Citation: Xiao Chen, Kaixin Zhu, M. A. Ahmed, Junhu Wang, Changhai Liang. Mössbauer spectroscopic characterization of ferrites as adsorbents for reactive adsorption desulfurization[J]. Chinese Journal of Catalysis, ;2016, 37(5): 727-734. doi: 10.1016/S1872-2067(15)61068-3 shu

Mössbauer spectroscopic characterization of ferrites as adsorbents for reactive adsorption desulfurization

  • Corresponding author: Junhu Wang,  Changhai Liang, 
  • Received Date: 13 January 2016
    Available Online: 21 February 2016

    Fund Project: 国家自然科学基金(21373038,21403026,21476232) (21373038,21403026,21476232)中国博士后基金(2015T80255,2014M551068) (2015T80255,2014M551068)中-埃科技交流项目(21311140474). (21311140474)

  • Sulfur in transportation fuels is a major source of air pollution. New strategies for the desulfurization of fuels have been explored to meet the urgent need to produce cleaner gasoline. Adsorptive desulfurization (ADS) is one of the most promising complementary and alternative methods. Herein, nanocrystalline ferrite adsorbents were synthesized from metal nitrates and urea using a microwave assisted combustion method. A series of ADS experiments were performed using a fixed-bed reactor to evaluate the ADS reactivity over the ferrites, which was found to have the order MgFe2O4 > NiFe2O4 > CuZnFe2O4 > ZnFe2O4 > CoFe2O4. This effect is explained by the fact that the low degree of alloying of Mg-Fe and the doped Mg increased the interaction between Fe and S compounds, leading to a significant improvement in the desulfurization capability of the adsorbent. Additionally, Mg can dramatically promote the decomposition of thiophene. X-ray diffraction and Mössbauer spectroscopy were used to characterize the fresh, regenerated, and sulfided adsorbents. Although the ferrite adsorbents were partially sulfided to bimetallic sulfides during the adsorption process, they were successfully regenerated after calcining at 500 ℃ in air.
  • 加载中
    1. [1]

      [1] R. T. Yang, A. J. Hernández-Maldonado, F. H. Yang, Science, 2003, 301, 79-81.

    2. [2]

      [2] C. S. Song, Catal. Today, 2003, 86, 211-263.

    3. [3]

      [3] E. Ito, J. A. R. Van Veen, Catal. Today, 2006, 116, 446-460.

    4. [4]

      [4] K. Tawara, T. Nishimura, H. Iwanami, T. Nishimoto, T. Hasuike, Ind. Eng. Chem. Res., 2001, 40, 2367-2370.

    5. [5]

      [5] J. C. Zhang, Y. Q. Liu, S. Tian, Y. M. Chai, C. G. Liu, J. Nat. Gas Chem., 2010, 19, 327-332.

    6. [6]

      [6] J. X. Fan, G. Wang, Y. Sun, C. M. Xu, H. J. Zhou, G. L. Zhou, J. S. Gao, Ind. Eng. Chem. Res., 2010, 49, 8450-8460.

    7. [7]

      [7] R. Gupta, S. K. Gangwal, S. C. Jain, Energy Fuels, 1992, 6, 21-27.

    8. [8]

      [8] M. A. Ahmed, L. Alonso, J. M. Palacios, C. Cilleruelo, J. C. Abanades, Solid State Ionics, 2000, 138, 51-62.

    9. [9]

      [9] M. A. Ahmed, E. García, L. Alonso, J. M. Palacios, Appl. Surf. Sci., 2000, 156, 115-124.

    10. [10]

      [10] M. H. Mahmoud, A. M. Elshahawy, S. A. Makhlouf, H. H. Hemdeh, J. Magn. Magn. Mater., 2013, 343, 21-26.

    11. [11]

      [11] A. Manikandan, J. J. Vijaya, L. J. Kennedy, M. Bououdina, J. Mol. Struct., 2013, 1035, 332-340.

    12. [12]

      [12] Y. L. Zhang, Y. X. Yang, H. X. Han, M. Yang, L. Wang, Y. N. Zhang, Z. X. Jiang, C. Li, Appl. Catal. B, 2012, 119-120, 13-19.

    13. [13]

      [13] Z. K. Heiba, M. B. Mohamed, H. H. Hamdeh, M. A. Ahmed, J. Alloys Compd., 2015, 618, 755-760.

    14. [14]

      [14] X. Meng, H. Huang, L. Shi, Ind. Eng. Chem. Res., 2013, 52, 6092-6100.

    15. [15]

      [15] J. Dvorak, T. Jirsak, J. A. Rodriguez, Surf. Sci., 2001, 479, 155-168.

    16. [16]

      [16] L. J. Liu, H. J. Liu, M. Q. Cui, Y. F. Hu, J. Wang, Fuel, 2013, 112, 687-694.

    17. [17]

      [17] I. V. Babich, J. A. Moulijn, Fuel, 2003, 82, 607-631.

    18. [18]

      [18] F. Li, J. J. Liu, D. G. Evans, X. Duan, Chem. Mater., 2004, 16, 1597-1602.

    19. [19]

      [19] K. Gandotra, B. S. Randhawa, Hyperfine Interact., 2008, 185, 139-143.

    20. [20]

      [20] R. C. Sharma, Y. A. Chang, Met. Trans. B, 1979, 10, 103-108.

    21. [21]

      [21] C. Solís, S. Somacescu, E. Palafox, M. Balaguer, J. M. Serra, J. Phys. Chem. C, 2014, 118, 24266-24273.

    22. [22]

      [22] I. S. Lyubutin, C. R. Lin, S. Z. Lu, Y. J. Siao, Y. V. Korzhetskiy, T. V. Dmitrieva, Y. L. Dubinskaya, V. S. Pokatilov, A. O. Konovalova, J. Nanopart. Res., 2011, 13, 5507-5517.

    23. [23]

      [23] J. Cuda, T. Kohout, J. Tucek, J. Filip, O. Malina, M. Krizek, R. Zboril, AIP Conf. Proc., 2014, 1622, 8-11.

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    19. [19]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    20. [20]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

Metrics
  • PDF Downloads(0)
  • Abstract views(525)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return