Citation: Yinghong Zhu, Jianqing Zhang, Ziying Chen, Anlun Zhang, Chunan Ma. Synthesis of nitrocarbazole compounds and their electrocatalytic oxidation of alcohol[J]. Chinese Journal of Catalysis, ;2016, 37(4): 533-538. doi: 10.1016/S1872-2067(15)61047-6 shu

Synthesis of nitrocarbazole compounds and their electrocatalytic oxidation of alcohol

  • Corresponding author: Chunan Ma, 
  • Received Date: 1 December 2015
    Available Online: 27 January 2016

    Fund Project: 973计划前期研究专项(2012CB722604). (2012CB722604)

  • Three compounds with nitrocarbazole frameworks were synthesized and their electrochemical reversibility as organic electrocatalysts was studied by cyclic voltammetry. The electrochemical reversibility and oxidation-reduction potential of the compounds were greatly affected by their substituents. The oxidation-reduction potential of the compound with an electron-donating group was negative, while that of the compound with an electron-withdrawing group on the carbazole framework was positive. The electrocatalytic oxidation activities of the nitrocarbazole compounds were investigated through cyclic voltammetry and controlled potential electrolysis at room temperature. The electrocatalysts showed excellent selectivity for p-methoxybenzyl alcohol, converting it to the corresponding aldehyde through electro-oxidation with just 2.5 mol% of the electrocatalysts presented. The electrocatalysts maintained their excellent electroredox activity following recycling.
  • 加载中
    1. [1]

      [1] R. A. Sheldon, J. K. Kochi, Metal Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes, Academic Press, New York, NY, 1981, 326-328.

    2. [2]

      [2] M. Hudlicky, Oxidations in Organic Chemistry (ACS Monograph, No. 186), American Chemical Society, Washington, DC, 1990, 114-127.

    3. [3]

      [3] C. D. Pina, E. Falletta, M. Rossi, J. Catal, 2008, 260, 384-386.

    4. [4]

      [4] Y. Hao, S. Wang, Q. Sun, L. Shi, A. H. Lu, Chin. J. Catal., 2015, 36, 612-619.

    5. [5]

      [5] A. Z. Jia, L. L. Lou, C. Zhang, Y. Q. Zhang, S. X. Liu, J. Mol. Catal. A, 2009, 306, 123-129.

    6. [6]

      [6] Y. Y. Yu, B. Lu, X. G. Wang, J. X. Zhao, X. Z. Wang, Q. H. Cai, Chem. Eng. J., 2010, 162, 738-742.

    7. [7]

      [7] Y. L. Yu, B. J. Gao, Y. F. Li, Chin. J. Catal., 2013, 34, 1776-1786.

    8. [8]

      [8] T. A. D Nguyen, A. M. Wright, J. S. Page, G. Wu, T. W. Hayton, Inorg. Chem., 2014, 53, 11377-11387.

    9. [9]

      [9] B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. Palma, R. Vasquez-Medrano, Green Chem., 2010, 12, 2099-2119.

    10. [10]

      [10] H. J. Schäfer, M. Harenbrock, E. Klocke, M. Plate, A. Weiper- Idelmann, Pure Appl. Chem., 2007, 79, 2047-2057.

    11. [11]

      [11] E. Steckhan, Angew Chem., 1986, 98, 681-699.

    12. [12]

      [12] M. Platen, E. Steckhan, Chem. Ber., 1984, 117, 1679-1694.

    13. [13]

      [13] N. T. Zhang, C. C. Zeng, C. M. Lam, R. K. Gbur, R. D. Little, J. Org. Chem., 2013, 78, 2014-2110.

    14. [14]

      [14] R. Francke, R. D. Little, J. Am. Chem. Soc., 2014, 136, 427-435.

    15. [15]

      [15] Y. S. Park, S. C. Wang, D. J. Tantillo, R. D. Little, J. Org. Chem., 2007, 72, 4351-4357.

    16. [16]

      [16] K. Takahashi, T. Furusawa, T. Sawamura, S. Kuribayashi, S. Inagi, T. Fuchigami, Electrochim. Acta, 2012, 77, 47-53.

    17. [17]

      [17] S. M. Halas, K. Okyne, A. Fry, Electrochim. Acta, 2003, 48, 1837-1844.

    18. [18]

      [18] R. Wend, E. Steckhan, Electrochim. Acta, 1997, 42, 2027-2039.

    19. [19]

      [19] G. S. Liou, S. H. Hsiao, N. K. Huang, Y. L. Yang, Macromolecules, 2006, 39, 5337-5346.

    20. [20]

      [20] S. C. Dong, Z. Li, J. G. Qin, J. Phys. Chem. B, 2008, 113, 434-441.

    21. [21]

      [21] H. M. Wang, S. H. Hsiao, J. Polym. Sci. Part A, 2014, 52, 272-286.

    22. [22]

      [22] M. L. Keshtov, Y. A. Udum, L. Toppare, V. S. Kochurov, A. R. Khokhlov, Mater. Chem. Phys., 2013, 139, 936-943.

    23. [23]

      [23] K. B. Zheng, W. Y. Lin, L. Tan, Org. Biomol. Chem., 2012, 10, 9683-9688.

    24. [24]

      [24] A. N. Bakiev, E. V. Shklyaeva, I. V. Lunegov, I. G. Mokrushin, G. G. Abashev, Russ. J. Gen. Chem., 2014, 84, 1313-1319.

    25. [25]

      [25] S. F. Wu, Y. Liu, G. P. Yu, J. G. Guan, C. Y. Pan, Y. Du, X. Xiong, Z. G. Wang, Macromolecules, 2014, 47, 2875-2882.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(385)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return