respectively. Shifting of the TiO2 conduction band edge is frequently applied to increase visible-light absorption but also lowers the reductive properties of photo-excited electrons. Herein, we report a visible-light-driven photocatalyst based on valance band edge control induced by oxygen excess defects and modification with a CuxO electron transfer co-catalyst. The CuxO grafted oxygen-rich TiO2 microspheres were prepared by ultrasonic spray pyrolysis of the peroxotitanate precursor followed by a wet chemical impregnated treatment. We found that oxygen excess defects in TiO2 shifted the valence band maximum upward and improved the visible-light absorption. The CuxO grafted onto the surface acted as a co-catalyst that efficiently reduced oxygen molecules to active intermediates (i.e., O2·-radial and H2O2), thus consuming the photo-generated electrons. Consequently, the CuxO grafted oxygen-rich TiO2 microspheres achieved a photocatalytic activity respectively 8.6, 13.0 and 11.0 as times high as those of oxygen-rich TiO2, normal TiO2 and CuxO grafted TiO2, for degradation of gaseous acetaldehyde under visible-light irradiation. Our results suggest that high visible-light photocatalytic efficiency can be achieved by combining oxygen excess defects to improve visible-light absorption together with a CuxO electron transfer co-catalyst. These findings provide a new approach to developing efficient heterojunction photocatalysts.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
 - 
			
                    [2]
                
			
 - 
			
                    [3]
                
			
 - 
			
                    [4]
                
			
 - 
			
                    [5]
                
			
 - 
			
                    [6]
                
			
 - 
			
                    [7]
                
			
 - 
			
                    [8]
                
			
 - 
			
                    [9]
                
			
 - 
			
                    [10]
                
			
 - 
			
                    [11]
                
			
 - 
			
                    [12]
                
			
 - 
			
                    [13]
                
			
 - 
			
                    [14]
                
			
 - 
			
                    [15]
                
			
 - 
			
                    [16]
                
			
 - 
			
                    [17]
                
			
 - 
			
                    [18]
                
			
 - 
			
                    [19]
                
			
 - 
			
                    [20]
                
			
 - 
			
                    [21]
                
			
 - 
			
                    [22]
                
			
 - 
			
                    [23]
                
			
 - 
			
                    [24]
                
			
 - 
			
                    [25]
                
			
 - 
			
                    [26]
                
			
 - 
			
                    [27]
                
			
 - 
			
                    [28]
                
			
 - 
			
                    [29]
                
			
 - 
			
                    [30]
                
			
 - 
			
                    [31]
                
			
 - 
			
                    [32]
                
			
 - 
			
                    [33]
                
			
 - 
			
                    [34]
                
			
 - 
			
                    [35]
                
			
 - 
			
                    [36]
                
			
 - 
			
                    [37]
                
			
 - 
			
                    [38]
                
			
 - 
			
                    [39]
                
			
 - 
			
                    [40]
                
			
 - 
			
                    [41]
                
			
 - 
			
                    [42]
                
			
 - 
			
                    [43]
                
			
 - 
			
                    [44]
                
			
 - 
			
                    [45]
                
			
 - 
			
                    [46]
                
			
 - 
			
                    [47]
                
			
 - 
			
                    [48]
                
			
 - 
			
                    [49]
                
			
 - 
			
                    [50]
                
			
 - 
			
                    [51]
                
			
 - 
			
                    [52]
                
			
 - 
			
                    [53]
                
			
 - 
			
                    [54]
                
			
 - 
			
                    [55]
                
			
 - 
			
                    [56]
                
			
 - 
			
                    [57]
                
			
 - 
			
                    [58]
                
			
 - 
			
                    [59]
                
			
 - 
			
                    [60]
                
			
 - 
			
                    [61]
                
			
 - 
			
                    [62]
                
			
 - 
			
                    [63]
                
			
 - 
			
                    [64]
                
			
 - 
			
                    [65]
                
			
 - 
			
                    [66]
                
			
 - 
			
                    [67]
                
			
 - 
			
                    [68]
                
			
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
 - 
				[2]
				
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
 - 
				[3]
				
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
 - 
				[4]
				
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
 - 
				[5]
				
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
 - 
				[6]
				
Zongsheng LI , Yichao WANG , Yujie WANG , Wenhao ZHU , Xiaoyao YIN , Wudan YANG , Songzhi ZHENG , Weihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066
 - 
				[7]
				
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
 - 
				[8]
				
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
 - 
				[9]
				
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
 - 
				[10]
				
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
 - 
				[11]
				
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
 - 
				[12]
				
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
 - 
				[13]
				
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
 - 
				[14]
				
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
 - 
				[15]
				
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
 - 
				[16]
				
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
 - 
				[17]
				
Jiali Lei , Juan Wang , Wenhui Zhang , Guohong Wang , Zihui Liang , Jinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174
 - 
				[18]
				
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
 - 
				[19]
				
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
 - 
				[20]
				
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1)
 - Abstract views(742)
 - HTML views(59)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: