Citation: Shijie Yuan, Nianhua Liao, Bin Dong, Xiaohu Dai. Optimization of a digested sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for the photo-Fenton reaction[J]. Chinese Journal of Catalysis, ;2016, 37(5): 735-742. doi: 10.1016/S1872-2067(15)61066-X shu

Optimization of a digested sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for the photo-Fenton reaction

  • Corresponding author: Xiaohu Dai, 
  • Received Date: 13 January 2016
    Available Online: 4 February 2016

    Fund Project: 国家科技支撑计划(2014BAL02B02) (2014BAL02B02)国家自然科学基金(51578397). (51578397)

  • The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane-rich biogas. However, digested sludge, the residue produced in that process, still contains high levels of heavy metals and other harmful substances that might make traditional disposal difficult. We have devised a facile method of converting digested sludge into a mesoporous material that acts as an effective and stable heterogeneous catalyst for the photo-Fenton reaction. A comparison of the removal of rhodamine B under different conditions showed that FAS-1-350, which was synthesized by mixing the digested sludge with a 1 mol/L (NH4)2Fe(SO4)2 solution followed by calcination at 350 ℃, exhibited the best catalytic activity owing to its faster reaction rate and lower degree of Fe leaching. The results indicate that Fe2+-loaded catalysts have significant potential to act as stable and efficient heterogeneous promoters for the photo-Fenton reaction, with better performance than Fe3+-loaded catalysts because the Fe(II)/Fe(III) compounds formed in the calcination process are necessary to sustain the Fenton reaction. This protocol provides an alternative, environmentally friendly method of reusing digested sludge and demonstrates an easily synthesized mesoporous material that effectively degrades azo dyes.
  • 加载中
    1. [1]

      [1] K. McClellan, R. U. Halden, Water Res., 2010, 44, 658-668.

    2. [2]

      [2] S. Werle, R. K. Wilk, Renew. Energy, 2010, 35, 1914-1919.

    3. [3]

      [3] Q. L. Xie, P. Peng, S. Y. Liu, M. Min, Y. L. Cheng, Y. Q. Wan, Y. Li, X. Y. Lin, Y. H. Liu, P. Chen, R. Ruan, Bioresour. Technol., 2014, 172, 162-168.

    4. [4]

      [4] O. Malerius, J. Werther, Chem. Eng. J., 2003, 96, 197-205.

    5. [5]

      [5] D. Fytili, A. Zabaniotou, Renew. Sust. Energy Rev., 2008, 12, 116-140.

    6. [6]

      [6] M. Lundin, M. Olofsson, G. J. Pettersson, H. Zetterlund, Resour. Conserv. Recycl., 2004, 41, 255-278.

    7. [7]

      [7] G. Ahlberg, O. Gustafsson, P. Wedel, Environ. Pollut., 2006, 144, 545-553.

    8. [8]

      [8] J. Rapport, R. Zhang, B. M. Jenkins, R. B. Williams eds., Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste, California Integrated Waste Management Board, California Environmental Protection Agency, Sacramento, CA, 2008.

    9. [9]

      [9] X. H. Dai, X. Gai, B. Dong, Bioresour. Technol., 2014, 174, 6-10.

    10. [10]

      [10] X. W. Li, X. H. Dai, J. Takahashi, N. Li, J. W. Jin, L. L. Dai, B. Dong, Bioresour. Technol., 2014, 159, 412-420.

    11. [11]

      [11] B. Dong, X. G. Liu, L. L. Dai, X. H. Dai, Bioresour. Technol., 2013, 131, 152-158.

    12. [12]

      [12] E. Neyens, J. Baeyens, J. Hazard. Mater., 2003, 98, 33-50.

    13. [13]

      [13] J. Bandara, U. Klehm, J. Kiwi, Appl. Catal. B, 2007, 76, 73-81.

    14. [14]

      [14] J. H. Deng, J. H. Jiang, Y. Y. Zhang, X. D. Lin, C. M. Du, Y. Xiong, Appl. Catal. B, 2008, 84, 468-473.

    15. [15]

      [15] W. Luo, L. H. Zhu, N. Wang, H. Q. Tang, M. J. Cao, Y. B. She, Environ. Sci. Technol., 2010, 44, 1786-1791.

    16. [16]

      [16] M. L. Rache, A. R. García, H. R. Zea, A. M. T. Silva, L. M. Madeira, J. H. Ramírez, Appl. Catal. B, 2014, 146, 192-200.

    17. [17]

      [17] Y. J. Yao, Y. M. Cai, F. Lu, F. Y. Wei, X. Y. Wang, S. B. Wang, J. Hazard. Mater., 2014, 270, 61-70.

    18. [18]

      [18] S. Guo, G. K. Zhang, Y. D. Guo, J. C. Yu, Carbon, 2013, 60, 437-444.

    19. [19]

      [19] C. Adán, A. Martinez-Arias, S. Malato, A. Bahamonde, Appl. Catal. B, 2009, 93, 96-105.

    20. [20]

      [20] S. J. Yuan, X. H. Dai, Appl. Catal. B, 2014, 154-155, 252-258.

    21. [21]

      [21] S. Sabhi, J. Kiwi, Water Res., 2001, 35, 1994-2002.

    22. [22]

      [22] N. N. Duan, B. Dong, B. Wu, X. H. Dai, Bioresour. Technol., 2012, 104, 150-156.

    23. [23]

      [23] L. S. Clesceri, A. E. Greenberg, A. D. Eaton eds., Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, DC, 1998.

    24. [24]

      [24] J. Schmitt, H. C. Flemming, Int. Biodeter. Biodegr., 1998, 41, 1-11.

    25. [25]

      [25] E. Doelsch, A. Masion, J. Rose, W. E. E. Stone, J. Y. Bottero, P. M. Bertsch, Colloid Surface A, 2003, 217, 121-128.

    26. [26]

      [26] I. Moriguchi, M. Honda, T. Ohkubo, Y. Mawatari, Y. Teraoka, Catal. Today, 2004, 90, 297-303.

    27. [27]

      [27] J. N. Zhang, F. Lu, H. Zhang, L. M. Shao, D. Z. Chen, P. J. He, Sci. Rep., 2015, 5, 9406.

    28. [28]

      [28] J. Y. Feng, X. J. Hu, P. L. Yue, Environ. Sci. Technol., 2004, 38, 269-275.

    29. [29]

      [29] S. Guo, G. K. Zhang, J. C. Yu, J. Colloid Interf. Sci., 2015, 448, 460-466.

    30. [30]

      [30] F. Martínez, G. Calleja, J. A. Melero, R. Molina, Appl. Catal. B, 2007, 70, 452-460.

    31. [31]

      [31] M. M. Cheng, W. J. Song, W. H. Ma, C. C. Chen, J. C. Zhao, J. Lin, H. Y. Zhu, Appl. Catal. B, 2008, 77, 355-363.

    32. [32]

      [32] W. J. Song, M. M. Cheng, J. H. Ma, W. H. Ma, C. C. Chen, J. C. Zhao, Environ. Sci. Technol., 2006, 40, 4782-4787.

    33. [33]

      [33] Y. W. Gao, Y. Wang, H. Zhang, Appl. Catal. B, 2015, 178, 29-36.

    34. [34]

      [34] D. B. Hasan, A. R. Abdul Aziz, W. M. A. W. Daud, Chem. Eng. Res. Des., 2012, 90, 298-307.

    35. [35]

      [35] C. Wang, H. Liu, Z. M. Sun, Int. J. Photoenergy, 2012, 2012, 801694.

    36. [36]

      [36] E. Viau, K. Bibby, T. Paez-Rubio, J. Peccia, Environ. Sci. Technol., 2011, 45, 5459-5469.

    37. [37]

      [37] M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, A. M. Mayes, Nature, 2008, 452, 301-310.

    38. [38]

      [38] A. Ros, M. A. Montes-Moran, E. Fuente, D. M. Nevskaia, M. J. Martin, Environ. Sci. Technol., 2006, 40, 302-309.

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    3. [3]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    9. [9]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    17. [17]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(0)
  • Abstract views(420)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return