Citation: Chen Zhang, Tao Wang, Xiao Liu, Yunjie Ding. Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution[J]. Chinese Journal of Catalysis, ;2016, 37(4): 502-509. doi: 10.1016/S1872-2067(15)61055-5 shu

Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution

  • Corresponding author: Tao Wang,  Yunjie Ding, 
  • Received Date: 6 January 2016
    Available Online: 30 January 2016

    Fund Project: 国家自然科学基金(21176236). (21176236)

  • Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio significantly affected the catalytic performance. The corresponding lactic acid selectivity was in the order of LiOH > NaOH > KOH > Ba(OH)2. An increase in LiOH/glycerol molar ratio elevated the glycerol conversion and lactic acid selectivity to some degree, but excess LiOH inhibited the transformation of glycerol to lactic acid. In the presence of Pt/AC catalyst, the maximum selectivity of lactic acid was 69.3% at a glycerol conversion of 100% after 6 h at 90 ℃, with a LiOH/glycerol molar ratio of 1.5. The Pt/AC catalyst was recycled five times and was found to exhibit slightly decreased glycerol conversion and stable lactic acid selectivity. In addition, the experimental results indicated that reaction intermediate dihydroxyacetone was more favorable as the starting reagent for lactic acid formation than glyceraldehyde. However, the Pt/AC catalyst had adverse effects on the intermediate transformation to lactic acid, because it favored the catalytic oxidation of them to glyceric acid.
  • 加载中
    1. [1]

      [1] B. Katryniok, H. Kimura, E. Skrzyńska, J. S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil, Green Chem., 2011, 13, 1960-1979.

    2. [2]

      [2] C. H. Zhou, J. N. Beltramini, Y. X. Fan, G. Q. Lu, Chem. Soc. Rev., 2008, 37, 527-549.

    3. [3]

      [3] Y. H. Shen, S. H. Zhang, H. J. Li, Y. Ren, H. C. Liu, Chem.-Eur. J., 2010, 16, 7368-7371.

    4. [4]

      [4] S. S. Chen, P. Y. Qi, J. Chen, Y. Z. Yuan, RSC Adv., 2015, 5, 31566-31574.

    5. [5]

      [5] J. Y. Cai, H. Ma, J. J. Zhang, Z. T. Du, Y. Z. Huang, J. Gao, J. Xu, Chin. J. Catal., 2014, 35, 1653-1660.

    6. [6]

      [6] L. F. Gong, Y. Lu, Y. J. Ding, R. H. Lin, J. W. Li, W. D. Dong, T. Wang, W. M. Chen, Appl. Catal. A, 2010, 390, 119-126.

    7. [7]

      [7] Y. L. Wang, W. P. Deng, B. J. Wang, Q. H. Zhang, X. Y. Wan, Z. C. Tang, Y. Wang, C. Zhu, Z. X. Cao, G. C. Wang, H. L. Wan, Nat. Commun., 2013, 4, 2141.

    8. [8]

      [8] M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina, B. F. Sels, Energy Environ. Sci., 2013, 6, 1415-1442.

    9. [9]

      [9] R. P. John, K. M. Nampoothiri, A. Pandey, Appl. Microbiol. Biotechnol., 2007, 74, 524-534.

    10. [10]

      [10] H. Kishida, F. M. Jin, Z. Y. Zhou, T. Moriya, H. Enomoto, Chem. Lett., 2005, 34, 1560-1561.

    11. [11]

      [11] Z. Shen, F. M. Jin, Y. L. Zhang, B. Wu, A. Kishita, K. Tohji, H. Kishida, Ind. Eng. Chem. Res., 2009, 48, 8920-8925.

    12. [12]

      [12] L. S. Sharninghausen, J. Campos, M. G. Manas, R. H. Crabtree, Nat. Commun., 2014, 5, 5084.

    13. [13]

      [13] E. P. Maris, R. J. Davis, J. Catal., 2007, 249, 328-337.

    14. [14]

      [14] J. Feng, W. Xiong, B. Xu, W. D. Jiang, J. B. Wang, H. Chen, Catal. Commun., 2014, 46, 98-102.

    15. [15]

      [15] P. Lakshmanan, P. P. Upare, N. T. Le, Y. K. Hwang, D. W. Hwang, U. H. Lee, H. R. Kim, J. S. Chang, Appl. Catal. A, 2013, 468, 260-268.

    16. [16]

      [16] R. K. P. Purushothaman, J. van Haveren, D. S. van Es, I. Melián Cabrera, J. D. Meeldijk, H. J. Heeres, Appl. Catal. B, 2014, 147, 92-100.

    17. [17]

      [17] S. Chornaja, K. Dubencov, V. Kampars, O. Stepanova, S. Zhizhkun, V. Serga, L. Kulikova, React. Kinet., Mech. Catal., 2013, 108, 341-357.

    18. [18]

      [18] W. C. Ketchie, Y. L. Fang, M. S. Wong, M. Murayama, R. J. Davis, J. Catal., 2007, 250, 94-101.

    19. [19]

      [19] Y. Ryabenkova, P. J. Miedziak, N. F. Dummer, S. H. Taylor, N. Dimitratos, D. J. Willock, D. Bethell, D. W. Knight, G. J. Hutchings, Top. Catal., 2012, 55, 1283-1288.

    20. [20]

      [20] P. M. Sipos, G. Hefter, P. M. May, J. Chem. Eng. Data, 2000, 45, 613-617.

    21. [21]

      [21] W. Jin, H. Du, S. L. Zheng, H. B. Xu, Y. Zhang, J. Phys. Chem. B, 2010, 114, 6542-6548.

    22. [22]

      [22] D. Liang, J. Gao, J. H. Wang, P. Chen, Z. Y. Hou, X. M. Zheng, Catal. Commun., 2009, 10, 1586-1590.

    23. [23]

      [23] D. Wang, W. Q. Niu, M. H. Tan, M. B. Wu, X. J. Zheng, Y. P. Li, N. Tsubaki, ChemSusChem, 2014, 7, 1398-1406.

    24. [24]

      [24] S. E. Davis, M. S. Ide, R. J. Davis, Green Chem., 2013, 15, 17-45.

    25. [25]

      [25] S. S. Liu, K. Q. Sun, B. Q. Xu, ACS Catal., 2014, 4, 2226-2230.

    26. [26]

      [26] D. Liang, J. Gao, H. Sun, P. Chen, Z. Y. Hou, X. M. Zheng, Appl. Catal. B, 2011, 106, 423-432.

    27. [27]

      [27] S. Lux, M. Siebenhofer, Catal. Sci. Technol., 2013, 3, 1380-1385.

    28. [28]

      [28] C. B. Rasrendra, B. A. Fachri, I. G. B. N. Makertihartha, S. Adisasmito, H. J. Heeres, ChemSusChem, 2011, 4, 768-777.

    29. [29]

      [29] H. Kishida, F. M. Jin, X. Y. Yan, T. Moriya, H. Enomoto, Carbohydr. Res., 2006, 341, 2619-2623.

    30. [30]

      [30] G. L. Lookhart, M. S. Feather, Carbohydr. Res., 1978, 60, 259-265.

    31. [31]

      [31] D. R. Lide, W. M. Haynes, G. Baysinger, L. I. Berger, M. Frenkel, R. N. Goldberg, CRC Handbook of Chemistry and Physics, vol. 8, 90th (CD-ROM Version) ed., CRC Press/Taylor and Francis, Boca Raton, FL, 2010.

    32. [32]

      [32] R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751-767.

    33. [33]

      [33] R. Battino, T. R. Rettich, T. Tominaga, J. Phys. Chem. Ref. Data, 1983, 12, 163-178.

    34. [34]

      [34] B. N. Zope, D. D. Hibbitts, M. Neurock, R. J. Davis, Science, 2010, 330, 74-78.

    35. [35]

      [35] K. E. Gubbins, R. D. Walker Jr, J. Electrochem. Soc., 1965, 112, 469-471.

    36. [36]

      [36] N. Worz, A. Brandner, P. Claus, J. Phys. Chem. C, 2010, 114, 1164-1172.

    37. [37]

      [37] T. Mallat, A. Baiker, Chem. Rev., 2004, 104, 3037-3058.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    16. [16]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    20. [20]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

Metrics
  • PDF Downloads(1)
  • Abstract views(387)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return