Citation: Tongmei Ding, Hengshui Tian, Jichang Liu, Wenbin Wu, Jintao Yu. Highly active Cu/SiO2 catalysts for hydrogenation of diethyl malonate to 1,3-propanediol[J]. Chinese Journal of Catalysis, ;2016, 37(4): 484-493. doi: 10.1016/S1872-2067(15)61053-1 shu

Highly active Cu/SiO2 catalysts for hydrogenation of diethyl malonate to 1,3-propanediol

  • Corresponding author: Hengshui Tian, 
  • Received Date: 3 December 2015
    Available Online: 13 February 2016

  • Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3-propanediol. The calcination temperature played an important role in the structural evolution and catalytic performance of the Cu/SiO2 catalysts, which were systematically characterized by N2 adsorption-desorption, inductively coupled plasma-atomic emission spectroscopy, N2O chemisorption, X-ray diffraction, Fourier transform infrared spectroscopy, H2 temperature-programmed reduction, transmission electron microscopy, and X-ray photoelectron spectroscopy. When the Cu/SiO2 catalyst was calcined at 723 K, 90.7% conversion of diethyl malonate and 32.3% selectivity of 1,3-propanediol were achieved. Compared with Cu/SiO2 catalysts calcined at other temperatures, the enhanced catalytic performance of the Cu/SiO2 catalyst calcined at 723 K can be attributed to better dispersion of copper species, larger cupreous surface area and greater amount of copper phyllosilicate, which results in a higher ratio of Cu+/Cu0. The synergetic effect of Cu0 and Cu+ is suggested to be responsible for the optimum activity.
  • 加载中
    1. [1]

      [1] R. K. Saxena, P. Anand, S. Saran, J. Isar, Biotechnol. Adv., 2009, 27, 895-913.

    2. [2]

      [2] G. A. Kraus, Clean-Soil Air Water, 2008, 36, 648-651.

    3. [3]

      [3] H. J. Liu, Y. Z. Xu, Z. M. Zheng, D. H. Liu, Biotechnol. J., 2010, 5, 1137-1148.

    4. [4]

      [4] K. V. Joseph, J. Polym. Environ., 2005, 13, 159-167.

    5. [5]

      [5] T. Haas, B. Jaeger, R. Weber, S. F. Mitchell, C. F. King, Appl. Catal. A, 2005, 280, 83-88.

    6. [6]

      [6] L. H. Slaugh, J. P. Arhancet, US Patent 5 304 686, 1994.

    7. [7]

      [7] Y. Z. Han, WO Patent 2002 102 754 A2, 2002.

    8. [8]

      [8] J. D. Unuh, D. A. Ryan, I. Nicolau, US Patent 5 093 537, 1992.

    9. [9]

      [9] C. Brossmer, D. Arntz, US Patent 6140543, 2000.

    10. [10]

      [10] H. J. Wang, G. Q. Gao, Y. Liu, CN Patent 101134713, 2008.

    11. [11]

      [11] S. Zhao, H. R. Yue, Y. J. Zhao, B. Wang, Y. C. Geng, J. Lv, S. P. Wang, J. L. Gong, X. B. Ma, J. Catal., 2013, 297, 142-150.

    12. [12]

      [12] B. W. Wang, X. Zhang, Q. Xu, G. H. Xu, Chin. J. Catal., 2008, 29, 275-280.

    13. [13]

      [13] S. R. Wang, X. B. Li, Q. Q. Yin, L. J. Zhu, Z. Y. Luo, Catal. Commun., 2011, 12, 1246-1250.

    14. [14]

      [14] L. Zhao, Y. J. Zhao, S. P. Wang, H. R. Yue, B. Wang, J. Lv, X. B. Ma, Ind. Eng. Chem. Res., 2012, 51, 13935-13943.

    15. [15]

      [15] H. R. Yue, Y. J. Zhao, L. Zhao, J. Lv, S. P. Wang, J. L. Gong, X. B. Ma, AIChE J., 2012, 58, 2798-2809.

    16. [16]

      [16] A. Y. Yin, C. Wen, W. L. Dai, K. N. Fan, Appl. Surf. Sci., 2011, 257, 5844-5849.

    17. [17]

      [17] C. Wen, Y. Y. Cui, W. L. Dai, S. H. Xie, K. N. Fan, Chem. Commun., 2013, 46, 5195-5197.

    18. [18]

      [18] Y. J. Zhang, N. Zheng, K. J. Wang, S. J. Zhang, J. Wu, J. Nanomater., 2013, 629375.

    19. [19]

      [19] Y. Y. Zhu, S. R. Wang, L. J. Zhu, X. L. Ge, X. B. Li, Z. Y. Luo, Catal. Lett., 2010, 135, 275-281.

    20. [20]

      [20] X. B. Ma, H. W. Chi, H. R. Yue, Y. J. Zhao, Y. Xu, J. Lv, S. P. Wang, J. L. Gong, AIChE J., 2013, 59, 2530-2539.

    21. [21]

      [21] A. Y. Yin, C. Wen, W. L. Dai, K. N. Fan, Appl. Catal. B, 2011, 108-109, 90-99.

    22. [22]

      [22] A. Y. Yin, X. Y. Guo, K. N. Fan, W. L. Dai, ChemCatChem, 2010, 2, 206-213.

    23. [23]

      [23] X. Y. Guo, A. Y. Yin, W. L. Dai, K. N. Fan, Catal. Lett., 2009, 132, 22-27.

    24. [24]

      [24] Z. He, H. Q. Lin, P. He, Y. Z. Yuan, J. Catal., 2011, 277, 54-63.

    25. [25]

      [25] A. Y. Yin, X. Y. Guo, W. L. Dai, K. N. Fan, Catal. Commun., 2011, 12, 412-416.

    26. [26]

      [26] B. Zhang, S. G. Hui, S. H. Zhang, Y. Ji, W. Li, D. Y. Fang, J. Nat. Gas Chem., 2012, 21, 563-570.

    27. [27]

      [27] L. F. Chen, P. J. Guo, M. H. Qiao, S. R. Yan, H. X. Li, W. Shen, H. L. Xu, K. N. Fan, J. Catal., 2008, 257, 172-180.

    28. [28]

      [28] F. Li, C. S. Lu, X. N. Li, Chin. Chem. Lett., 2014, 25, 1461-1465.

    29. [29]

      [29] Y. F. Zhu, X. Kong, D. B. Cao, J. L. Cui, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3675-3681.

    30. [30]

      [30] P. Yuan, Z. Y. Liu, T. J. Hu, H. J. Sun, S. C. Liu, React. Kinet. Mech. Catal., 2010, 100, 427-439.

    31. [31]

      [31] W. B. Li, M. Zhuang, J. X. Wang, Catal. Today, 2008, 137, 340-344.

    32. [32]

      [32] Y. H. Choi, W. Y. Lee, Catal. Lett., 2000, 67, 155-161.

    33. [33]

      [33] S. Kaneko, M. Izuka, A. Takahashi, M. Ohshima, H. Kurokawa, H. Miura, Appl. Catal. A, 2012, 427-428, 85-91.

    34. [34]

      [34] Y. Y. Zhu, S. R. Wang, L. J. Zhu, X. L. Ge, X. B. Li, Z. Y. Luo, Catal. Lett., 2010, 135, 275-281.

    35. [35]

      [35] A. Y. Yin, X. Y. Guo, W. L. Dai, H. X. Li, K. N. Fan, Appl. Catal. A, 2008, 349, 91-99.

    36. [36]

      [36] C. Wen, A. Y. Yin, Y. Y. Cui, X. L. Yang, W. L. Dai, K. N. Fan, Appl. Catal. A, 2013, 458, 82-89.

    37. [37]

      [37] J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier, Green Chem., 2004, 6, 359-361.

    38. [38]

      [38] S. F. Ji, T. L. Jiang, K. Xu, S. B. Li, Appl. Surf. Sci., 1998, 133, 231-238.

    39. [39]

      [39] A. Y. Yin, X. Y. Guo, W. L. Dai, K. N. Fan, J. Phys. Chem. C, 2009, 113, 11003-11013.

    40. [40]

      [40] A. Y. Yin, J. W. Qu, X. Y. Guo, W. L. Dai, K. N. Fan, Appl. Catal. A, 2011, 400, 39-47.

    41. [41]

      [41] D. S. Brands, E. K. Poels, A. Bliek, Appl. Catal. A, 1999, 184, 279-289.

    42. [42]

      [42] S. H. Zhu, X. Q. Gao, Y. L. Zhu, Y. F. Zhu, H. Y. Zheng, Y. W. Li, J. Catal., 2013, 303, 70-79.

    43. [43]

      [43] M. A. Kohler, H. E. Curry-Hyde, A. E. Hughes, B. A. Sexton, N. W. Cant, J. Catal., 1987, 108, 323-333.

    44. [44]

      [44] E. S. Vasiliadou, A. A. Lemonidou, Appl. Catal. A, 2011, 396, 177-185.

    45. [45]

      [45] S. Panyad, S. Jongpatiwut, T. Sreethawong, T. Rirksomboon, S. Osuwan, Catal. Today, 2011, 174, 59-64.

    46. [46]

      [46] T. Toupance, M. Kermarec, J. F. Lambert, C. Louis, J. Phys. Chem. B, 2002, 106, 2277-2286.

    47. [47]

      [47] L. Trouillet, T. Toupance, F. Villain, C. Louis, Phys. Chem. Chem. Phys., 2000, 2, 2005-2014.

    48. [48]

      [48] C. J. G. Van der Grift, A. Mulder, J. W. Geus, Appl. Catal., 1990, 60, 181-192.

    49. [49]

      [49] A. Y. Yin, X. Y. Guo, W. L. Dai, K. N. Fan, J. Phys. Chem. C, 2010, 114, 8523-8532.

    50. [50]

      [50] M. Bartók, Á. Molnár, in: S. Patai ed., The Chemistry of Double-Bonded Functional Groups (Supplement A3), Wiley, New York, 1997, 16.

    51. [51]

      [51] E. K. Poels, D. S. Brands, Appl. Catal. A, 2000, 191, 83-96.

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    8. [8]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    9. [9]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    10. [10]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    11. [11]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(378)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return