Citation:
	            
		            Masoumeh  Taei, Fardin  Abedi. New modified multiwalled carbon nanotubes paste electrode for electrocatalytic oxidation and determination of warfarin in biological and pharmaceutical samples[J]. Chinese Journal of Catalysis,
							;2016, 37(3): 436-445.
						
							doi:
								10.1016/S1872-2067(15)61039-7
						
					
				
					
				
	        
- 
	                	A novel sensor for the determination of warfarin based on a simple and sensitive method was developed on multiwalled-carbon-nanotube modified ZnCrFeO4 carbon paste electrodes (MWCNT/ZnCrFeO4/CPEs). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of warfarin at the chemically modified electrode. According to the results, MWCNT/ZnCrFeO4/CPEs showed high electrocatalytic activity for warfarin oxidation, producing a sharp oxidation peak current at about +0.97 vs Ag/AgCl reference electrode at pH = 4.0. The peak current was linearly dependent on warfarin concentration over the range of 0.02-920.0 µmol/L with a detection limit of 0.003 µmol/L. In addition, chronoamperometry was also used to determine warfarin's catalytic rate constant and diffusion coefficient at MWCNT/ZnCrFeO4/CPEs.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] R. A. Harrington, R. C. Becker, M. Ezekowitz, T. W. Meade, C. M. O'Connor, D. A. Vorchheimer, G. H. Guyatt, Chest, 2004, 126, 513S-548S.
 - 
			
                    [2]
                
			
[2] D. N. Salem, P. T. O'Gara, C. Madias, S. G. Pauker, Chest, 2008, 133, 593S-629S.
 - 
			
                    [3]
                
			
[3] D. E. Singer, G. W. Albers, J. E. Dalen, A. S. Go, J. L. Halperin, W. J. Manning, Chest, 2004, 126, 429S-456S.
 - 
			
                    [4]
                
			
[4] J. G. Hou, J. Zheng, S. A. Shamsi, J. Chromatogr. A, 2007, 1159, 208-216.
 - 
			
                    [5]
                
			
[5] R. A. Coe, J. O. Rathe, J. W. Lee, J. Pharm. Biomed. Anal., 2006, 42, 573-580.
 - 
			
                    [6]
                
			
[6] S. J. Sun, M. H. Wang, L. Q. Su, J. Li, H. J. Li, D. J. Gu, J. Pharm. Biomed. Anal., 2006, 42, 218-222.
 - 
			
                    [7]
                
			
[7] R. Denooz, Z. Douamba, C. Charlier, J. Chromatogr. B, 2009, 877, 2344-2348.
 - 
			
                    [8]
                
			
[8] A. Osman, K. Arbring, T. L. Lindahl, J. Chromatogr. B, 2005, 826, 75-80.
 - 
			
                    [9]
                
			
[9] I. Locatelli, V. Kmetec, A. Mrhar, I. Grabnar, J. Chromatogr. B, 2005, 818, 191-198.
 - 
			
                    [10]
                
			
[10] P. R. Ring, J. M. Bostick, J. Pharm. Biomed. Anal., 2000, 22, 573-581.
 - 
			
                    [11]
                
			
[11] K. R. Henne, A. Gaedigk, G. Gupta, J. S. Leeder, A. E. Rettie, J. Chromatogr. B, 1998, 710, 143-148.
 - 
			
                    [12]
                
			
[12] V. K. Boppana, W. H. Schaefer, M. J. Cyronak, J. Biochem. Biophys. Methods, 2002, 54, 315-326.
 - 
			
                    [13]
                
			
[13] W. P. Yau, E. Chan, J. Pharm. Biomed. Anal., 2002, 28, 107-123.
 - 
			
                    [14]
                
			
[14] P. Gareil, J. P. Gramond, F. Guyon, J. Chromatogr. B, 1993, 615, 317-325.
 - 
			
                    [15]
                
			
[15] M. Balchen, A. Gjelstad, K. E. Rasmussen, S. Pedersen-Bjergaard, J. Chromatogr. A, 2007, 1152, 220-225.
 - 
			
                    [16]
                
			
[16] M. M. Ghoneim, A. Tawfik, Anal. Chim. Acta, 2004, 511, 63-69.
 - 
			
                    [17]
                
			
[17] M. B. Gholivand, M. Torkashvand, E. yavari, Mater. Sci. Eng. C, 2015, 48, 235-242.
 - 
			
                    [18]
                
			
[18] M. B. Gholivand, L. Mohammadi-Behzad, Mater. Sci. Eng. C, 2015, 57, 77-87.
 - 
			
                    [19]
                
			
[19] B. Rezaei, O. Rahmanian, A. A. Ensafi, Sensor. Actuat. B, 2014, 196, 539-545.
 - 
			
                    [20]
                
			
[20] Y. F. Li, X. Y. Du, C. Wu, X. Y. Liu, P. Xu, X. Wang, Nanoscale Res. Lett., 2013, 8, 522.
 - 
			
                    [21]
                
			
[21] M. Taei, F. Hasanpour, M. Movahedi, Sh. Mohammadian, RSC Adv., 2015, 5, 37431-37439.
 - 
			
                    [22]
                
			
[22] A. Hamed, A. G. Fitzgerald, L. J. Wang, M. Gueorguieva, R. Malik, A. Melzer, Mater. Sci. Eng. C, 2013, 33, 1623-1628.
 - 
			
                    [23]
                
			
[23] T. A. P. Rocha-Santos, TrAC-Trend Anal. Chem., 2014, 62, 28-36.
 - 
			
                    [24]
                
			
[24] R. P. Patil, S. D. Delekar, D. R. Mane, P. P. Hankare, Results Phys., 2013, 3, 129-133.
 - 
			
                    [25]
                
			
[25] W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-Bieluń, U. Narkiewicz, J. Colloid Interface Sci., 2013, 398, 152-160.
 - 
			
                    [26]
                
			
[26] I. Sharifi, H. Shokrollahi, J. Magn. Magn. Mater., 2012, 324, 2397-2403.
 - 
			
                    [27]
                
			
[27] J. Q. Wan, X. H. Jiang, H. Li, K. Z. Chen, J. Mater. Chem., 2012, 22, 13500-13505.
 - 
			
                    [28]
                
			
[28] M. Stefanescu, M. Barbu, T. Vlase, P. Barvinschi, L. Barbu-Tudoran, M. Stoia, Thermochim. Acta, 2011, 526, 130-136.
 - 
			
                    [29]
                
			
[29] C. F. Federici, A. S. Foster, M. K. Rasmussen, K. Meinander, F. Besenbacher, J. V. Lauritsen, Nanotechnology, 2012, 23, 325703.
 - 
			
                    [30]
                
			
[30] G. Busca, V. Lorenzelli, G. Ramis, R. J. Willey, Langmuir, 1993, 9, 1492-1499.
 - 
			
                    [31]
                
			
[31] A. A. Ensafi, M. Amini, B. Rezaei, Colloids Surf. B, 2013, 109, 45-51.
 - 
			
                    [32]
                
			
[32] R. P. Gupta, Physical Methods in Heterocyclic Chemistry, Wiley, New York, 1984.
 - 
			
                    [33]
                
			
[33] W. Naidong, P. R. Ring, C. Midtlien, X. Jiang, J. Pharm. Biomed. Anal., 2001, 25, 219-226.
 - 
			
                    [34]
                
			
[34] Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, 1976.
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
 - 
				[2]
				
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
 - 
				[3]
				
Shuhong Xiang , Lv Yang , Yingsheng Xu , Guoxin Cao , Hongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097
 - 
				[4]
				
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
 - 
				[5]
				
Feng Lin , Zhongxin Jin , Caiying Li , Cheng Shao , Yang Xu , Fangze Li , Siqi Liu , Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017
 - 
				[6]
				
Benhua Wang , Chaoyi Yao , Yiming Li , Qing Liu , Minhuan Lan , Guipeng Yu , Yiming Luo , Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070
 - 
				[7]
				
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
 - 
				[8]
				
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
 - 
				[9]
				
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
 - 
				[10]
				
Chen Pu , Daijie Deng , Henan Li , Li Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021
 - 
				[11]
				
Yue-Zhou Zhu , Kun Wang , Shi-Sheng Zheng , Hong-Jia Wang , Jin-Chao Dong , Jian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040
 - 
				[12]
				
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
 - 
				[13]
				
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037
 - 
				[14]
				
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
 - 
				[15]
				
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
 - 
				[16]
				
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
 - 
				[17]
				
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
 - 
				[18]
				
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
 - 
				[19]
				
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
 - 
				[20]
				
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1)
 - Abstract views(677)
 - HTML views(75)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: