Citation: Mohsen Keyvanfard, Khadijeh Alizad. Determination of isoproterenol in pharmaceutical and biological samples using a pyrogallol red multiwalled carbon nanotube paste electrode as a sensor[J]. Chinese Journal of Catalysis, ;2016, 37(4): 579-583. doi: 10.1016/S1872-2067(15)61036-1 shu

Determination of isoproterenol in pharmaceutical and biological samples using a pyrogallol red multiwalled carbon nanotube paste electrode as a sensor

  • Corresponding author: Mohsen Keyvanfard, 
  • Received Date: 10 October 2015
    Available Online: 5 January 2016

  • Isoproterenol (ISPR) is an important catecholamine-based drug that is widely used in the treatment of heart disease. However, overdose of this drug is very dangerous to the human body. In this study, a new sensor based on a pyrogallol red modified-multiwalled carbon nanotube paste electrode (PGRMMWCNTPE) was prepared and used for high sensitivity determination of ISPR in aqueous solution. Electrocatalytic oxidation of ISPR at the PGRMMWCNTPE was investigated by chronoamperometry, cyclic voltammetry, and square-wave voltammetry. The values of the catalytic rate constant, electron transfer coefficient, and diffusion coefficient for ISPR oxidation were then calculated using voltammetric data. A linear calibration curve was constructed for ISPR concentration in the range 0.8-570 μmol/L with a detection limit of 0.47 μmol/L ISPR. The sensor was then applied to the determination of ISPR in urine and drug samples with satisfactory results.
  • 加载中
    1. [1]

      [1] L. Goodman, A. Gilman, The Pharmacological Basis of Therapeutics, 9 ed., McGraw-Hill Professional, New York, 1996, 105.

    2. [2]

      [2] L. Elrod, J. L. Schmit, J. A. Morley, J. Chromatogr. A, 1996, 723, 235-241.

    3. [3]

      [3] B. J. Sanghavi, S. M. Mobin, P. Mathur, G. K. Lahiri, A. K. Srivastava, Biosens. Bioelectron., 2013, 39, 124-132

    4. [4]

      [4] A. A. Ensafi, H. K. Maleh, Int. J. Electrochem. Sci., 2010, 5, 1484-1495.

    5. [5]

      [5] H. Karimi-Maleh, F. Tahernejad-Javazmi, A. A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, Biosens. Bioelect., 2014, 60, 1-7.

    6. [6]

      [6] M. Keyvanfard, H. Karimi-Maleh, K. Alizad, Chin. J. Catal., 2013, 34, 1883-1889.

    7. [7]

      [7] M. Keyvanfard, M. Ahmadi, F. Karimi, K. Alizad, Chin. Chem. Lett., 2014, 25, 1244-1246.

    8. [8]

      [8] A. S. Isfahani, M. Keyvanfard, B. Rezaei, K. Alizad, Current Nanosci., 2014, 10, 512-520.

    9. [9]

      [9] J. Barek, J. Fischer, J. C. Moreira, J. Wang, in: K. Kalcher, R. Metelka, I. Švancara, K. Vytřas eds., Sensing in Electroanalysis, University Press Centre, Pardubice, 2013/2014, Volume 8.

    10. [10]

      [10] A. A. Ensafi, E. Khoddami, H. Karimi-Maleh, Int. J. Electrochem. Sci., 2011, 6, 2596-2608.

    11. [11]

      [11] B. J. Sanghavi, W. Varhue, J. L. Chávez, C. F. Chou, N. S. Swami, Anal. Chem., 2014, 86, 4120-4125.

    12. [12]

      [12] S. N. Azizi, S. Ghasemi, N. S. Gilani, Chin. J. Catal., 2014, 35, 383-390.

    13. [13]

      [13] A. A. Ensafi, M. Lotfi, H. Karimi-Maleh, Chin. J. Catal., 2012, 33, 487-493.

    14. [14]

      [14] B. Habibi, M. Abazari, M. H. Pournaghi-Azar, Chin. J. Catal., 2012, 33, 1783-1790.

    15. [15]

      [15] H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, M. L. Yola, V. K. Gupta, A. A. Ensafi, Ind. Eng. Chem. Res., 2015, 54, 3634-3639.

    16. [16]

      [16] M. R. Ganjali, P. Norouzi, M. Ghorbani, A. Sepehri, Talanta, 2005, 66, 1225-1233.

    17. [17]

      [17] P. Norouzi, M. R. Ganjali, M. Zare, A. Mohammadi, J. Pharm. Sci., 2007, 96, 2009-2017.

    18. [18]

      [18] P. Norouzi, M. R. Ganjali, T. Alizadeh, P. Daneshgar, Electroanalysis, 2006, 18, 947-954.

    19. [19]

      [19] P. Norouzi, M. R. Ganjali, L. Hajiaghababaei, Anal. Lett., 2006, 39, 1941-1953.

    20. [20]

      [20] T. Alizadeh, M. R. Ganjali, M. Zare, P. Norouzi, Electrochim. Acta, 2010, 55, 1568-1574.

    21. [21]

      [21] B. J. Sanghavi, A. K. Srivastava, Electrochim. Acta, 2010, 55, 8638-8648.

    22. [22]

      [22] M. L. Yola, N. Atar, Electrochim. Acta, 2014, 119, 24-31.

    23. [23]

      [23] B. J. Sanghavi, A. K. Srivastava, Electrochim. Acta, 2011, 56, 4188-4196.

    24. [24]

      [24] B. J. Sanghavi, P. K. Kalambate, S. P. Karna, A. K. Srivastava, Talanta, 2014, 120, 1-9

    25. [25]

      [25] M. L. Yola, N. Atar, Z. Üstündağ, A. O. Solak, J. Electroanal. Chem., 2013, 698, 9-16.

    26. [26]

      [26] M. L. Yola, T. Eren, N. Atar, Sens. Actuators B, 2014, 195, 28-35.

    27. [27]

      [27] H. Karimi-Maleh, P. Biparva, M. Hatami, Biosens. Bioelect., 2013, 48, 270-275.

    28. [28]

      [28] R. Sadeghi, H. Karimi-Maleh, A. Bahari, M. Taghavi, Phys. Chem. Liq., 2013, 51, 704-714.

    29. [29]

      [29] R. Moradi, S. A. Sebt, H. Karimi-Maleh, R. Sadeghi, F. Karimi, A. Bahari, H. Arabi, Phys. Chem. Chem. Phys., 2013, 15, 5888-5897.

    30. [30]

      [30] M. Najafi, M. A. Khalilzadeh, H. Karimi-Maleh, Food Chem., 2014, 158, 125-131.

    31. [31]

      [31] M. Keyvanfard, V. Khosravi, H. Karimi-Maleh, K. Alizad, B. Rezaei, J. Mol. Liq., 2013, 177, 182-189.

    32. [32]

      [32] M. Elysi, M. A. Khalilzadeh, H. Karimi-Maleh, Food Chem., 2013, 141, 4311-4317.

    33. [33]

      [33] M. Keyvanfard, R. Salmani-Mobarakeh, H. Karimi-Maleh, K. Alizad, Chin. J. Catal., 2014, 35, 1166-1172.

    34. [34]

      [34] A. A. Ensafi, H. Karimi-Maleh, J. Electroanal. Chem., 2010, 640, 75-83

    35. [35]

      [35] E. M. Silva, R. M. Takeuchi, A. L. Santos, Food Chem., 2015, 173, 763-769.

    36. [36]

      [36] H. Karimi-Maleh, S. Rostami, V. K. Gupta, M. Fouladgar, J. Mol. Liq., 2015, 201, 102-107.

  • 加载中
    1. [1]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    7. [7]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    10. [10]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    13. [13]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    14. [14]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    15. [15]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    18. [18]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    19. [19]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    20. [20]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

Metrics
  • PDF Downloads(0)
  • Abstract views(321)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return