Citation: Jianqiang Zhang, Yongsheng Peng, Wenguang Leng, Yanan Gao, Feifei Xu, Jinling Chai. Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis[J]. Chinese Journal of Catalysis, ;2016, 37(4): 468-475. doi: 10.1016/S1872-2067(15)61050-6 shu

Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis

  • Corresponding author: Wenguang Leng,  Jinling Chai, 
  • Received Date: 9 December 2015
    Available Online: 18 January 2016

    Fund Project: 国家自然科学基金(21473196, 21403214) (21473196, 21403214) 大连理工大学精细化工国家重点实验室(KF1415). (KF1415)

  • We introduced bipyridine ligands into a series of two-dimensional (2D) covalent organic frameworks (COFs) using 2,2'-bipyridine-5,5'-dicarbaldehyde (2,2'-BPyDCA) as a component in the mixed building blocks. The framework of the COFs was formed by the linkage of imine groups. The ligand content in the COFs was synthetically tuned by the content of 2,2'-BPyDCA, and thus the amount of metal, palladium(II) acetate, bonded to the nitrogen ligands could be manipulated. Both the bipyridine ligands and imine groups can coordinate with Pd(II) ions, but the loading position can be varied, with one ligand favoring binding in the space between adjacent COFs' layers and the other ligand favoring binding within the pores of the COFs. The Pd(II)-loaded COFs exhibited good catalytic activity for the Heck reaction.
  • 加载中
    1. [1]

      [1] A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science, 2005, 310, 1166-1170.

    2. [2]

      [2] H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. Côté, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science, 2007, 316, 268-272.

    3. [3]

      [3] X. Feng, X. S. Ding, D. L. Jiang, Chem. Soc. Rev., 2012, 41, 6010-6022.

    4. [4]

      [4] S. Y. Ding, W. Wang, Chem. Soc. Rev., 2013, 42, 548-568.

    5. [5]

      [5] S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc., 2011, 133, 19816-19822.

    6. [6]

      [6] H. Xu, X. Chen, J. Gao, J. B. Lin, M. Addicoat, S. Irle, D. L. Jiang, Chem. Commun., 2014, 50, 1292-1294.

    7. [7]

      [7] P. Pachfule, S. Kandambeth, D. D. Díaz, R. Banerjee, Chem. Commun., 2014, 50, 3169-3172.

    8. [8]

      [8] P. Pachfule, M. K. Panda, S. Kandambeth, S. M. Shivaprasad, D. D. Díaz, R. Banerjee, J. Mater. Chem. A, 2014, 2, 7944-7952.

    9. [9]

      [9] Q. R. Fang, S. Gu, J. Zheng, Z. B. Zhuang, S. L. Qiu, Y. S. Yan, Angew. Chem. Int. Ed., 2014, 53, 2878-2882.

    10. [10]

      [10] S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard III, J. Am. Chem. Soc., 2008, 130, 11580-11581.

    11. [11]

      [11] H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 8875-8883.

    12. [12]

      [12] C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem., 2010, 2, 235-238.

    13. [13]

      [13] H. P. Ma, H. Ren, S. Meng, Z. J. Yan, H. Y. Zhao, F. X. Sun, G. S. Zhu, Chem. Commun., 2013, 49, 9773-9775.

    14. [14]

      [14] M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. S. Ding, H. M. El-Kaderi, Chem. Eur. J., 2013, 19, 3324-3328.

    15. [15]

      [15] S. Dalapati, S. B. Jin, J. Gao, Y. H. Xu, A. Nagai, D. L. Jiang, J. Am. Chem. Soc., 2013, 135, 17310-17313.

    16. [16]

      [16] J. Zhang, L. B. Wang, N. Li, J. F. Liu, W. Zhang, Z. B. Zhang, N. C. Zhou, X. L. Zhu, CrystEngComm, 2014, 16, 6547-6551.

    17. [17]

      [17] S. Wan, J. Guo, J. Kim, H. Ihee, D. L. Jiang, Angew. Chem. Int. Ed., 2008, 47, 8826-8830.

    18. [18]

      [18] S. Wan, J. Guo, J. Kim, H. Ihee, D. L. Jiang, Angew. Chem. Int. Ed., 2009, 48, 5439-5442.

    19. [19]

      [19] X. Feng, L. Chen, Y. Honsho, O. Saengsawang, L. L. Liu, L. Wang, A. Saeki, S. Irle, S. Seki, Y. P. Dong, D. L. Jiang, Adv. Mater., 2012, 24, 3026-3031.

    20. [20]

      [20] E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed., 2012, 51, 2623-2627.

    21. [21]

      [21] M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, T. Bein, Angew. Chem. Int. Ed., 2013, 52, 2920-2924.

    22. [22]

      [22] L. Chen, K. Furukawa, J. Gao, A. Nagai, T. Nakamura, Y. P. Dong, D. L. Jiang, J. Am. Chem. Soc., 2014, 136, 9806-9809.

    23. [23]

      [23] C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruña, W. R. Dichtel, J. Am. Chem. Soc., 2013, 135, 16821-16824.

    24. [24]

      [24] L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci., 2014, 5, 2789-2793.

    25. [25]

      [25] N. L. Campbell, R. Clowes, L. K. Ritchie, A. I. Cooper, Chem. Mater., 2009, 21, 204-206.

    26. [26]

      [26] B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc., 2013, 135, 5328-5331.

    27. [27]

      [27] J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science, 2011, 332, 228-231.

    28. [28]

      [28] X. H. Liu, C. Z. Guan, S. Y. Ding, W. Wang, H. J. Yan, D. Wang, L. J. Wan, J. Am. Chem. Soc., 2013, 135, 10470-10474.

    29. [29]

      [29] N. A. A. Zwaneveld, R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, L. Porte, J. Am. Chem. Soc., 2008, 130, 6678-6679.

    30. [30]

      [30] X. Chen, N. Huang, J. Gao, H. Xu, F. Xu, D. L. Jiang, Chem. Commun., 2014, 50, 6161-6163.

    31. [31]

      [31] A. P. Côté, H. M. El-Kaderi, H. Furukawa, J. R. Hunt, O. M. Yaghi, J. Am. Chem. Soc., 2007, 129, 12914-12915.

    32. [32]

      [32] L. M. Lanni, R. W. Tilford, M. Bharathy, J. J. Lavigne, J. Am. Chem. Soc., 2011, 133, 13975-13983.

    33. [33]

      [33] P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed., 2008, 47, 3450-3453.

    34. [34]

      [34] F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klöck, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 4570-4571.

    35. [35]

      [35] F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc., 2011, 133, 11478-11481.

    36. [36]

      [36] S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524-19527.

    37. [37]

      [37] L. Y. Chen, S. Rangan, J. Li, H. F. Jiang, Y. W. Li, Green Chem., 2014, 16, 3978-3985.

    38. [38]

      [38] E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J. R. Long, O. M. Yaghi, J. Am. Chem. Soc., 2010, 132, 14382-14384.

    39. [39]

      [39] A. Nagai, Z. Q. Guo, X. Feng, S. B. Jin, X. Chen, X. S. Ding, D. L. Jiang, Nat. Commun., 2011, 2, 536.

    40. [40]

      [40] J. Hodačová, M. Budĕšínský, Org. Lett., 2007, 9, 5641-5643.

    41. [41]

      [41] M. G. Rabbani, A. K. Sekizkardes, O. M. El-Kadri, B. R. Kaafarani, H. M. El-Kaderi, J. Mater. Chem., 2012, 22, 25409-25417.

    42. [42]

      [42] X. Chen, M. Addicoat, S. Irle, A. Nagai, D. L. Jiang, J. Am. Chem. Soc., 2013, 135, 546-549.

    43. [43]

      [43] The molecular size was determined by Material Studio Geometry Optimization.

    44. [44]

      [44] N. Huang, Y. H. Xu, D. L. Jiang, Sci. Rep., 2014, 4, 7228.

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(0)
  • Abstract views(758)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return