Citation: Junlong Zhao, Jun Qiu, Xiaofeng Gou, Chengwen Hua, Bang Chen. Iron(III) phthalocyanine chloride-catalyzed oxidation-aromatization of α,β-unsaturated ketones with hydrazine hydrate: Synthesis of 3,5-disubstituted 1H-pyrazoles[J]. Chinese Journal of Catalysis, ;2016, 37(4): 571-578. doi: 10.1016/S1872-2067(15)61043-9 shu

Iron(III) phthalocyanine chloride-catalyzed oxidation-aromatization of α,β-unsaturated ketones with hydrazine hydrate: Synthesis of 3,5-disubstituted 1H-pyrazoles

  • Corresponding author: Junlong Zhao, 
  • Received Date: 12 November 2015
    Available Online: 13 January 2016

    Fund Project: 陕西省科技厅工业攻关项目(2014K08-29) (2014K08-29) 西安市科技计划项目(CXY1511(7) (CXY1511(7)

  • We have developed an iron(III) phthalocyanine chloride-catalyzed oxidation-aromatization of α,β-unsaturated ketones with hydrazine hydrate. Various 3,5-disubstituted 1H-pyrazoles were obtained in good to excellent yields. This method offers several advantages, including room- temperature conditions, short reaction time, high yields, simple work-up procedure, and use of air as an oxidant. The catalyst can be recovered and reused five times without loss of activity.
  • 加载中
    1. [1]

      [1] M. A. A. El-Sayed, N. I. Abdel-Aziz, A. A. M. Abdel-Aziz, A. S. El-Azab, K. E. H. El-Tahir, Bioorg. Med. Chem., 2012, 20, 3306-3316.

    2. [2]

      [2] D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, A. Gzella, R. Lesyk, J. Med. Chem., 2012, 55, 8630-8641.

    3. [3]

      [3] A. Tanitame, Y. Oyamada, K. Ofuji, M. Fujimoto, N. Iwai, Y. Hiyama, K. Suzuki, H. Ito, H. Terauchi, M. Kawasaki, K. Nagai, M. Wachi, J. Yamagishi, J. Med. Chem., 2004, 47, 3693-3696

    4. [4]

      [4] R. Lan, Q. Liu, P. Fan, S. Lin, S. R. Fernando, D. McCallion, R. Pertwee, A. Makriyannis, J. Med. Chem., 1999, 42, 769-776.

    5. [5]

      [5] S. Fustero, M. Sánchez-Roselló, P. Barrio, A. Simón-Fuentes, Chem. Rev., 2011, 111, 6984-7034.

    6. [6]

      [6] S. Kuwata, T. Ikariya, Chem.-Eur. J., 2011, 17, 3542-3556.

    7. [7]

      [7] S. N. A. Bukhari, M. Jasamai, I. Jantan, Mini-Rev. Med. Chem., 2012, 12, 1394-1403.

    8. [8]

      [8] Y. S. Xiong, J. Guo, M. R. Candelore, R. Liang, C. Miller, Q. Dallas-Yang, G. Q. Jiang, P. E. McCann, S. A. Qureshi, X. C. Tong, S. S. Xu, J. Shang, S. H. Vincent, L. M. Tota, M. J. Wright, X. D. Yang, B. B. Zhang, J. R. Tata, E. R. Parmee, J. Med. Chem., 2012, 55, 6137-6148.

    9. [9]

      [9] S. Budagumpi, N. V. Kulkarni, G. S. Kurdekar, M. P. Sathisha, V. K. Revankar, Eur. J. Med. Chem., 2010, 45, 455-462.

    10. [10]

      [10] S. Tabassum, I. U. H. Bhat, Chem. Pharm. Bull., 2010, 58, 318-325.

    11. [11]

      [11] Y. Sun, A. Hienzsch, J. Grasser, E. Herdtweck, W. R. Thiel, J. Organomet. Chem., 2006, 691, 291-298.

    12. [12]

      [12] S. Bieller, A. Haghiri, M. Bolte, J. W. Bats, M. Wagner, H. W. Lerner, Inorg. Chim. Acta, 2006, 359, 1559-1572.

    13. [13]

      [13] R. Mukherjee, Coord. Chem. Rev., 2000, 203, 151-218.

    14. [14]

      [14] S. M. Nelana, J. Darkwa, I. A. Guzei, S. F. Mapolie, J. Organomet. Chem., 2004, 689, 1835-1842.

    15. [15]

      [15] R. A. Singer, S. Caron, R. E. McDermott, P. Arpin, N. M. Do, Synthesis, 2003, 1727-1731.

    16. [16]

      [16] R. A. Singer, M. Dore, J. E. Sieser, M. A. Berliner, Tetrahedron Lett., 2006, 47, 3727-3731.

    17. [17]

      [17] S. Burling, L. D. Field, B. A. Messerle, S. L. Rumble, Organometallics, 2007, 26, 4335-4343.

    18. [18]

      [18] E. Cavero, S. Uriel, P. Romero, J. L. Serrano, R. Gimenez, J. Am. Chem. Soc., 2007, 129, 11608-11618.

    19. [19]

      [19] C. Ye, G. L. Gard, R. W. Winter, R. G. Syvret, B. Twamley, J. M. Shreeve, Org. Lett., 2007, 9, 3841-3844.

    20. [20]

      [20] B. Willy, T. J. J. Müller, Org. Lett., 2011, 13, 2082-2085.

    21. [21]

      [21] A. Sachse, L. Penkova, G. Noel, S. Dechert, O. A. Varzatskii, I. O. Fritsky, F. Meyer, Synthesis, 2008, 800-806.

    22. [22]

      [22] E. Gondek, Mater. Lett., 2013, 112, 94-96.

    23. [23]

      [23] K. V. Rao, B. D. Santarsiero, A. D. Mesecar, R. F. Schinazi, B. L. Tekwani, M. T. Hamann, J. Nat. Prod., 2003, 66, 823-828.

    24. [24]

      [24] S. M. Allin, W. R. S. Barton, W. R. Bowman, T. McInally, Tetrahedron Lett., 2002, 43, 4191-4193.

    25. [25]

      [25] A. A. Wube, E. M. Wenzig, S. Gibbons, K. Asres, R. Bauer, F. Bucar, Phytochemistry, 2008, 69, 982-987.

    26. [26]

      [26] V. Ravikanth, P. Ramesh, P. V. Diwan, Y. Venkateswarlu, Biochem. Syst. Ecol., 2001, 29, 753-754.

    27. [27]

      [27] V. Kumar, K. Kaur, G. K. Gupta, A. K. Sharma, Eur. J. Med. Chem., 2013, 69, 735-753.

    28. [28]

      [28] Y. Schneider, J. Prévost, M. Gobin, C. Y. Legault, Org. Lett., 2014, 16, 596-599.

    29. [29]

      [29] S. T. Heller, S. R. Natarajan, Org. Lett., 2006, 8, 2675-2678.

    30. [30]

      [30] B. S. Gerstenberger, M. R. Rauckhorst, J. T. Starr, Org. Lett., 2009, 11, 2097-2100.

    31. [31]

      [31] G. Shan, P. F. Liu, Y. Rao, Org. Lett., 2011, 13, 1746-1749.

    32. [32]

      [32] B. Willy, T. J. J. Müller, Org. Lett., 2011, 13, 2082-2085.

    33. [33]

      [33] A. A. Dissanayake, A. L. Odom, Chem. Commun., 2012, 48, 440-442.

    34. [34]

      [34] J. D. Kirkham, S. J. Edeson, S. Stokes, J. P. A. Harrity, Org. Lett., 2012, 14, 5354-5357.

    35. [35]

      [35] H. Kawai, Z. Yuan, E. Tokunaga, N. Shibata, Org. Lett., 2012, 14, 5330-5333.

    36. [36]

      [36] X. H. Deng, N. S. Mani, Org. Lett., 2006, 8, 3505-3508.

    37. [37]

      [37] X. H. Deng, N. S. Mani, J. Org. Chem., 2008, 73, 2412-2415.

    38. [38]

      [38] Y. F. Kong, M. Tang, Y. Wang, Org. Lett., 2014, 16, 576-579.

    39. [39]

      [39] K. Mohanan, A. R. Martin, L. Toupet, M. Smietana, J. J. Vasseur, Angew. Chem. Int. Ed., 2010, 49, 3196-3199.

    40. [40]

      [40] O. Jackowski, T. Lecourt, L, Micouin, Org. Lett., 2011, 13, 5664- 5667.

    41. [41]

      [41] X. F. Xu, P. Y. Zavalij, W. H. Hu, M. P. Doyle, J. Org. Chem., 2013, 78, 1583-1588.

    42. [42]

      [42] X. H. Deng, N. S. Mani, Org. Lett., 2008, 10, 1307-1310.

    43. [43]

      [43] G. S. Ananthnag, A. Adhikari, M. S. Balakrishna, Catal. Commun., 2014, 43, 240-243.

    44. [44]

      [44] X. W. Li, L. He, H. J. Chen, W. Q. Wu, H. F. Jiang, J. Org. Chem., 2013, 78, 3636-3646.

    45. [45]

      [45] T. S. Zhang, W. L. Bao, J. Org. Chem., 2013, 78, 1317-1322.

    46. [46]

      [46] J. T. Hu, S. Chen, Y. H. Sun, J. Yang, Y. Rao, Org. Lett., 2012, 14, 5030-5033.

    47. [47]

      [47] A. Raghunadh, S. B. Meruva, R. Mekala, K. R. Rao, T. Krishna, R. G. Chary, L. V. Rao, U. K. Syam Kumar, Tetrahedron Lett., 2014, 55, 2986-2990.

    48. [48]

      [48] S. H. Guo, J. L. Wang, D. Q. Guo, X. Y. Zhang, X. S. Fan, RSC Adv., 2012, 2, 3772-3777.

    49. [49]

      [49] L. G. Wang, X. Q. Yu, X. J. Feng, M. Bao, J. Org. Chem., 2013, 78, 1693-1698.

    50. [50]

      [50] A. Takfaoui, L. Q. Zhao, R. Touzani, P. H. Dixneuf, H. Doucet, Tetrahedron Lett., 2014, 55, 1697-1701.

    51. [51]

      [51] R. Vanjari, T. Guntreddi, S. Kumar, K. N. Singh, Chem. Commun., 2015, 51, 366-369.

    52. [52]

      [52] M. Denissen, J. Nordmann, J. Dziambor, B. Mayer, W. Frank, T. J. J. Müller, RSC Adv., 2015, 5, 33838-33854.

    53. [53]

      [53] Z. Zhang, Y. J. Tan, C. S. Wang, H. H. Wu, Heterocycles, 2014, 89, 103-112.

    54. [54]

      [54] B. Meunier, A. Sorokin, Acc. Chem. Res., 1997, 30, 470-476.

    55. [55]

      [55] B. E. Woodworth, J. L. Templeton, J. Am. Chem. Soc., 1996, 118, 7418-7419.

    56. [56]

      [56] A. Sorokin, J. L. Seris, B. Meunier, Science, 1995, 268, 1163-1166.

    57. [57]

      [57] N. Grootboom, T. Nyo-kong, J. Mol. Catal. A, 2002, 179, 113-123.

    58. [58]

      [58] Ü. Salan, N. Kobayashi, Ö. Bekaroglu, Tetrahedron Lett., 2009, 50, 6775-6778.

    59. [59]

      [59] I. M. Geraskin, M. W. Luedtke, H. M. Neu, V. N. Nemykin, V. V. Zhdankin, Tetrahedron Lett., 2008, 49, 7410-7412.

    60. [60]

      [60] A. A. Lamar, K. M. Nicholas, Tetrahedron, 2009, 65, 3829-3833.

    61. [61]

      [61] L. X. Alvarez, E. V. Kudrik, A. B. Sorokin, Chem. Eur. J., 2011, 17, 9298-9301.

    62. [62]

      [62] E. Kockrick, T. Lescouet, E. V. Kudrik, A. B. Sorokin, D. Farrusseng, Chem. Commun., 2011, 47, 1562-1564.

    63. [63]

      [63] W. M. Li, A. P. Yu, D. C. Higgins, B. G. Llanos, Z. W. Chen, J. Am. Chem. Soc., 2010, 132, 17056-17058.

    64. [64]

      [64] D. L. Usanov, H. Yamamoto, Angew. Chem. Int. Ed., 2010, 49, 8169-8172.

    65. [65]

      [65] J. L. Zhao, X. F. Gou, C. W. Hua, L. Y. Wang, Chin. J. Catal., 2012, 33, 1262-1265.

    66. [66]

      [66] P. Afanasiev, E. V. Kudrik, F. Albrieux, V. Briois, O. I. Koifman, A. B. Sorokin, Chem. Commun., 2012, 48, 6088-6090.

    67. [67]

      [67] A. B. Sorokin, E. V. Kudrik, Catal. Today, 2011, 159, 37-46.

    68. [68]

      [68] H. Mahdi, H. Mofakham, N. Safari, A. M. Manesh, J. Porphyrins Phthalocyanines, 2012, 16, 93-100.

    69. [69]

      [69] M. Filipan-Litvic, M. Litvic, V. Vinkovic, Bioorg. Med. Chem., 2008, 16, 9276-9282.

  • 加载中
    1. [1]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    9. [9]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    10. [10]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    11. [11]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    12. [12]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    13. [13]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    14. [14]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    15. [15]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    16. [16]

      Ruiyuan Xu Yuxin Wang Yuru Zhang Wanmei Li . Who Destroyed Snowflake Castle. University Chemistry, 2024, 39(9): 224-228. doi: 10.12461/PKU.DXHX202311056

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(488)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return