Citation:
Ali Benvidi, Shahriar Jahanbani, Bibi-Fatemeh Mirjalili, Reza Zare. Electrocatalytic oxidation of hydrazine on magnetic bar carbon paste electrode modified with benzothiazole and iron oxide nanoparticles: Simultaneous determination of hydrazine and phenol[J]. Chinese Journal of Catalysis,
;2016, 37(4): 549-560.
doi:
10.1016/S1872-2067(15)61046-4
-
A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2-(3,4-dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determination of hydrazine was developed. The DPB was firstly self-assembled on the Fe3O4NPs, and the resulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocatalytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV-visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/ Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1-0.4 µmol/L and 0.7-12.0 µmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phenol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100-470 µmol/L and a detection limit of 24.3 µmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.
-
-
-
[1]
[1] M. Revenga-Parra, E. Lorenzo, F. Pariente, Sens. Actuators B, 2005, 107, 678-687.
-
[2]
[2] E. H. Vernot, J. D. MacEwen, R. H. Bruner, C. C. Haun, E. R. Kinkead, D. E. Prentice, A. Hall 3rd, R. E. Schmidt, R. L. Eason, G. B. Hubbard, Fundam. Appl. Toxicol., 1985, 5, 1050-1064.
-
[3]
[3] J. M. Pingarron, I. O. Hernandez, A. Gonzalez-Cores, P. Yanez- Seudeno, Anal. Chim. Acta, 2001, 439, 281-290.
-
[4]
[4] M. Yang, H. L. Li, Talanta, 2001, 55, 479-484.
-
[5]
[5] P. Ortega-Barrales, A. Molina-Díaz, M. I. Pascual-Reguera, L. F. Capitán-Vallvey, Anal. Chim. Acta, 1997, 353, 115-122.
-
[6]
[6] A. Safavi, M. Tohidi, Anal. Methods, 2012, 4, 2233-2241.
-
[7]
[7] Q. F. Yi, W. Q. Yu, J. Electroanal. Chem., 2009, 633, 159-164.
-
[8]
[8] S. Shukla, S. Chaudhary, A. Umar, G. R. Chaudhary, S. K. Mehta, Sens. Actuators B, 2014, 196, 231-237.
-
[9]
[9] H. I. Seifart, W. L. Gent, D. P. Parkin, P. P. Jaarsveld, P. R. Donald, J. Chromatogr. B, 1995, 674, 269-275.
-
[10]
[10] M. Mori, K. Tanaka, Q. Xu, M. Ikedo, H. Taoda, W. Z. Hu, J. Chromatogr. A, 2004, 1039, 135-139.
-
[11]
[11] A. Safavi, M. A. Karimi, Talanta, 2002, 58, 785-792.
-
[12]
[12] H. Karimi-Maleh, P. Biparva, M. Hatami, Biosens. Bioelectron., 2013, 48, 270-275.
-
[13]
[13] H. Karimi-Maleh, F. Tahernejad-Javazmi, A. A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, Biosens. Bioelectron., 2014, 60, 1-7.
-
[14]
[14] S. M. Golabi, H. R. Zare, J. Electroanal. Chem., 1999, 465, 168-176.
-
[15]
[15] M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig, The Merck Index, An Encyclopedia of Chemicals and Drugs, Merck & Co., 1976.
-
[16]
[16] S. Korkut, B. Keskinler, E. Erhan, Talanta, 2008, 76, 1147-1152.
-
[17]
[17] A. A. Ensafi, E. Heydari-Bafrooei, B. Rezaei, Chin. J. Catal., 2013, 34, 1768-1775.
-
[18]
[18] A. Brega, P. Prandini, C. Amaglio, E. Pafumi, J. Chromatogr. A, 1990, 535, 311-316.
-
[19]
[19] K. D. Khalaf, B. A. Hasan, A. Morales-Rubio, M. de la Guardia, Talanta, 1994, 41, 547-556.
-
[20]
[20] L. Campanella, T. Beone, M. P. Sammartino, M. Tomassetti, Analyst, 1993, 118, 979-986.
-
[21]
[21] H. Karimi-Maleh, M. Moazampour, A. A. Ensafi, S. Mallakpour, M. Hatami, Environ. Sci. Pollut. Res., 2014, 21, 5879-5888.
-
[22]
[22] G. Bayramoğlu, M. Y. Arica, Chem. Eng. J., 2008, 139, 20-28.
-
[23]
[23] X. S. Tang, D. Zhang, T. S. Zhou, D. X. Nie, Q. Y. Yang, L. T. Jin, G. Y. Shi, Anal. Methods, 2011, 3, 2313-2321.
-
[24]
[24] R. S. Sista, A. E. Eckhardt, V. Srinivasan, M. G. Pollack, S. Palanki, V. K. Pamula, Lab Chip, 2008, 8, 2188-2196.
-
[25]
[25] D. F. Cao, P. L. He, N. F. Hu, Analyst, 2003, 128, 1268-1274.
-
[26]
[26] H. Teymourian, A. Salimi, S. Khezrian, Biosens. Bioelectron., 2013, 49, 1-8.
-
[27]
[27] M. Arvand, M. Hassannezhad, Mater. Sci. Eng. C, 2014, 36, 160-167.
-
[28]
[28] E. Paleček, M. Fojta, Talanta, 2007, 74, 276-290.
-
[29]
[29] Y. Q. Zhao, H. Q. Luo, N. B. Li, Sens. Actuators B, 2009, 137, 722-726.
-
[30]
[30] D. Zhu, W. Li, H. M. Wen, J. R. Zhang, J. J. Zhu, Anal. Methods, 2013, 5, 4321-4324.
-
[31]
[31] H. L. Lin, J. M. Yang, J. Y. Liu, Y. F. Huang, J. L. Xiao, X. Zhang, Electrochim. Acta, 2013, 90, 382-392.
-
[32]
[32] S. K. Kim, Y. N. Jeong, M. S. Ahmed, J. M. You, H. C. Choi, S. Jeon, Sens. Actuators B, 2011, 153, 246-251.
-
[33]
[33] A. Benvidi, S. Jahanbani, A. Akbari, H. R. Zare, J. Electroanal. Chem., 2015, 758, 68-77.
-
[34]
[34] J. Wang, A. N. Kawde, Electrochem. Commun., 2002, 4, 349-352.
-
[35]
[35] M. Mazloum-Ardakani, A. Dehghani-Firouzabadi, M. A. Sheikh- Mohseni, A. Benvidi, B. B. F. Mirjalili, R. Zare, Measurement, 2015, 62, 88-96.
-
[36]
[36] A. K. Gupta, M. Gupta, Biomaterials, 2005, 26, 3995-4021.
-
[37]
[37] G. H. Du, Z. L. Liu, X. Xia, Q. Chu, S. M. Zhang, J. Sol-Gel Sci. Technol., 2006, 39, 285-291.
-
[38]
[38] H. L. Zhu, E. Z. Zhu, G. F. Ou, L. H. Gao, J. J. Chen, Nanoscale Res. Lett., 2010, 5, 1755-1761.
-
[39]
[39] I. S. Irgibaeva, D. A. Birimzhanova, N. N. Barashkov, Int. J. Quantum Chem., 2008, 108, 2700-2710.
-
[40]
[40] F. Xiao, C. P. Ruan, L. H. Liu, R. Yan, F. Q. Zhao, B. Z. Zeng, Sens. Actuators B, 2008, 134, 895-901.
-
[41]
[41] A. J. Bard, L. R. Faulkner, Electerochemical Methods: Fundamentals and Applications, 2nd Ed., John wiley, New York, 2001.
-
[42]
[42] K. B. Oldham, J. Electroanal. Chem. Interf. Electrochem., 1979, 105, 373-375.
-
[43]
[43] H. Razmi, A. Azadbakht, M. H. Sadr, Anal. Sci., 2005, 21, 1317-1323.
-
[44]
[44] Z. Galus, Fundamentals of Electerochemical Analysis, Ellis Harwood Press, New York, 1976.
-
[45]
[45] X. Q. Cao, B. C. Wang, Q. Su, J. Electroanal. Chem, 1993, 361, 211-214.
-
[46]
[46] J. Heitbaum, W. Vielstich, Electrochim. Acta, 1973, 18, 967-974.
-
[47]
[47] A. A. Ensafi, M. Lotfi, H. Karimi-Maleh, Chin. J. Catal., 2012, 33, 487-493.
-
[48]
[48] C. Karuppiah, S. Palanisamy, S. M. Chen, S. K. Ramaraj, P. Periakaruppan, Electrochim. Acta, 2014, 139, 157-164.
-
[49]
[49] H. Beitollahi, S. Tajik, H. Karimi-Maleh, R. Hosseinzadeh, Appl. Organomet. Chem., 2013, 27, 444-450.
-
[50]
[50] A. Benvidi, P. Kakoolaki, H. R. Zare, R. Vafazadeh, Electrochim. Acta, 2011, 56, 2045-2050.
-
[51]
[51] ASTM D1385-01, Standard Test Method for Hydrazine in Water, ASTM International, 2001.
-
[52]
[52] J. C. Miller, J. N. Miller, Statistics for Analytical Chemistry, 2nd Ed., John Wiley, New York, 1988.
-
[1]
-
-
-
[1]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[2]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[3]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[4]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[5]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[6]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[7]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[8]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[9]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[10]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[11]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[12]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[13]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[14]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[15]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[16]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[17]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[18]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[19]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[20]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(375)
- HTML views(21)