Citation: Esmat Koohsaryan, Mansoor Anbia. Nanosized and hierarchical zeolites: A short review[J]. Chinese Journal of Catalysis, ;2016, 37(4): 447-467. doi: 10.1016/S1872-2067(15)61038-5 shu

Nanosized and hierarchical zeolites: A short review

  • Corresponding author: Mansoor Anbia, 
  • Received Date: 22 October 2015
    Available Online: 6 January 2016

  • Zeolites are crystalline aluminosilicates with three-dimensional microporous structures. They have been used as ion-exchangers, catalysts, and adsorbents in various fields such as oil refining, petrochemistry, agriculture, and water and wastewater treatment. Their wide use is because of their many beneficial properties, such as framework and compositional flexibilities, physical and hydrothermal stabilities, non-toxicity, high surface areas, exchangeable cations, and good cost-benefit ratios. Although many zeolite applications depend on their microporous structures, this can cause diffusional constraints for bulky reactant and product molecules. There have been many efforts to overcome the intrinsic limitations of conventional zeolites by preparing nanosized and hierarchically structured zeolites. As a result of these efforts, several strategies have been established and the use of new zeolitic materials in various catalytic and adsorptive reactions has been investigated. Longer lifetimes, high catalytic performances, and postponed coking and catalyst deactivation can be achieved using hierarchical and nanosized zeolites. The aim of this review is to provide an overview of the enhanced properties of hierarchical and nanosized zeolites, and recent development methods for their synthesis. The advantages and disadvantages of each route are discussed, and the catalytic applications of nanozeolites and zeolites with secondary porosity, and a comparison with conventional zeolites, are briefly presented.
  • 加载中
    1. [1]

      [1] S. Kulprathipanja, Zeolites in Industrial Separation and Catalysis, Wiley-VCH, Weinheim, 2010.

    2. [2]

      [2] M. Anbia, A. Habibi Davijani, Chem. Eng. J., 2013, 223, 899-907.

    3. [3]

      [3] Z. P. Wang, J. H. Yu, R. R. Xu, Chem. Soc. Rev., 2012, 41, 1729-1741.

    4. [4]

      [4] M. Anbia, F. Mohammadi Nejati, M. Jahangiri, A. Eskandari, V. Garshasbi, J. Sci. I. R. Iran, 2015, 26(3), 213-222.

    5. [5]

      [5] M. Anbia, Z. Parvin, Chem. Eng. Res. Des., 2011, 89, 641-647.

    6. [6]

      [6] F. Bandarchian, M. J. Anbia, Nat. Gas Sci. Eng., 2015, 26, 1380-1387.

    7. [7]

      [7] C. Martínez, J. Perez-Pariente, Zeolites and Ordered Porous Solids: Fundamentals and Applications, Editorial Universitat Politècnica de València, Madrid, 2011.

    8. [8]

      [8] R. M. Mohamed, H. M. Aly, M. F. El-Shahat, I. A. Ibrahim, Microporous Mesoporous Mater., 2005, 79, 7-12.

    9. [9]

      [9] M. Moliner, F. Rey, A. Corma, Angew. Chem. Int. Ed., 2013, 52, 13880-13889.

    10. [10]

      [10] B. Liu, Y. H. Zheng, N. Hu, T. Gui, Y. Q. Li, F. Zhang, R. F. Zhou, X. S. Chen, H. Kita, Microporous Mesoporous Mater., 2014, 196, 270-276.

    11. [11]

      [11] H. Y. Zhang, B. Xie, X. J. Meng, U. Müller, B. Yilmaz, M. Feyen, S. Maurer, H. Gies, T. Tatsumi, X. H. Bao, W. P. Zhang, D. De Vos, F. S. Xiao, Microporous Mesoporous Mater., 2013, 180, 123-129.

    12. [12]

      [12] W. J. Roth, J. Čejka, Catal. Sci. Technol., 2011, 1, 43-53.

    13. [13]

      [13] A. W. Chester, E. G. Derouane, Zeolite Characterization and Catalysis, Springer, New York, 2009.

    14. [14]

      [14] P. Misaelides, Microporous Mesoporous Mater., 2011, 144, 15-18.

    15. [15]

      [15] Y. I. Tarasevich, V. V. Goncharuk, V. E. Polyakov, D. A. Krysenko, Z. G. Ivanova, E. V. Aksenenko, M. Yu. Tryfonova, J. Ind. Eng. Chem., 2012, 18, 1438-1440.

    16. [16]

      [16] A. C. de Campos Bernardi, P. P. A. Oliviera, M. B. de Melo Monte, F. Souza-Barros, Microporous Mesoporous Mater., 2013, 167, 16-21.

    17. [17]

      [17] M. W. Ackley, S. U. Rege, H. Saxena, Microporous Mesoporous Mater., 2003, 61, 25-42.

    18. [18]

      [18] D. Papaioannou, P. D. Katsoulos, N. Panousis, H. Karatzias, Microporous Mesoporous Mater., 2005, 84, 161-170.

    19. [19]

      [19] Y. Li, J. H. Yu, Chem. Rev., 2014, 114, 7268-7316.

    20. [20]

      [20] A. Seidel, M. Bickford, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., Hoboken, 2013.

    21. [21]

      [21] D. Serrano, J. Aguado, J. Escola, in: J. J. Spivey, Y. F. Han, K. M. Dooley eds, Catalysis, Vol. 23, RSC Publishing, Cambridge, 2011, 53.

    22. [22]

      [22] M. Anbia, M. Lashgari, Chem. Eng. J., 2009, 150, 555-560.

    23. [23]

      [23] R. Chal, C. Gérardin, M. Bulut, S. van Donk, ChemCatChem, 2011, 3, 67-81.

    24. [24]

      [24] L. Tosheva, V. P. Valtchev, Chem. Mater., 2005, 17, 2494-2513.

    25. [25]

      [25] M. Zaarour, B. Dong, I. Naydenova, R. Retoux, S. Mintova, Microporous Mesoporous Mater., 2014, 189, 11-21.

    26. [26]

      [26] V. Valtchev, L. Tosheva, Chem. Rev., 2013, 113, 6734-6760.

    27. [27]

      [27] K. K. Zhu, J. M. Sun, J. Liu, L. Q. Wang, H. Y. Wan, J. Z. Hu, Y. Wang, C. H. F. Peden, Z. M. Nie, ACS Catal., 2011, 1, 682-690.

    28. [28]

      [28] G. T. Vuong, V. T. Hoang, D. T. Nguyen, T. O. Do, Appl. Catal. A, 2010, 382, 231-239..

    29. [29]

      [29] X. Y. Chen, K. Wendell, J. Zhu, J. L. Li, X. X. Yu, Z. J. Zhang, Bioresour. Technol., 2012, 110, 79-85.

    30. [30]

      [30] G. T. Vuong, T. O. Do, J. Am. Chem. Soc., 2007, 129, 3810-3811.

    31. [31]

      [31] W. Song, R. E. Justice, C. A. Jones, V. H. Grassian, S. C. Larsen, Langmuir, 2004, 20, 4696-4702.

    32. [32]

      [32] S. Mintova, J. P. Gilson, V. Valtchev, Nanoscale, 2013, 5, 6693-6703.

    33. [33]

      [33] L. Burel, A. Tuel, Microporous Mesoporous Mater., 2013, 174, 90-99.

    34. [34]

      [34] N. Esmaeili, H. Kazemian, D. Bastani, Iran. J. Chem. Chem. Eng., 2011, 30, 9-14.

    35. [35]

      [35] B. Xie, J. W. Song, L. M. Ren, Y. Y. Ji, J. X. Li, F. S. Xiao, Chem. Mater., 2008, 20, 4533-4535.

    36. [36]

      [36] G. Reding, T. Mäurer, B. Kraushaar-Czarnetzki, Microporous Mesoporous Mater., 2003, 57, 83-92.

    37. [37]

      [37] D. Serrano, J. Aguado, J. Rodriguez, A. Peral, Stud. Surf. Sci. Catal., 2007, 170, 282-288.

    38. [38]

      [38] Y. S. Li, W. S. Yang, J. Membrane Sci., 2008, 316, 3-17.

    39. [39]

      [39] Z. W. Chen, S. Li, Y. Yan, Chem. Mater., 2005, 17, 2262-2266.

    40. [40]

      [40] M. Mehdipourghazi, A. Moheb, H. Kazemian, Microporous Mesoporous Mater., 2010, 136, 18-24.

    41. [41]

      [41] Y. Y. Hu, C. Liu, Y. H. Zhang, N. Ren, Y. Tang, Microporous Mesoporous Mater., 2009, 119, 306-314.

    42. [42]

      [42] Y. M. Liu, W. Huang, Y. S. Zhao, T. Dou, React. Kinet. Catal. Lett., 2009, 96, 157-163.

    43. [43]

      [43] M. Nasrollahzadeh, A. Ehsani, A. Rostami-Vartouni, Ultrason. Sonochem., 2014, 21, 275-282.

    44. [44]

      [44] H. Zhao, G. A. Baker, J. Chem. Technol. Biotechnol., 2013, 88, 3-12.

    45. [45]

      [45] X. J. Wang, C. L. Yan, Inorg. Mater., 2010, 46, 517-521.

    46. [46]

      [46] R. Cai, Y. Liu, S. Gu, Y. Yan, J. Am. Chem. Soc., 2010, 132, 12776-12777.

    47. [47]

      [47] C. X. Zhao, L. He, S. Z. Qiao, A. P. Middelberg, Chem. Eng. Sci., 2011, 66, 1463-1479.

    48. [48]

      [48] Y. C. Pan, M. H. Ju, J. F. Yao, L. X. Zhang, N. P. Xu, Chem. Commun., 2009, 7233-7235.

    49. [49]

      [49] T. Wakihara, A. Ihara, S. Inagaki, J. Tatami, K. Sato, K. Komeya, T. Meguro, Y. Kubota, A. Nakahira, Cryst. Growth. Des., 2011, 11, 5153-5158.

    50. [50]

      [50] T. Wakihara, R. Ichikawa, J. Tatami, A. Endo, K. Yoshida, Y. Sasaki, K. Komeya, T. Meguro, Cryst. Growth Des., 2011, 11, 955-958.

    51. [51]

      [51] A. Charkhi, H. Kazemian, M. Kazemeini, Powder Technol., 2010, 203, 389-396.

    52. [52]

      [52] A. Nezamzadeh-Ejhieh, S. Khorsandi, J. Ind. Eng. Chem., 2014, 20, 937-946.

    53. [53]

      [53] G. T. Vuong, T. O. Do, Microporous Mesoporous Mater., 2009, 120, 310-316.

    54. [54]

      [54] J. Kecht, S. Mintova, T. Bein, Langmuir, 2008, 24, 4310-4315.

    55. [55]

      [55] J. Kecht, S. Mintova, T. Bein, Microporous Mesoporous Mater., 2008, 116, 258-266.

    56. [56]

      [56] S. Mintova, V. Valtchev, T. Onfroy, C. Marichal, H. Knözinger, T. Bein, Microporous Mesoporous Mater., 2006, 90, 237-245.

    57. [57]

      [57] A. Sakthivel, A. Iida, K. Komura, Y. Sugi, K. V. R. Chary, Microporous Mesoporous Mater., 2009, 119, 322-330.

    58. [58]

      [58] M. Jafari, T. Mohammadi, M. Kazemimoghadam, Ceram. Int., 2014, 40, 12075-12080.

    59. [59]

      [59] M. Maldonado, M. D. Oleksiak, S. Chinta, J. D. Rimer, J. Am. Chem. Soc., 2013, 135, 2641-2652.

    60. [60]

      [60] L. Zhang, S. L. Liu, S. J. Xie, L. Y. Xu, Microporous Mesoporous Mater., 2012, 147, 117-126.

    61. [61]

      [61] S. Gopalakrishnan, T. Yamaguchi, S. i. Nakao, J. Membrane Sci., 2006, 274, 102-107.

    62. [62]

      [62] E. P. Ng, J. M. Goupil, A. Vicente, C. Fernandez, R. Retoux, V. Valtchev, S. Mintova, Chem. Mater., 2012, 24, 4758-4765.

    63. [63]

      [63] N. Ren, J. Bronić, B. Subotić, Y. M. Song, X. C. Lü, Y. Tang, Microporous Mesoporous Mater., 2012, 147, 229-241.

    64. [64]

      [64] G. Majano, A. Darwiche, S. Mintova, V. Valtchev, Ind. Eng. Chem. Res., 2009, 48, 7084-7091.

    65. [65]

      [65] C. Madsen, C. Madsen, C. J. H. Jacobsen, Chem. Commun., 1999, 673-674.

    66. [66]

      [66] I. Schmidt, C. Madsen, C. J. H. Jacobsen, Inorg. Chem., 2000, 39, 2279-2283.

    67. [67]

      [67] C. J. H. Jacobsen, C. Madsen, T. V. W. Janssens, H. J. Jakobsen, J. Skibsted, Microporous Mesoporous Mater., 2000, 39, 393-401.

    68. [68]

      [68] K. Tang, Y. G. Wang, L. J. Song, L. H. Duan, X. T. Zhang, Z. L. Sun, Mater. Lett., 2006, 60, 2158-2160.

    69. [69]

      [69] Y. C. Pan, J. F. Yao, L. X. Zhang, J. X. Ju, H. T. Wang, N. P. Xu, Chem. Eng. Technol., 2009, 32, 732-737.

    70. [70]

      [70] M. Rasouli, N. Yaghobi, M. Hafezi, M. Rasouli, J. Ind. Eng. Chem., 2012, 18, 1970-1976.

    71. [71]

      [71] S. K. H. Nejad-Darzi, A. Samadi-Maybodi, M. Ghobakhluo, J. Porous Mater., 2013, 20, 909-916.

    72. [72]

      [72] L. Seifi, A. Torabian, H. Kazemian, G. N. Bidhendi, A. A. Azimi, A. Charkhi, Water Air Soil Poll., 2011, 217, 611-625.

    73. [73]

      [73] F. Adam, J. T. Wong, E. P. Ng, Chem. Eng. J., 2013, 214, 63-67.

    74. [74]

      [74] X. M. Ji, W. Yao, Y. Y. Hu, N. Ren, J. Zhou, Y. P. Huang, Y. Tang, Sensor Mater., 2011, 23, 303-313.

    75. [75]

      [75] T. Tago, H. Konno, Y. Nakasaka, T. Masuda, Catal. Surv. Asia, 2012, 16, 148-163.

    76. [76]

      [76] Y. M. Ni, A. M. Sun, X. L. Wu, G. L. Hai, J. L. Hu, T. Li, G. X. Li, Microporous Mesoporous Mater., 2011, 143, 435-442.

    77. [77]

      [77] S. G. Bao, G. Z. Liu, X. W. Zhang, L. Wang, Z. T. Mi, Ind. Eng. Chem. Res., 2010, 49, 3972-3975.

    78. [78]

      [78] C. Covarrubias, F. Gracia, H. Palza, Appl. Catal. A, 2010, 384, 186-191.

    79. [79]

      [79] H. B. Zhang, Y. C. Ma, K. S. Song, Y. H. Zhang, Y. Tang, J. Catal., 2013, 302, 115-125.

    80. [80]

      [80] B. Louis, A. Vicente, C. Fernandez, V. Valtchev, J. Phys. Chem. C, 2011, 115, 18603-18610.

    81. [81]

      [81] H. Konno, T. Tago, Y. Nakasaka, R. Ohnaka, J. i Nishimura, T. Masuda, Microporous Mesoporous Mater., 2013, 175, 25-33.

    82. [82]

      [82] A. A. Rownaghi, F. Rezaei, J. Hedlund, Catal. Commun., 2011, 14, 37-41.

    83. [83]

      [83] Y. Huang, J. Ho, Z. Wang, P. Nakashima, A. J. Hill, H. Wang, Microporous Mesoporous Mater., 2009, 117, 490-496.

    84. [84]

      [84] Y. Zhang, N. Ren, Y. Tang, in: V. Valtchev, S. Mintova, M. Tsapatsis ed., Ordered Porous Solids: Recent Advances and Prospects, Elsevier, Amsterdam, 2008, 441.

    85. [85]

      [85] X. Y. Li, M. H. Sun, J. C. Rooke, L. H. Chen, B. L. Su, Chin. J. Catal., 2013, 34, 22-47.

    86. [86]

      [86] M. S. Holm, E. Taarning, K. Egeblad, C. H. Christensen, Catal. Today, 2011, 168, 3-16.

    87. [87]

      [87] D. P. Serrano, J. M. Escola, P. Pizarro, Chem. Soc. Rev., 2013, 42, 4004-4035.

    88. [88]

      [88] J. Perez-Ramirez, C. H. Christensen, K. Egeblad, C. H. Christensen, J. C. Groen, Chem. Soc. Rev., 2008, 37, 2530-2542.

    89. [89]

      [89] Q. T. Sheng, K. C. Ling, Z. R. Li, L. F. Zhao, Fuel Process. Technol., 2013, 110, 73-78.

    90. [90]

      [90] R. Otomo, T. Yokoi, J. N. Kondo, T. Tatsumi, Appl. Catal. A, 2014, 470, 318-326.

    91. [91]

      [91] K. Möller, T. Bein, Chem. Soc. Rev., 2013, 42, 3689-3707.

    92. [92]

      [92] M. D. González, Y. Cesteros, P. Salagre, Microporous Mesoporous Mater., 2011, 144, 162-170.

    93. [93]

      [93] R. Giudici, H. W. Kouwenhoven, R. Prins, Appl. Catal. A, 2000, 203, 101-110.

    94. [94]

      [94] J. M. Müller, G. C. Mesquita, S. M. Franco, L. D. Borges, J. L. de Macedo, J. A. Dias, S. C. L. Dias, Microporous Mesoporous Mater., 2015, 204, 50-57.

    95. [95]

      [95] M. Müller, G. Harvey, R. Prins, Microporous Mesoporous Mater., 2000, 34, 135-147.

    96. [96]

      [96] J. Datka, J. Klinowski, B. Sulikowski, Catal. Lett., 1994, 25, 403-404.

    97. [97]

      [97] D. Verboekend, J. Pérez-Ramírez, Catal. Sci. Technol., 2011, 1, 879-890.

    98. [98]

      [98] A. Bonilla, D. Baudouin, J. Pérez-Ramírez, J. Catal., 2009, 265, 170-180.

    99. [99]

      [99] J. C. Groen, S. Abelló, L. A. Villaescusa, J. Pérez-Ramírez, Microporous Mesoporous Mater., 2008, 114, 93-102.

    100. [100]

      [100] J. C. Groen, J. C. Jansen, J. A. Moulijn, J. Pérez-Ramírez, J. Phys. Chem. B, 2004, 108, 13062-13065.

    101. [101]

      [101] S. Abello, A. Bonilla, J. Perez-Ramirez, Appl .Catal. A, 2009, 364, 191-198.

    102. [102]

      [102] K. H. Li, J. Valla, J. Garcia-Martinez, ChemCatChem, 2014, 6, 46-66.

    103. [103]

      [103] D. P. Serrano, R. Sanz, P. Pizarro, I. Moreno, S. Shami, Microporous Mesoporous Mater., 2014, 189, 71-82.

    104. [104]

      [104] J. García-Martínez, M. Johnson, J. Valla, K. H. Li, J. Y. Ying, Catal. Sci. Technol., 2012, 2, 987-994.

    105. [105]

      [105] I. I. Ivanova, I. A. Kasyanov, A. A. Maerle, V. I. Zaikovskii, Microporous Mesoporous Mater., 2014, 189, 163-172.

    106. [106]

      [106] J. P. Na, G. Z. Liu, T. Y. Zhou, G. C. Ding, S. L. Hu, L. Wang, Catal. Lett., 2013, 143, 267-275.

    107. [107]

      [107] I. I. Ivanova, E. E. Knyazeva, Chem. Soc. Rev., 2013, 42, 3671-3688.

    108. [108]

      [108] N. D. Lysenko, V. G. Il'in, P. S. Yaremov, Theor. Exp. Chem., 2011, 47, 257-263.

    109. [109]

      [109] M. B. Yue, L. B. Sun, T. T. Zhuang, X. Dong, Y. Chun, J. H. Zhu, J. Mater. Chem., 2008, 18, 2044-2050.

    110. [110]

      [110] Y W. Zhang, T Okubo, M. Ogura, Chem. Commun., 2005, 2719-2720.

    111. [111]

      [111] Y. X. Jia, W. Han, G. X. Xiong, W. S. Yang, Mater. Lett., 2008, 62, 2400-2403.

    112. [112]

      [112] Y. J. Wang, Y. Tang, A. G. Dong, X. D. Wang, N. Ren, Z. Gao, J. Mater. Chem., 2002, 12, 1812-1818.

    113. [113]

      [113] Y. P. Guo, H. J. Wang, Y. J. Guo, L. H. Guo, L. F. Chu, C. X. Guo, Chem. Eng. J., 2011, 166, 391-400.

    114. [114]

      [114] G. Majano, S. Mintova, O. Ovsitser, B. Mihailova, T. Bein, Microporous Mesoporous Mater., 2005, 80, 227-235.

    115. [115]

      [115] D. P. Serrano, J. Aguado, G. Morales, J. M. Rodriguez, A. Peral, M. Thommes, J. P. Epping, B. F. Chmelka, Chem. Mater., 2009, 21, 641-654.

    116. [116]

      [116] K. Möller, B. Yilmaz, U. Müller, T. Bein, Chem. Mater., 2011, 23, 4301-4310.

    117. [117]

      [117] Y. M. Fang, H. Q. Hu, G. H. Chen, Chem. Mater., 2008, 20, 1670-1672.

    118. [118]

      [118] C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am. Chem. Soc., 2000, 122, 7116-7117.

    119. [119]

      [119] S. Frisch, L. M. Rösken, J. Caro, M. Wark, Microporous Mesoporous Mater., 2009, 120, 47-52.

    120. [120]

      [120] Y. C. Tong, T. B. Zhao, F. Y. Li, Y. Wang, Chem. Mater., 2006, 18, 4218-4220.

    121. [121]

      [121] K. K. Zhu, K. Egeblad, C. H. Christensen, Eur. J. Inorg. Chem., 2007, 3955-3960.

    122. [122]

      [122] I. Schmidt, A. Boisen, E. Gustavsson, K. Ståhl, S. Pehrson, S. Dahl, A. Carlsson, C. J. H. Jacobsen, Chem. Mater., 2001, 13, 4416-4418.

    123. [123]

      [123] H. B. Zhu, Z. C. Liu, Y. D. Wang, D. J. Kong, X. H. Yuan, Z. K. Xie, Chem. Mater., 2007, 20, 1134-1139.

    124. [124]

      [124] L. F. Wang, C. Y. Yin, Z. C. Shan, S. Liu, Y. C. Du, F. S. Xiao, Colloids Surf. A, 2009, 340, 126-130.

    125. [125]

      [125] F. J. Liu, T. Willhammar, L. Wang, L. F. Zhu, Q. Sun, X. J. Meng, W. Carrillo-Cabrera, X. D. Zou, F. S. Xiao, J. Am. Chem. Soc., 2012, 134, 4557-4560.

    126. [126]

      [126] F. S. Xiao, L. F. Wang, C. Y. Yin, K. F. Lin, Y. Di, J. X. Li, R. R. Xu, D. S. Su, R. Schlögl, T. Yokoi, T. Tatsumi, Angew. Chem. Int. Ed., 2006, 45, 3090-3093.

    127. [127]

      [127] R. Srivastava, M. Choi, R. Ryoo, Chem. Commun., 2006, 4489-4491.

    128. [128]

      [128] L. F. Wang, Z. Zhang, C. Y. Yin, Z. C. Shan, F. S. Xiao, Microporous Mesoporous Mater., 2010, 131, 58-67.

    129. [129]

      [129] H. X. Tao, H. Yang, X. H. Liu, J. W. Ren, Y. Q. Wang, G. Z. Lu, Chem. Eng. J., 2013, 225, 686-694.

    130. [130]

      [130] H. X. Tao, C. L. Li, J. W. Ren, Y. Q. Wang, G. Z. Lu, J. Solid State Chem., 2011, 84, 1820-1827.

    131. [131]

      [131] J. Zhu, Y. H. Zhu, L. K. Zhu, M. Rigutto, A. van der Made, C. G. Yang, S. X. Pan, L. Wang, L. F. Zhu, Y. Y. Jin, Q. Sun, Q. M. Wu, X. J. Meng, D. L. Zhang, Y. Han, J. X. Li, Y. Y. Chu, A. M. Zheng, S. L. Qiu, X. M. Zheng, F. S. Xiao, J. Am. Chem. Soc., 2014, 136, 2503-2510.

    132. [132]

      [132] Q. Lü, G. Li, H. Y. Sun, Fuel, 2014, 130, 70-75.

    133. [133]

      [133] C. Yin, D. Tian, M. Xu, Y. J. Wei, X. Bao, Y. H. Chen, F. W. Wang, J. Colloid Interface Sci., 2013, 397, 108-113.

    134. [134]

      [134] C. Y. Yin, L. L. Feng, R. Ni, L. Y. Hu, X. Zhao, D. Tian, Powder Technol., 2014, 253, 10-13.

    135. [135]

      [135] J. S. Jin, C. Y. Peng, J. J. Wang, H. T. Liu, X. H. Gao, H. H. Liu, C. Y. Xu, Ind. Eng. Chem. Res., 2014, 53, 3406-3411.

    136. [136]

      [136] A. A. Rownaghi, F. Rezaei, M. Stante, J. Hedlund, Appl. Catal. B, 2012, 119, 56-61.

    137. [137]

      [137] A. A. Rownaghi, J. Hedlund, Ind. Eng. Chem. Res., 2011, 50, 11872-11878.

    138. [138]

      [138] Y. E. Yan, X. Guo, Y. H. Zhang, Y. Tang, Catal. Sci. Technol., 2015, 5, 772-785.

    139. [139]

      [139] D. Verboekend, J. Pérez-Ramírez, ChemSusChem, 2014, 7, 753-764.

    140. [140]

      [140] P. R. Makgwane, S. S. Ray, J. Nanosci. Nanotechnol., 2014, 14, 1338-1363.

    141. [141]

      [141] R. R. Willis, A. I. Benin, Stud. Surf. Sci. Catal., 2007, 170, 242-249.

    142. [142]

      [142] D. Verboekend, S. Mitchell, J. Pérez-Ramírez, Chimia, 2013, 67, 327-332.

    143. [143]

      [143] J. C. Groen, J. A. Moulijn, J. Pérez-Ramírez, Ind. Eng. Chem. Res., 2007, 46, 4193-4201.

    144. [144]

      [144] J. Pérez-Ramírez, S. Mitchell, D. Verboekend, M. Milina, N. L. Michels, F. Krumeich, N. Marti, M. Erdmann, ChemCatChem, 2011, 3, 1731-1734.

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(2)
  • Abstract views(448)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return