Citation: Lina Li, Wenliang Zhu, Lei Shi, Yong Liu, Hongchao Liu, Youming Ni, Shiping Liu, Hui Zhou, Zhongmin Liu. The effect of ethanol on the performance of CrOx/SiO2 catalysts during propane dehydrogenation[J]. Chinese Journal of Catalysis, ;2016, 37(3): 359-366. doi: 10.1016/S1872-2067(15)61042-7 shu

The effect of ethanol on the performance of CrOx/SiO2 catalysts during propane dehydrogenation

  • Corresponding author: Zhongmin Liu, 
  • Received Date: 20 November 2015
    Available Online: 30 December 2015

  • The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2. The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2, generating 41.4% propane conversion and 84.8% propylene selectivity. The various catalyst samples prepared were characterized by X-ray diffraction, transmission electron microscopy, temperature-programmed reduction, X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy. The data show that coordinative Cr3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr3+. Cr3+ is reduced during the reaction, leading to a decrease in catalytic activity. Following ethanol vapor pretreatment, the reduced CrOx in the catalyst is readily re-oxidized to Cr6+ by CO2. The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr3+ states.
  • 加载中
    1. [1]

      [1] M. M. Bettahar, G. Costentin, L. Savary, J. C. Lavalley, Appl. Catal. A, 1996, 145, 1-48.

    2. [2]

      [2] R. Grabowski, Catal. Rev. Sci. Eng., 2006, 48, 199-268.

    3. [3]

      [3] P. R. Pujado, B. V. Vora, Hydrocarbon Process., 1990, 69, 65-70.

    4. [4]

      [4] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M. Weckhuysen, Chem. Rev., 2014, 114, 10613-10653.

    5. [5]

      [5] B. Schimmoeller, Y. J. Jiang, S. E. Pratsinis, A. Baiker, J. Catal., 2010, 274, 64-75.

    6. [6]

      [6] F. Cavani, N. Ballarini, A. Cericola, Catal. Today, 2007, 127, 113-131.

    7. [7]

      [7] E. V. Kondratenko, A. Brückner, J. Catal., 2010, 274, 111-116.

    8. [8]

      [8] T. Kamegawa, J. Morishima, M. Matsuoka, J. M. Thomas, M. Anpo. J. Phys. Chem. C, 2007, 111, 1076-1078.

    9. [9]

      [9] Y. Sakurai, T. Suzaki, N. O. Ikenaga. T. Suzuki, Appl. Catal. A, 2000, 192, 281-288.

    10. [10]

      [10] I. Takahara, W. C. Chang, N. Mimura. M. Saito, Catal. Today, 1998, 45, 55-59.

    11. [11]

      [11] Y. Ohishi, T. Kawabata, T. Shishido, K. Takaki, Q. H. Zhang, Y. Wang, K. Takehira, J. Mol. Catal. A, 2005, 230, 49-58.

    12. [12]

      [12] X. Ge, H. Zou, J. Wang, J. Y. Shen, React. Kinet. Catal. Lett., 2005, 85, 253-260.

    13. [13]

      [13] P. Michorczyk, J. Ogonowski, P. Kuśtrowski and L. Chmielarz, Appl. Catal. A, 2008, 349, 62-69.

    14. [14]

      [14] S. A. Al-Ghamdi, H. I. de Lasa, Fuel, 2014, 128, 120-140.

    15. [15]

      [15] E. V. Kondratenko, M. Yu. Sinev, Appl. Catal. A, 2007, 325, 353-361.

    16. [16]

      [16] B. Y. Jibril, S. Ahmed, Catal. Commun., 2006, 7, 990-996.

    17. [17]

      [17] M. Chen, J. Xu, Y. M. Liu, Y. Cao, H. Y. He, J. H. Zhuang, K. N. Fan, Catal. Lett., 2008, 124, 369-375.

    18. [18]

      [18] Y. J. Ren, F. Zhang, W. M. Hua, Y. H. Yue, Z. Gao, Catal. Today, 2009, 148, 316-322.

    19. [19]

      [19] O. V. Krylov, A. Kh. Mamedov, S. R. Mirzabekova, Ind. Eng. Chem. Res., 1995, 34, 474-482.

    20. [20]

      [20] C. Trionfetti, S. Crapanzano, I. V. Babich, K. Seshan, L. Lefferts, Catal. Today, 2009, 145, 19-26.

    21. [21]

      [21] T. Shishido, K. Shimamura, K. Teramura, T. Tanaka, Catal. Today, 2012, 185, 151-156.

    22. [22]

      [22] R. X. Wu, P. F. Xie, Y. H. Cheng, Y. H. Yue, S. Y. Gu, W. M. Yang, C. X. Miao, W. M. Hua, Z. Gao, Catal. Commun., 2013, 39, 20-23.

    23. [23]

      [23] D. Yun, J. Baek, Y. Choi, W. Kim, H. J. Lee, J. Yi, ChemCatChem, 2012, 4, 1952-1959.

    24. [24]

      [24] E. Heracleous, M. Machli, A. A. Lemonidou and I. A. Vasalos, J. Mol. Catal. A, 2005, 232, 29-39.

    25. [25]

      [25] F. E. Frey, W. F. Huppke, Ind. Eng. Chem., 1932, 25, 54-59.

    26. [26]

      [26] Y. Wang, Y. Ohishi, T. Shishido, Q. H. Zhang, W. Yang, Q. Guo, H. L. Wan, K. Takehira, J. Catal., 2003, 220, 347-357.

    27. [27]

      [27] P. Michorczyk, J. Ogonowski, K. Zeńczak, J. Mol. Catal. A, 2011, 349, 1-12.

    28. [28]

      [28] M. S. Kumar, N. Hammer, M. Ronning, A. Holmen, D. Chen, J. C. Walmsley, G. Öye, J. Catal., 2009, 261, 116-128.

    29. [29]

      [29] J. Baek, H. J. Yun, D. Yun, Y. Choi, J. Yi, ACS Catal., 2012, 2, 1893-1903.

    30. [30]

      [30] F. T. Zangeneh, S. Mehrazma, S. Sahebdelfar, Fuel Process. Technol., 2013, 109, 118-123.

    31. [31]

      [31] E. Skwarek, S. Khalameida, W. Janusz, V. Sydorchuk, N. Konovalova, V. Zazhigalov, J. Skubiszewska-Zięba, R. Leboda, J. Therm. Anal. Calorim., 2011, 106, 881-894.

    32. [32]

      [32] Yu. A. Agafonov, N. A. Gaidai and A. L. Lapidus, Russ. Chem. Bull., 2014, 63, 381-388.

    33. [33]

      [33] Y. N. Sun, Y. M. Wu, L. Tao, H. H. Shan, G. W. Wang and C. Y. Li, J. Mol. Catal. A, 2015, 397, 120-126.

    34. [34]

      [34] S. M. K. Airaksinen, A. O. I. Krause, Ind. Eng. Chem. Res., 2005, 44, 3862-3868.

    35. [35]

      [35] P. Michorczyk, J. Ogonowski, K. Zeńczak, J. Mol. Catal. A, 2011, 349, 1-12.

    36. [36]

      [36] A. Hakuli, M. E. Harlin, L. B. Backman, A. O. I. Krause, J. Catal., 1999, 184, 349-356.

    37. [37]

      [37] B. M. Weckhuysen, A. A. Verberckmoes, A. R. De Baets, R. A. Schoonheydt, J. Catal., 1997, 166, 160-171.

    38. [38]

      [38] M. S. Kumar, N. Hammer, M. Rönning, A. Holmen, D. Chen, J. C. Walmsley, G. Öye, J. Catal., 2009, 261, 116-128.

    39. [39]

      [39] K. Takehira, Y. Ohishi, T. Shishido, T. Kawabata, K. Takaki, Q. H. Zhang and Y. Wang, J. Catal., 2004, 224, 404-416.

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(0)
  • Abstract views(409)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return