Citation: Muhammad Asgher, Muhammad Ramzan, Muhammad Bilal. Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04[J]. Chinese Journal of Catalysis, ;2016, 37(4): 561-570. doi: 10.1016/S1872-2067(15)61044-0 shu

Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04

  • Corresponding author: Muhammad Bilal, 
  • Received Date: 8 November 2015
    Available Online: 14 January 2016

  • Extracellular manganese peroxidases (MnPs) produced by native and mutant strains of Trametes versicolor IBL-04 (EB-60, EMS-90) were purified by ammonium sulphate precipitation and dialysis, followed by ion-exchange and gel-permeation chromatography. The purified enzymes elucidated a single band in the 43-kDa region on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The optimum pH and temperature of the purified enzymes were found to be 5.0 and 40 ℃, respectively. Mutant strain MnPs exhibited a broader active pH range and higher thermal stability than native MnP. Purified MnPs from selected mutants showed almost identical properties to native MnP in electrophoresis, steady-state kinetics, and metal ion and endocrine-disrupting compound (EDC) degradation efficiency. Although the fastest reaction rates occurred with Mn2+, MnPs displayed the highest affinity for ABTS, methoxyhydroquinone, 4-aminophenol and reactive dyes. MnP activity was significantly enhanced by Mn2+ and Cu2+, and inhibited in the presence of Zn2+, Fe2+, ethylenediaminetetraacetic acid and cysteine to various extents, with Hg2+ as the most potent inhibitory agent. MnPs from all sources efficiently catalyzed the degradation of the EDCs, nonylphenol and triclosan, removing over 80% after 3 h of treatment, which was further increased up to 90% in the presence of MnP-mediator system. The properties of T. versicolor MnPs, such as high pH and thermal stability, as well as unique Michaelis-Menten kinetic parameters and high EDC elimination efficiency, render them promising candidates for industrial exploitation.
  • 加载中
    1. [1]

      [1] C. Garcia-Galan, A. Berenguer-Murcia, R. Fernandez-Lafuente, R. C. Rodrigues, Adv. Synth. Catal., 2011, 353, 2885-2904.

    2. [2]

      [2] M. T. Reetz, J. Am. Chem. Soc., 2013, 135, 12480-12496.

    3. [3]

      [3] H. Gröger, W. Hummel, Curr. Opin. Chem. Biol., 2014, 19, 171-179.

    4. [4]

      [4] C. B. Teixeira, J. V. M. Junior, G. A. Macedo, Renew. Sust. Energ. Rev., 2014, 33, 333-343.

    5. [5]

      [5] A. Wells, H. P. Meyer, ChemCatChem., 2014, 6, 918-920.

    6. [6]

      [6] O. Barbosa, C. Ortiz, A. Berenguer-Murcia, R. Torres, R. C. Rodrigues, R. Fernandez-Lafuente, Biotechnol. Adv., 2015, 33, 435-456.

    7. [7]

      [7] N. Munir, M. Asgher, I. M. Tahir, M. Riaz, M. Bilal, S. M. A. Shah, Int. J. Chem. Biol. Sci., 2015, 7, 9-14.

    8. [8]

      [8] R. Sanghi, P. Verma, S. Puri, Adv. Chem. Eng. Sci, 2011, 1, 154-162.

    9. [9]

      [9] D. Moldes, E.M. Cadena, T. Vidal, Bioresour. Technol., 2010, 101, 6924-6929.

    10. [10]

      [10] M. Bilal, M. Asgher, M. Ramzan, Sci. Res. Enz. Essays., 2015, 10, 456-464.

    11. [11]

      [11] M. Ardhaoui, S. Bhatt, M. H. Zheng, D. Dowling, C. Jolivalt, F. A. Khonsari, Mater. Sci. Eng. C, 2013, 33, 3197-3205.

    12. [12]

      [12] Q. Yasmeen, M. Asgher, M. A. Sheikh, H. Nawaz, BioRes., 2013, 8, 944-968.

    13. [13]

      [13] I. Stoilova, A. Krastanov, V. Stanchev, Adv. Biosci. Biotechnol., 2010, 1, 208-215.

    14. [14]

      [14] M. Ramzan, M. Asgher, M. A. Sheikh, H. N. Bhatti, BioRes., 2013, 8, 3953-3966.

    15. [15]

      [15] S. Javed, M. Asgher, M. A. Sheikh, H. Nawaz, Food Biotechnol., 2010, 24, 165-179.

    16. [16]

      [16] L. I. Ramirez-Cavazos, C. Junghanns, N. Ornelas-Soto, D. L. Cardenas-Chavez, C. Hernandez-Luna, P. Demarche, E. Enaud, R. Garcia-Morales, S. N. Agathos, R. Parra, J. Mol. Catal. B, 2014, 108, 32-42.

    17. [17]

      [17] S. H. Krishna, N. D. Srinivas, K. S. M. S. Raghavarao, N. G. Karanth, Adv. Biochem. Eng. Biotechnol., 2002, 75, 119-183.

    18. [18]

      [18] H. B. Costa, S. G. Delboni, F. S. Fortunato, J. A. Ventura, Act. Hort., 2009, 822, 239-244.

    19. [19]

      [19] N. Jaiswal, V. P. Pandey, U. N. Dwivedi, Int. J. Biol. Macromole., 2015, 72, 326-332.

    20. [20]

      [20] K. Watanabe, Curr. Opin. Biotechnol., 2001, 12, 237-241.

    21. [21]

      [21] A. Zgola-Grzeskowiak, T. Grzeskowiak, R. Rydlichowski, Z. Lukaszewski, Chemosphere, 2009, 75, 513-518.

    22. [22]

      [22] M. Asgher, H. N. Bhatti, M. Ashraf, R. L. Legge, Biodegradation, 2008, 19, 771-783.

    23. [23]

      [23] M. Tien, T. K. Kirk, Proceed. Nat. Acad. Sci. (USA), 1984, 81, 2280-2284.

    24. [24]

      [24] H. Wariishi, K. Valli, M. H. Gold, J. Biol. Chem., 1992, 267, 23688-23695.

    25. [25]

      [25] H. Cabana, J. L. H. Jiwas, R. Rozenberg, V. Elisashvili, M. Penninckx, S. N. Agathos, J. P. Jones, Chemospehere, 2007, 67, 770-778.

    26. [26]

      [26] M. Arunkumar, S. H. Sheik Abdulla, Desalin. Water Treat., 2015, 56, 509-520.

    27. [27]

      [27] P. Ellaiah, T. Prabhakar, B. Ramakrishna, A. T. Taleb, K. Adinarayana, Indian J. Microbiol., 2002, 42, 151-153.

    28. [28]

      [28] S. Dhawan, R. Lal, R. C. Kuhad, Lett. Appl. Microbiol., 2003, 36, 64-67.

    29. [29]

      [29] S. K. Karanam, N. R. Medicherla, Afr. J. Biotechnol., 2008, 7, 2064-2067.

    30. [30]

      [30] L. Toscano, V. Gochev, G. Montero, M. Stoytcheva, Biotechnol. Biotechnol. Equip., 2011, 25, 2243-2247.

    31. [31]

      [31] A. Pekşen, G. Yakupoglu, B. Kibar, Acta Horti., 2009, 830, 319-325.

    32. [32]

      [32] S. G. Karp, V. Faraco, A. Amore, L. Birolo, C. Giangrande, V. T. Soccol, A. Pandey, C. R. Soccol, Bioresour. Technol., 2012, 114, 735-739.

    33. [33]

      [33] R. O. Urek, N. K. Pazarlioglu, Process Biochem., 2004, 39, 2061-2068.

    34. [34]

      [34] A. Rajan, J. G. Kurup, T. E. Abraham, Braz. Arch. Biol. Technol., 2010, 53, 555-562.

    35. [35]

      [35] S. Aslam, M. Asgher, Afr. J. Biotechnol., 2011, 10, 17875-17883.

    36. [36]

      [36] M. Bilal, M. Asgher, BMC Biotechnol., 2015, 15,111-125.

    37. [37]

      [37] F. Hoshino, T. Kajino, H. Sugiyama, O. Asami, H. Takahashi, FEBS Lett., 2002, 530, 249-252.

    38. [38]

      [38] T. Mariko, N. Masaya, N. Atsumi, I. Mitsuro, Bull. FFPRI, 2004, 3, 7-13.

    39. [39]

      [39] K. S. Shin, Y. H. Kim, J. S. Lim, J. Microbiol., 2005, 43, 503-509.

    40. [40]

      [40] P. P. Champagne, J. A. Ramsay, Appl. Microbiol. Biotechnol., 2005, 69, 276-285.

    41. [41]

      [41] C. G. Boer, L. Obici, C. G. M. de Souza, R. M. Peralta, Bioresour. Technol., 2004, 94, 107-112.

    42. [42]

      [42] P. L. de Oliveira, M. C. T. Duarte, A. N. Ponezi, L. R. Durrant, Braz. J. Microbiol., 2009, 40, 818-826.

    43. [43]

      [43] M. Asgher, H. M. N. Iqbal, Bio. Res., 2011, 6, 4302-4315.

    44. [44]

      [44] M. Ferhan, A. L. Leao, I. S. de Melo, N. Yan, M. Sain, Ferment. Technol., 2012, 1(5), doi:10.4172/2167-7972.1000106.

    45. [45]

      [45] Y. J. Cai, H. G. Wu, X. R. Liao, Y. R. Ding, J. Sun, D. B. Zhang, Biotechnol. Bioprocess Eng., 2010, 15, 1016-1021.

    46. [46]

      [46] N. Karthik, P. Binod, A. Pandey, Bioresour. Technol., 2015, 188, 195-201.

    47. [47]

      [47] A. Heinfling, M.J. Martinez, A.T. Martinez, M. Bergbauer, U. Szewzyk, Appl. Environ. Microbiol., 1998, 64, 2788-2793.

    48. [48]

      [48] C. Andreini, I. Bertini, G. Cavallaro, G. L. Holliday, J. M. Thornton, J. Biol. Inorg. Chem., 2008, 13, 1205-1218.

    49. [49]

      [49] M. Bilal, M. Asgher, Chem. Cent. J., 2015, 9, 47, doi: 10.1186/s13065-015-0125-0.

    50. [50]

      [50] Y. Tsutsumi, T. Haneda, T. Nishida, Chemosphere, 2001, 42, 271-276.

    51. [51]

      [51] T. Saito, K. Kato, Y. Yokogawa, M. Nishida, N. Yamashita, J. Biosci. Bioengineer., 2004, 98, 64-66.

    52. [52]

      [52] X. B. Cheng, R. Jia, P. S. Li, S. Q. Tu, Q. Zhu, W. Z. Tang, X. D. Li, Enzyme Microb. Technol., 2007, 2, 258-264.

    53. [53]

      [53] J. Jarvinen, S. Taskila, R. Isomaki, H. Ojamo, AMB Express, 2012, 2, 62, doi: 10.1186/2191-0855-2-62.

    54. [54]

      [54] R. S. Yehia, Braz. J. Microbiol., 2014, 45, 127-33.

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    18. [18]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(0)
  • Abstract views(493)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return