Citation:
Masoumeh Taei, Fardin Abedi. New modified multiwalled carbon nanotubes paste electrode for electrocatalytic oxidation and determination of warfarin in biological and pharmaceutical samples[J]. Chinese Journal of Catalysis,
;2016, 37(3): 436-445.
doi:
10.1016/S1872-2067(15)61039-7
-
A novel sensor for the determination of warfarin based on a simple and sensitive method was developed on multiwalled-carbon-nanotube modified ZnCrFeO4 carbon paste electrodes (MWCNT/ZnCrFeO4/CPEs). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of warfarin at the chemically modified electrode. According to the results, MWCNT/ZnCrFeO4/CPEs showed high electrocatalytic activity for warfarin oxidation, producing a sharp oxidation peak current at about +0.97 vs Ag/AgCl reference electrode at pH = 4.0. The peak current was linearly dependent on warfarin concentration over the range of 0.02-920.0 µmol/L with a detection limit of 0.003 µmol/L. In addition, chronoamperometry was also used to determine warfarin's catalytic rate constant and diffusion coefficient at MWCNT/ZnCrFeO4/CPEs.
-
-
-
[1]
[1] R. A. Harrington, R. C. Becker, M. Ezekowitz, T. W. Meade, C. M. O'Connor, D. A. Vorchheimer, G. H. Guyatt, Chest, 2004, 126, 513S-548S.
-
[2]
[2] D. N. Salem, P. T. O'Gara, C. Madias, S. G. Pauker, Chest, 2008, 133, 593S-629S.
-
[3]
[3] D. E. Singer, G. W. Albers, J. E. Dalen, A. S. Go, J. L. Halperin, W. J. Manning, Chest, 2004, 126, 429S-456S.
-
[4]
[4] J. G. Hou, J. Zheng, S. A. Shamsi, J. Chromatogr. A, 2007, 1159, 208-216.
-
[5]
[5] R. A. Coe, J. O. Rathe, J. W. Lee, J. Pharm. Biomed. Anal., 2006, 42, 573-580.
-
[6]
[6] S. J. Sun, M. H. Wang, L. Q. Su, J. Li, H. J. Li, D. J. Gu, J. Pharm. Biomed. Anal., 2006, 42, 218-222.
-
[7]
[7] R. Denooz, Z. Douamba, C. Charlier, J. Chromatogr. B, 2009, 877, 2344-2348.
-
[8]
[8] A. Osman, K. Arbring, T. L. Lindahl, J. Chromatogr. B, 2005, 826, 75-80.
-
[9]
[9] I. Locatelli, V. Kmetec, A. Mrhar, I. Grabnar, J. Chromatogr. B, 2005, 818, 191-198.
-
[10]
[10] P. R. Ring, J. M. Bostick, J. Pharm. Biomed. Anal., 2000, 22, 573-581.
-
[11]
[11] K. R. Henne, A. Gaedigk, G. Gupta, J. S. Leeder, A. E. Rettie, J. Chromatogr. B, 1998, 710, 143-148.
-
[12]
[12] V. K. Boppana, W. H. Schaefer, M. J. Cyronak, J. Biochem. Biophys. Methods, 2002, 54, 315-326.
-
[13]
[13] W. P. Yau, E. Chan, J. Pharm. Biomed. Anal., 2002, 28, 107-123.
-
[14]
[14] P. Gareil, J. P. Gramond, F. Guyon, J. Chromatogr. B, 1993, 615, 317-325.
-
[15]
[15] M. Balchen, A. Gjelstad, K. E. Rasmussen, S. Pedersen-Bjergaard, J. Chromatogr. A, 2007, 1152, 220-225.
-
[16]
[16] M. M. Ghoneim, A. Tawfik, Anal. Chim. Acta, 2004, 511, 63-69.
-
[17]
[17] M. B. Gholivand, M. Torkashvand, E. yavari, Mater. Sci. Eng. C, 2015, 48, 235-242.
-
[18]
[18] M. B. Gholivand, L. Mohammadi-Behzad, Mater. Sci. Eng. C, 2015, 57, 77-87.
-
[19]
[19] B. Rezaei, O. Rahmanian, A. A. Ensafi, Sensor. Actuat. B, 2014, 196, 539-545.
-
[20]
[20] Y. F. Li, X. Y. Du, C. Wu, X. Y. Liu, P. Xu, X. Wang, Nanoscale Res. Lett., 2013, 8, 522.
-
[21]
[21] M. Taei, F. Hasanpour, M. Movahedi, Sh. Mohammadian, RSC Adv., 2015, 5, 37431-37439.
-
[22]
[22] A. Hamed, A. G. Fitzgerald, L. J. Wang, M. Gueorguieva, R. Malik, A. Melzer, Mater. Sci. Eng. C, 2013, 33, 1623-1628.
-
[23]
[23] T. A. P. Rocha-Santos, TrAC-Trend Anal. Chem., 2014, 62, 28-36.
-
[24]
[24] R. P. Patil, S. D. Delekar, D. R. Mane, P. P. Hankare, Results Phys., 2013, 3, 129-133.
-
[25]
[25] W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-Bieluń, U. Narkiewicz, J. Colloid Interface Sci., 2013, 398, 152-160.
-
[26]
[26] I. Sharifi, H. Shokrollahi, J. Magn. Magn. Mater., 2012, 324, 2397-2403.
-
[27]
[27] J. Q. Wan, X. H. Jiang, H. Li, K. Z. Chen, J. Mater. Chem., 2012, 22, 13500-13505.
-
[28]
[28] M. Stefanescu, M. Barbu, T. Vlase, P. Barvinschi, L. Barbu-Tudoran, M. Stoia, Thermochim. Acta, 2011, 526, 130-136.
-
[29]
[29] C. F. Federici, A. S. Foster, M. K. Rasmussen, K. Meinander, F. Besenbacher, J. V. Lauritsen, Nanotechnology, 2012, 23, 325703.
-
[30]
[30] G. Busca, V. Lorenzelli, G. Ramis, R. J. Willey, Langmuir, 1993, 9, 1492-1499.
-
[31]
[31] A. A. Ensafi, M. Amini, B. Rezaei, Colloids Surf. B, 2013, 109, 45-51.
-
[32]
[32] R. P. Gupta, Physical Methods in Heterocyclic Chemistry, Wiley, New York, 1984.
-
[33]
[33] W. Naidong, P. R. Ring, C. Midtlien, X. Jiang, J. Pharm. Biomed. Anal., 2001, 25, 219-226.
-
[34]
[34] Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, 1976.
-
[1]
-
-
-
[1]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[2]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[6]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[7]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[8]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[9]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[10]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[11]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[12]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[13]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[14]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[15]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[16]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[17]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[18]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[19]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[20]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(460)
- HTML views(58)