Citation: Masoumeh Taei, Fardin Abedi. New modified multiwalled carbon nanotubes paste electrode for electrocatalytic oxidation and determination of warfarin in biological and pharmaceutical samples[J]. Chinese Journal of Catalysis, ;2016, 37(3): 436-445. doi: 10.1016/S1872-2067(15)61039-7 shu

New modified multiwalled carbon nanotubes paste electrode for electrocatalytic oxidation and determination of warfarin in biological and pharmaceutical samples

  • Corresponding author: Masoumeh Taei, 
  • Received Date: 12 September 2015
    Available Online: 8 January 2016

  • A novel sensor for the determination of warfarin based on a simple and sensitive method was developed on multiwalled-carbon-nanotube modified ZnCrFeO4 carbon paste electrodes (MWCNT/ZnCrFeO4/CPEs). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of warfarin at the chemically modified electrode. According to the results, MWCNT/ZnCrFeO4/CPEs showed high electrocatalytic activity for warfarin oxidation, producing a sharp oxidation peak current at about +0.97 vs Ag/AgCl reference electrode at pH = 4.0. The peak current was linearly dependent on warfarin concentration over the range of 0.02-920.0 µmol/L with a detection limit of 0.003 µmol/L. In addition, chronoamperometry was also used to determine warfarin's catalytic rate constant and diffusion coefficient at MWCNT/ZnCrFeO4/CPEs.
  • 加载中
    1. [1]

      [1] R. A. Harrington, R. C. Becker, M. Ezekowitz, T. W. Meade, C. M. O'Connor, D. A. Vorchheimer, G. H. Guyatt, Chest, 2004, 126, 513S-548S.

    2. [2]

      [2] D. N. Salem, P. T. O'Gara, C. Madias, S. G. Pauker, Chest, 2008, 133, 593S-629S.

    3. [3]

      [3] D. E. Singer, G. W. Albers, J. E. Dalen, A. S. Go, J. L. Halperin, W. J. Manning, Chest, 2004, 126, 429S-456S.

    4. [4]

      [4] J. G. Hou, J. Zheng, S. A. Shamsi, J. Chromatogr. A, 2007, 1159, 208-216.

    5. [5]

      [5] R. A. Coe, J. O. Rathe, J. W. Lee, J. Pharm. Biomed. Anal., 2006, 42, 573-580.

    6. [6]

      [6] S. J. Sun, M. H. Wang, L. Q. Su, J. Li, H. J. Li, D. J. Gu, J. Pharm. Biomed. Anal., 2006, 42, 218-222.

    7. [7]

      [7] R. Denooz, Z. Douamba, C. Charlier, J. Chromatogr. B, 2009, 877, 2344-2348.

    8. [8]

      [8] A. Osman, K. Arbring, T. L. Lindahl, J. Chromatogr. B, 2005, 826, 75-80.

    9. [9]

      [9] I. Locatelli, V. Kmetec, A. Mrhar, I. Grabnar, J. Chromatogr. B, 2005, 818, 191-198.

    10. [10]

      [10] P. R. Ring, J. M. Bostick, J. Pharm. Biomed. Anal., 2000, 22, 573-581.

    11. [11]

      [11] K. R. Henne, A. Gaedigk, G. Gupta, J. S. Leeder, A. E. Rettie, J. Chromatogr. B, 1998, 710, 143-148.

    12. [12]

      [12] V. K. Boppana, W. H. Schaefer, M. J. Cyronak, J. Biochem. Biophys. Methods, 2002, 54, 315-326.

    13. [13]

      [13] W. P. Yau, E. Chan, J. Pharm. Biomed. Anal., 2002, 28, 107-123.

    14. [14]

      [14] P. Gareil, J. P. Gramond, F. Guyon, J. Chromatogr. B, 1993, 615, 317-325.

    15. [15]

      [15] M. Balchen, A. Gjelstad, K. E. Rasmussen, S. Pedersen-Bjergaard, J. Chromatogr. A, 2007, 1152, 220-225.

    16. [16]

      [16] M. M. Ghoneim, A. Tawfik, Anal. Chim. Acta, 2004, 511, 63-69.

    17. [17]

      [17] M. B. Gholivand, M. Torkashvand, E. yavari, Mater. Sci. Eng. C, 2015, 48, 235-242.

    18. [18]

      [18] M. B. Gholivand, L. Mohammadi-Behzad, Mater. Sci. Eng. C, 2015, 57, 77-87.

    19. [19]

      [19] B. Rezaei, O. Rahmanian, A. A. Ensafi, Sensor. Actuat. B, 2014, 196, 539-545.

    20. [20]

      [20] Y. F. Li, X. Y. Du, C. Wu, X. Y. Liu, P. Xu, X. Wang, Nanoscale Res. Lett., 2013, 8, 522.

    21. [21]

      [21] M. Taei, F. Hasanpour, M. Movahedi, Sh. Mohammadian, RSC Adv., 2015, 5, 37431-37439.

    22. [22]

      [22] A. Hamed, A. G. Fitzgerald, L. J. Wang, M. Gueorguieva, R. Malik, A. Melzer, Mater. Sci. Eng. C, 2013, 33, 1623-1628.

    23. [23]

      [23] T. A. P. Rocha-Santos, TrAC-Trend Anal. Chem., 2014, 62, 28-36.

    24. [24]

      [24] R. P. Patil, S. D. Delekar, D. R. Mane, P. P. Hankare, Results Phys., 2013, 3, 129-133.

    25. [25]

      [25] W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-Bieluń, U. Narkiewicz, J. Colloid Interface Sci., 2013, 398, 152-160.

    26. [26]

      [26] I. Sharifi, H. Shokrollahi, J. Magn. Magn. Mater., 2012, 324, 2397-2403.

    27. [27]

      [27] J. Q. Wan, X. H. Jiang, H. Li, K. Z. Chen, J. Mater. Chem., 2012, 22, 13500-13505.

    28. [28]

      [28] M. Stefanescu, M. Barbu, T. Vlase, P. Barvinschi, L. Barbu-Tudoran, M. Stoia, Thermochim. Acta, 2011, 526, 130-136.

    29. [29]

      [29] C. F. Federici, A. S. Foster, M. K. Rasmussen, K. Meinander, F. Besenbacher, J. V. Lauritsen, Nanotechnology, 2012, 23, 325703.

    30. [30]

      [30] G. Busca, V. Lorenzelli, G. Ramis, R. J. Willey, Langmuir, 1993, 9, 1492-1499.

    31. [31]

      [31] A. A. Ensafi, M. Amini, B. Rezaei, Colloids Surf. B, 2013, 109, 45-51.

    32. [32]

      [32] R. P. Gupta, Physical Methods in Heterocyclic Chemistry, Wiley, New York, 1984.

    33. [33]

      [33] W. Naidong, P. R. Ring, C. Midtlien, X. Jiang, J. Pharm. Biomed. Anal., 2001, 25, 219-226.

    34. [34]

      [34] Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, 1976.

  • 加载中
    1. [1]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    16. [16]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    17. [17]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    18. [18]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(1)
  • Abstract views(460)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return