Citation: Leyla Vafi, Ramin Karimzadeh. A novel method for enhancing the stability of ZSM-5 zeolites used for catalytic cracking of LPG: Catalyst modification by dealumination and subsequent silicon loading[J]. Chinese Journal of Catalysis, ;2016, 37(4): 628-635. doi: 10.1016/S1872-2067(15)61062-2 shu

A novel method for enhancing the stability of ZSM-5 zeolites used for catalytic cracking of LPG: Catalyst modification by dealumination and subsequent silicon loading

  • Corresponding author: Ramin Karimzadeh, 
  • Received Date: 20 December 2015
    Available Online: 21 February 2016

    Fund Project:

  • Composite structures of ZSM-5 zeolites were prepared by the synthesis of mesopores and micropores using carbon nanotubes as a template. Dealumination of mesopores was performed selectively using trichloroacetic acid, which could only diffuse into the mesopores and not the micropores owing to the size of the trichloroacetic acid molecules. Empty spaces are created in the catalyst as a result of removal of the Al atoms from the zeolite structure. If Si atoms fill the empty space, then the structure of the mesopores becomes similar to silicates, which do not have any catalytic properties. Silicon containing solution was used to fill the empty spaces, and in doing so, a unique method was developed, by which silicon atoms can directly replace the extracted Al atoms from the mesopore structure. Therefore, by changing the geometry and properties of the mesopores and micropores, the amount of coke reduced from 14% for HZSM-5 to 3% for the modified zeolite.
  • 加载中
    1. [1]

      [1] A. Petushkov, S. Yoon, S. C. Larsen, Microporous. Mesoporous. Mater., 2011, 137, 92-100.

    2. [2]

      [2] Y. Cheng, R. H. Liao, J. S. Li, X. Y. Sun, L. J. Wang, J. Mater. Process. Technol., 2008, 206, 445-452.

    3. [3]

      [3] P. Phiriyawirut, R. Magaraphan, A. M. Jamieson, S. Wongkasemjit, Mater. Sci. Eng. A, 2003, 361, 147-154.

    4. [4]

      [4] S. Hosseini, M. Taghizadeh, A. Eliassi, J. Nat. Gas Chem., 2012, 21, 344-351.

    5. [5]

      [5] M. D. González, Y. Cesteros, P. Salagre, Microporous. Mesoporous. Mater., 2011, 144, 162-170.

    6. [6]

      [6] X. Wei, P. G. Smirniotis, Microporous. Mesoporous. Mater., 2006, 89, 170-178.

    7. [7]

      [7] J. B. Koo, N. Jiang, S. Saravanamurugan, M. Bejblová, Z. Musilová, J. Čejka, S. E. Park, J. Catal., 2010, 276, 327-334.

    8. [8]

      [8] H. S. Cho, R. Ryoo, Microporous. Mesoporous. Mater., 2012, 151, 107-112.

    9. [9]

      [9] L. F. Wang, C. Y. Yin, Z. C. Shan, S. Liu, Y. C. Du, F. S. Xiao, Colloids Surf. A, 2009, 340, 126-130.

    10. [10]

      [10] L. P. Liu, G. Xiong, X. S. Wang, J. Cai, Z. Zhao, Microporous. Mesoporous. Mater., 2009,123, 221-227.

    11. [11]

      [11] D. J. Wang, Z. N. Liu, H. Wang, Z. K. Xie, Y. Tang, Microporous. Mesoporous. Mater., 2010, 132,428-434.

    12. [12]

      [12] R. Kore, R. Srivastava, Catal. Commun., 2012, 18, 11-15.

    13. [13]

      [13] A. A. Rownaghi, F. Rezaei, J. Hedlund, Microporous. Mesoporous. Mater., 2012, 151, 26-33.

    14. [14]

      [14] H. Feng, X. Y. Chen, H. H. Shan, J. W. Schwank, Catal. Commun., 2010, 11, 700-704.

    15. [15]

      [15] Q. Y. Wang, Y. X. Wei, S. T. Xu, M. Z. Zhang, S. H. Meng, D. Fan, Y. Qi, J. Z. Li, Z. X. Yu, C. Y. Yuan, Y. L. He, S. T. Xu, J. R. Chen, J. B. Wang, B. L. Su, Z. M. Liu, Chin. J. Catal., 2014, 35, 1727-1739.

    16. [16]

      [16] X. Z. Liao, Z. Zhou, Z. L. Wang, X. J. Zou, G. Liu, M. J. Jia, W. X. Zhang, J. Colloid Interface. Sci., 2007, 308, 176-181.

    17. [17]

      [17] M. Rutkowska, D. Macina, N. Mirocha-Kubień, Z. Piwowarska, L. Chmielarz, Appl. Catal. B, 2015, 174-175, 336-343.

    18. [18]

      [18] J. Ding, M. Wang, L. M. Peng, N. H. Xue, Y. M. Wang, M. Y. He, Appl. Catal. A, 2015, 503, 147-155.

    19. [19]

      [19] X. J. Li, C. F. Wang, S. L. Liu, W. J. Xin, Y. Z. Wang, S. J. Xie, L. Y. Xu, J. Mol. Catal. A, 2011, 336, 34-41.

    20. [20]

      [20] J. Li, X. Y. Li, G. Q. Zhou, W. Wang, C. W. Wang, S. Komarneni, Y. J. Wang, Appl. Catal. A, 2014, 470, 115-122.

    21. [21]

      [21] K. Sadowska, K. Góra-Marek, M. Drozdek, P. Kuśtrowski, J. Datka, J. Martinez Triguero, F. Rey, Microporous. Mesoporous. Mater., 2013, 168, 195-205.

    22. [22]

      [22] L. Zhao, J. S. Gao, C. M. Xu, B. J. Shen, Fuel Process. Technol., 2011, 92, 414-420.

    23. [23]

      [23] W. C. Yoo, X. Y. Zhang, M. Tsapatsis, A. Stein, Micropor. Mesopor. Mater., 2012, 149, 147-157.

    24. [24]

      [24] H. Mochizuki, T. Yokoi, H. Imai, S. Namba, J. N. Kondo, T. Tatsumi, Appl. Catal. A, 2012, 449, 188-197.

    25. [25]

      [25] Y. G. Wang, S. J. Huang, S. F. Kang, C. L. Zhang, X. Li, Mater. Chem. Phys., 2012, 132, 1053-1059.

    26. [26]

      [26] J. C. Groen, J. A. Moulijn, J. Pérez-Ramırez, Microporous. Mesoporous. Mater., 2005, 87, 153-161.

    27. [27]

      [27] X. H. Gao, Z. C. Tang, G. X. Lu, G. Z. Cao, D. Li, Z. G. Tan, Solid State Sci., 2010, 12, 1278-1282.

    28. [28]

      [28] J. Pires, A. Carvalho, M. Pinto, J. Rocha, J. Porous Mater., 2006, 13, 107-114.

    29. [29]

      [29] K. Kim, R. Ryoo, H. D. Jang, M. Choi, J. Catal., 2012, 288, 115-123.

    30. [30]

      [30] Z. M. Yan, D. Ma, J. Q. Zhuang, X. C. Liu, X. M. Liu, X. W. Han, X. H. Bao, F. X. Chang, L. Xu, Z. M. Liu, J. Mol. Catal. A, 2003, 194, 153-167.

    31. [31]

      [31] M. Boveri, C. Márquez-Álvarez, M. A. Laborde, E. Sastre, Catal. Today, 2006, 114, 217-225.

    32. [32]

      [32] M. Müller, G. Harvey, R. Prins, Microporous. Mesoporous. Mater., 2000, 34,135-147.

    33. [33]

      [33] S. D. Kim, S. H. Noh, J. W. Park, W. J. Kim, Microporous. Mesoporous. Mater., 2006, 92, 181-188.

    34. [34]

      [34] X. L. Huang, Z. B. Wang, Chin. J. Catal., 2011, 32, 1702-1711.

    35. [35]

      [35] J. A. Botas, D. P. Serrano, A. García, J. de Vicente, R. Ramos, Catal. Today, 2012, 195, 59-70.

    36. [36]

      [36] C. H. Ding, X. S. Wang, X. W. Guo, S. G. Zhang, Catal. Commun., 2007, 9, 487-493.

    37. [37]

      [37] D. P. B. Peixoto, S. M. Cabral de Menezes, M. I. Pais da Silva, Mater. Lett., 2003, 57, 3933- 3942.

    38. [38]

      [38] C. S. Triantafillidis, A. G. Vilessidis, L. Nalbandian, N. P. Evmiridis, Microporous. Mesoporous. Mater., 2001, 47, 369-388.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    13. [13]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    14. [14]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    15. [15]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

Metrics
  • PDF Downloads(0)
  • Abstract views(376)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return